
DBA Best Practices from the Field

Arup Nanda

Introduction
The very mention of best practices evokes mixed
reactions – a huge glimmer of hope shadowed by a hint
of doubt. A map to chart the course set by the best
practices gives the hope to anyone at any level of
expertise; but it’s the doubt that dampens the
enthusiasm. The primary reason of the doubt is the way
the notion of best practices is promulgated. Many so
called “experts” either manufacture these best practices
or reiterate those already there. Of course, there are
genuine experts who make the rules and guidelines
based on their experience and thorough analysis; but
unfortunately these experts are in minority. Most of the
best practices have been products of empirical opinions
or, worse, rules of thumb, which has just been passed
around. Their legitimacy stems from only one fact –
someone has told them somewhere, it has been repeated
by several other people and hence, it must be true. These
could be inadequate or irrelevant advice or just
downright wrong.

I often question these so called “best practices” for their
relevance in real life situations. Almost always the
questions bring out a deeper understanding of the issue
the practice is supposed to solve; and in many cases, the
underlying issue, well, is not an issue at all. Sometimes,
the issue may be real; but the supposed solution does
nothing to address it. In many other cases, the solution is
inadequate or plain wrong. As a lead DBA in many
corporations I am expected set some guidelines and
provide guidance for others. Needless to say, I’m often
challenged with why a best practice should or should not
be followed and also come up with some practices of my
own. These best practices stem from my readings; but
more as a product of working as a production support
and architect DBA for a long period of time. This paper
is the summary of some of those practices that cater to
“real life”.

What Makes a Practice Best?
I have two simple rules of thumb, when considering
something as a best practice.

It Must be Justified
Anyone promoting anything as a best practice must be
able to justify it. The fact that it has been around, or that
it has been told by someone important in some very
important conference are not the criteria for being
considered a best practice. If you come across someone
stating a best practice, always question, politely but
firmly, why that is so. If you get the answer that
essentially tells you not to question the authority without
an explanation, most likely it’s an urban myth. Even if
the best practice is said to be a quote from an
acknowledged expert, such as Jonathan Lewis and Tom
Kyte (whose words, by the way, should be treated as
gospel), may still be misinterpreted, leading to false
practices. Again, the speaker should have understood
that quote before making a statement and should be able
to justify. Sometimes, the original quotes were correctly
portrayed; but they may have lost the relevance in course
of time and in the new version. For instance, locally
managed tablespace is a great best practice; but not in a
RAC environment, where ASSM may be great.

It Has to Be Situation Aware
A best practice must be able to adapt to the situation.
Very few best practices universal. For instance, I saw
this on a book on best practices:

Run the database in archivelog mode

Why? Because it offers the possibility media recovery
up to the very moment of failure. That part is true; but
what about the performance penalties? Running a small
OLTP database in archivelog mode is one thing; but
running a 64TB datawarehouse is another. In the latter
case, you may be better off recreating the data from the
source system instead of from the backup. So, a different
backup strategy such as taking disk level copies might
be a better alternative to RMAN hot backup. So, a
blanket statement such as above is not generally a best
practice. It has to be specific to a situation; and it has to
offer pros and cons. It’s somewhat tied to the previous
requirement.

www.nyoug.org 212.978.8890 1

So, that being said, let’s see what these best practices
are.

(1) Set Audit Trail to DB
Here is a question. Is it true or false: setting audit_trail to
DB in the initialization parameter file will start auditing
in the database and increase I/O?

Most people tend to think it is true; actually it’s false.
You need to issue AUDIT statement to start auditing.
For instance to start auditing SELECT statements on
table EMP, you need to give the command:

SQL> audit select on emp by access;

The audit_trail initialization parameter merely specifies
where the trail should be written, how much information
and in what format the information is written. But if the
parameter is not set to anything explicitly, AUDIT
statement on the table EMP does not do any thing. When
you want to start auditing, you need to set this parameter
to DB, DB_EXTENDED (10gR1), OS or XML (in
10gR2).So, what’s the problem?

This parameter, unfortunately, is not a dynamic one.
You can’t use ALTER SYSTEM command to set this;
you need to recycle the database for this to take effect.
So, even if you are not planning on auditing now, you
need to set it when you do plan to; but unfortunately,
you have to bounce the database at that time. There is no
problem in leaving it set to DB; and it will save you a
recycle later, when you plan to use auditing. Oracle 11g
already has this set to DB by default.

(2) Think outside the "OFA"
Oracle Flexible Architecture (OFA), introduced some 14
years ago has been somewhat of a gold standard in
database layout. When it was introduced, there was a
good reason for following it. At least it provided a
common layout for the files which allowed with new
DBAs to get acclimatized with the layout faster. In
summary, it requires you define an Oracle Base directory
such as /u01/app/oracle. Under that, it specifies that you
define the following directories.

 admin/SID/bdump – for background dumps
 admin/SID/udump – user dumps
 oradata/SID/datafiles – datafiles
and so on.

When you use Oracle Installer to create a starter
database or use DBCA to create a database, it follows
the OFA layout for the different directories. So, it has
been best practice for some time.

But things changed, as all things do. Although it’s still a
good idea; OFA may not be the right choice in all cases.
So, this is not a universal best practice. Some of the
issues with the OFA plan are due to the lack of
separation of the filesystems:
• All directories branch out from the same source - the

base, which makes it difficult to lay them out on
different types of storage. For instance, the datafiles
should be on a high performance disk while the
others such as the Oracle binaries can be on cheaper
and slower disks.

• Security is another consideration. Non-DBAs may
want access to the user dump directory where the
trace files are created; and you can’t give then
permission to go there unless all the parent and
grand-parent directories are allowed execute
permission. This is not very desirable.

• You may want to keep the Oracle Home on cheaper
and available free space on the internal disks in the
server while the datafiles may be on more expensive
SAN. Similarly, archived logs can be on cheapest
storage, perhaps NAS.

Sometimes, databases are set up with active-passive
clusters. When the main host fails, the filesystem gets
unmounted and then gets remounted on the passive
server. But the passive host may already have another
Oracle Home (such as that of a QA system). So, you
don’t want to failover the entire Oracle Base; just the
datafiles.

So, OFA may not be the right solution for the database
systems. Here is an alternative strategy.

Create a base directory: /oracle. Under that create a
directory admin/SID, under which create bdump
(background), adump (audit), cdump (coredumps), pfile
(parameter file) and so on. Do not create user dump
destination directories here. Make the permissions of the
directory /oracle and below no privs for “others”.

Another directory /u01/udump/SID/* is defined as user
dump destination and is allowed free for the users.

A third types of directory /prddata1/SID/datafiles is used
for datafiles. This probably requires high performance

www.nyoug.org 212.978.8890 2

disks as well as high security – this directory should
have no permissions for anyone other than oracle. Create
more than one filesystem to spread it over more than one
disk spindles, e.g. /prddata2, /prddata2 and so on. You
may want to place undo, redo and control files on
separate mount points to isolate disk and I/O paths.
Some of the datafiles containing historical may not need
to be on high performance disks. These have to be on a
different set of disks, and need a different filesystem.

Finally, the archive logs need to be on a different
filesystem, due to the crucial nature of the contents – the
archived logs. If you ever perform media recovery, you
need to have the archived log. If an archived log is
missing, the recovery will stop right there even if all
other archived logs after that are available. So, you may
want to put them on disks that are more reliable.

Note the mount point naming convention –/prddata,
instead of /u01. This allows the filesystem to be mounted
to a new host where QA database could be running,
which may be on filesystems named /qadata. If you had
followed the convention of /u01, this would not have
been possible.

As you can see, it pays to rethink the option of following
OFA for the filesystem layout. Of course, you can create
the directories as per the OFA conventions and create
symbolic links to all the actual directories. This
approach works; but makes it complicated to follow
which content goes where and might prove to be worse
than just referring the directories directly.

(3) Different Oracle Homes
How do you apply a patch to the Oracle Home? You
probably follow the general steps as shown:

1. Shutdown the database
2. Patch oracle software
3. Bring up the database
4. If the patch has some database component, run any

scripts that need to be run, e.g. catalog.sql and
catproc.sql.

Now, consider this: in step 2, something goes wrong.
The patch application did not go well. Of course there is
a patch backout option in OPatch; but it may or may not
do a clean uninstallation. You run the risk of corrupting
the database software.

A second problem is timing. Between steps 1 and 3 the
database remains unavailable. Depending on the patch or
patchkit, this outage could be substantial and
unacceptable.

So, here is a best practice –modify the process a little bit.
Name your Oracle Homes in the following manner -
/u01/app/oracle/product/10.2/db1. Note how the
directory has been named “db1”, instead of just “db”.
When you are ready to apply a patch, do not apply it to
this Oracle Home. Instead, create another home, called
/u01/app/oracle/product/10.2/db2 (note “db2”). Install
the same software in db2 as it is in db1. Then patch
“db2” home, not “db1”. Since the running database is on
home “db1”, this application could be done even when
the database is running. When the outage time comes,
just shutdown the database, change ORACLE_HOME to
db2 and startup the database.

If something goes wrong in the process, you can simply
shutdown the database and reset the ORACLE_HOME
to db1 and startup as usual.

Follow this for all the patch applications. When the next
patch is applied, create another home, called “db3” and
install everything you had done in db2 and then the new
patch. And follow the process for all the patches. You
may also reuse the home “db1” for this patch instead of
creating a brand new home. Let’s see an example
illustrating this approach:

1. Brand new install with Oracle 10.2.0.2 software.

Install it on /u01/app/oracle/product/10.2/db1.
2. Then a patch 1868560 comes out that needs to be

applied.
3. Once again, install the base 10.2.0.2 software on the

directory /u01/app/oracle/product/10.2/db2.
4. Apply the patch to this new Oracle Home
5. When the outage time comes, shutdown the database
6. Execute

ORACLE_HOME=/u01/app/oracle/product/10.2/db
2. Set the appropriate PATH and
LD_LIBRARY_PATH as well.

7. Startup the database
8. If something goes wrong in the patch application,

your original Oracle Home is still intact. You can set
the OH variable to that home and restart the
database.

www.nyoug.org 212.978.8890 3

What Are The Benefits:
This keeps the existing software intact, reducing the risk
of failed patch

1. The database need not be down during the patch

application time, which could be considerable.
2. Since the database is not down during patch

application, you can do it at a time that is less
stressful rather than at a crunch time.

3. Patch undo is as trivial as changing the Oracle
Home, for non-database patches. This is perfect for
CRS and ASM patches.

4. Since you have copies of both database software
versions, you can perform a comparison to identify
differences, if any. This is a lifesaver if the new
patchkit corrupts some binary. You may be able to
get the binary from the old home.

Therefore, best practice is to install the patch on a new
Oracle Home each time. If you have the space, keep on
adding new Oracle Homes instead of reusing them.

(4) Keep ASM Home Separate from
Database
If you are using Oracle RAC, you already know that you
need to install the CRS software on a new home. But
there is no such requirement for ASM. ASM software is
part of the RDBMS codebase; so if you have installed
Oracle database software, you already have ASM code
in it.

However, it’s a best practice to install a separate Oracle
Home for ASM software alone and run ASM from that
home. So, you may have two homes:
• /u01/app/oracle/product/10.2/db1 for the Database

software
• /u01/app/oracle/product/10.2/asm1 for the ASM

instance alone.

So, you will perform the following

$ export
ORACLE_HOME=/u01/app/oracle/product/10.2/
asm1
$. oraenv
$ sqlplus / as sysdba
SQL> startup

Once ASM comes up, use the following to startup the
database:

$ export
ORACLE_HOME=/u01/app/oracle/product/10.2/
db1
$. oraenv
$ sqlplus / as sysdba
SQL> startup

The content of ASM home and DB home might be
identical; but by putting them in separate homes, you
eliminate a lot of risk. Sometimes patches come out for
RDBMS but not applicable for ASM. If you have a
common home, the patches are applicable to both of
them, which may cause instability in ASM instance.
Oracle software is known to be 100% error free (not
even close to that); so a patch not designed for some
product is not something you want to apply. Similarly,
there may be a ASM specific patch, which is applied to
the ASM home only; not to the RDBMS home. Most
likely, both homes will identical as most patches are
applicable to both; but that is not always the case.

The downside of this approach is you have to have
double the space and your patch application time is now
increased as you have to patch both the homes. But you
can apply them in parallel, which makes the elapsed time
the same as a common home. If you follow the new
home approach suggested elsewhere in this paper, you
can reduce the downtime even further.

(5) Set Parameters at Start
Some initialization parameters found in the Oracle
database are static and not modifiable by an ALTER
SYSTEM. If you want to modify them, you will have to
bounce the database. Many of these parameters are not
needed to be changed after the database creation; but
some stand out a possibility. There are two in particular
that may be required and I recommend setting them to
non-default value. These are:

1. _trace_files_public=true

By default, it’s set to FALSE, which makes the trace
files generated in user dump destination directories
set to no permission for others. Trace files are
usually requested by developers to diagnose
performance issues and sooner or later you will a
request to have access to these files. Rather than
copying these to some other common developer-
accessible location, why not just let them grab it
directly from the location where it gets generated?
By setting this parameter to TRUE, the files will be

www.nyoug.org 212.978.8890 4

generated as publicly readable, and developers can
directly access them.

2. utl_file_dir=’/tmp’

The OS file manipulation utility in Oracle is
implemented through the supplied package utl_file.
The package opens the file by specifying a directory.
However, this directory must be mentioned in the
parameter utl_file_dir. If this parameter is not
specified in the initialization parameter file, then you
can’t call utl_file to open a file in that directory.
Since DBAs didn’t know in advance what
directories will be opened by developers, they
usually put a “*” in there, a wild card that denotes all
directories readable by oracle user. Nothing can be
more dangerous than that. A malicious developer
can overwrite database files since they are owned by
oracle user.

From Oracle 9i onwards, the directory does not have to
be a physical directory; but can be a directory object.
This eliminated the need to have utl_file_dir parameter
and most DBAs do not place it. However, unfortunately,
one program still needs it – the Logminer. If you want to
create a dictionary flat file, Logminer uses the OS
directory name rather than the directory object name. If
you haven’t defined the parameter, you wil not be able to
use that feature, unless you recycle the database. To
avoid this possibility, set this parameter to some
harmless directory such as /tmp. Once set, you can use
Logminer without bouncing the database.

(6) Kill Inactive Sessions
Here is a typical problem: some applications, especially
web apps using connection pool, remain inactive for
considerable amounts of time. Some considerate
middleware teams set the parameters in such a way that
the inactive sessions in the pool are disconnected
automatically. What if you don’t have such a
partnership? The inactive sessions keep draining
resources.

Suggestion
A very simple solution is to use Resource Manager and
set the inactive session disconnect timeout. This
automatically disconnects the sessions that have been
inactive for a period of time specified by you. Even if
you don’t use Resource Manager for anything else, this
is a good use of the tool.

You may be wondering, why RM, why not use user
profile, which also has a inactive session disconnect
feature?

The answer is simple. Profiles are rather static. You
attach a profile to a user, not to a session. Once attached
the profile remains attached to the user unless you
disassociate it; or turn off profiles using resource_limit =
false in the initialization parameter file. On the other
hand, RM allows you to turn on and off via scheduling
and based on some events. You can even temporarily
disable resource manager based limits.

The second benefit is that RM allows service name
based control. So, a user SCOTT maybe subject to a
resource plan while using a service SN1; but another
resource plan while connecting through service name
SN2. Profiles are attached to user SCOTT and therefore
the same limit applies in any case.

(7) Check Listener Log
Listener log files contain valuable information about the
database connections such as which clients are trying to
connect but failing, and what service names they are
using. A lot of information is captured anyway there,
even if auditing is not turned on. However, the
information source is a text file; how can you effectively
use it.

The answer: create External Tables on listener log. Once
created this way, you can extract the information using
the best language you know – SQL. Rather than
explaining the mechanics here, I will direct you to read a
three-part series I wrote for DBAZINE.com at:
http://www.dbazine.com/oracle/or-articles/nanda14

(8) Service Names
An Oracle database can be accessed via either SID or
Service Name. Here is how a conventional TNS entry
using Service Name looks like:

prodb1 =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST =
prolin1)
 (PORT = 1521)))
 (CONNECT_DATA = (SID = PRODB1))
)

www.nyoug.org 212.978.8890 5

http://www.dbazine.com/oracle/or-articles/nanda14

 When you use service name, the connect data section
simply changes to: (9) Analyze CPU and IO Usage
 Auditing in database is expensive because it involves

additional I/O. So, we need to have the biggest bang for
the buck, i.e.. accomplish the most with little auditing
and that is Session Auditing. To enable session auditing,
simply issue:

(CONNECT_DATA = (SERVICE_NAME = PRODB1)))

Here we are assuming you are using the default service
name – the database name itself. That is not something
you want if you want to switch over to service names.
 SQL> audit session;
Enable Service Names

It records when users connect to and disconnect from the
database. So, one record gets created in audit trail when
the user connects. When the user disconnects, the same
record is updated with a whole lot of information, such
as logical and physical I/O used, CPU used and so on, in
addition to the disconnect time. Since there are only two
activities associated with a session – one insert and the
other update, the I/O impact is low. On the other hand,
the information captured is a gold mine. Let’s see how.

In the instance, check service names present already:

SQL> show parameter service_names

This will show service names already defined. To create
additional service names:

SQL> alter system set service_names =
'SVC1', 'SVC3', 'SVC3';

Check is listener is listening for these: Purpose

You can calculate CPU consumption for the users per
day as shown below:

$ lsnrctl services

 In RAC, you should use SRVCTL to add services:
select username,
to_char(logoff_time,'mm/dd') ts,

$ srvctl add service –d MYDB –s SVC1 ...

 count(1) cnt,
 sum(session_cpu) sum_cpu, Why Service Names? avg(session_cpu) avg_cpu,

• First of all, service names bring no change in
functionality; but they enable separating use from
user, e.g. user SCOTT logging from laptop uses
service SVC1; but from app server SVC2. you may
want to set up different resource plans for each type
of service. For instance, SVC2 (from app server)
may be allowed 50% of the CPU; but SVC1 is
allowed only 20%.

 min(session_cpu) min_cpu,
 max(session_cpu) max_cpu
from dba_audit_trail
where logoff_time between '&start_date'
and '&end_date'
group by username,
to_char(logoff_time,'mm/dd')
order by username,
to_char(logoff_time,'mm/dd')

• It allows the load balancing and failover in RAC or
Data Guard databases

Here is the output.

• Allows fine grained failover capabilities. For
instance you can say, service SVC1 fails from node1
to node2; but SVC2 fails to node3.

USERNAME TS CNT SUM_CPU AVG_CPU MIN_CPU MAX_CPU
--------------- ----- -------- ------------ ------------ ------------ ------------
USER1 04/04 3 918 306 17 859
USER2 04/04 36 15,286 425 0 4,094
USER3 04/04 3 794 265 174 379
USER4 04/04 187 396,299 2,119 1 124,274

www.nyoug.org 212.978.8890 6

This output tells you which users are consuming how
much CPU. In addition to just getting a list of users that
hog CPUs, you get valuable insight into planning for the
capacity of the server. For instance, if your server is 65%
utilized now and you see that user USER1 is consuming
CPU at an increasing rate, then you know who to ask for
the increased usage. This information also helps to
decide how to configure the resource manager.

You can also use the report to calculate the IO used by
the users. Here is an example

select username,

to_char(logoff_time,'mm/dd') ts,
 sum(logoff_lread) lread,
 sum(logoff_pread) pread,
 sum(logoff_lwrite) lwrite,
 sum(session_cpu) scpu
from dba_audit_trail
where logoff_time between '&start_date'
and '&end_date'
group by username,
to_char(logoff_time,'mm/dd')
order by username,
to_char(logoff_time,'mm/dd')

Here is the output:

USERNAME TS LREAD PREAD LWRITE SCPU
--------------- ----- ------------ ------------ ------------ ------------
USER1 04/04 283,271 10,858 33 918
USER2 04/04 4,570,965 6,225 2,854 15,286
USER3 04/04 601,838 1,988 26 794
USER4 04/04 33,639,028 4,545,505 1,083,473 396,299

From the output you can see the logical reads, writes,
physical reads and CPU used in the session for the users.
This type of information allows you to understand how a
system is used as far as I/O is concerned and how you
can do capacity planning for future I/O.

This information can also be used to identify if
someone’s account was locked after repeated wrong
passwords. You can issue:

select to_char(timestamp,'mm/dd/yy
hh24:mi') ts,
 os_username, userhost, returncode
from dba_audit_trail
where username = 'ARUP'
order by timestamp;

Here is the output:

01/10/07 14:12 arupnan CORP\UPNANT 0
01/10/07 15:12 arupnan CORP\UPNANT 0
01/11/07 04:01 orandsp hndspdb1 1017
01/12/07 04:02 orandsp hndspdb1 1017
01/13/07 04:03 orandsp hndspdb1 1017
01/14/07 04:04 orandsp hndspdb1 1017
01/15/07 04:00 orandsp hndspdb1 28000

The output clearly shows that the user ARUP tried to
login at 4:01 AM on 1/11/07 but got an error: “ORA-
01017 Invalid Username/Password”, which shows up in
the above output with 1017 in the last column. After four
attempts, the account was locked and the user got the
error: “ORA-28000 Account is locked”, which shows up
as in the audit trail as the last record. Using this you can
track how the account was locked.

(10) Audit DDL
How many times you were paid a visit by someone who
asks what happened to his/her table? If you cast an
incredulous look that shouts out “how the heck do I

know”, you were probably rewarded with an equally
bewildered look “You are the DBA and you are saying
you don’t know what happened to it?”

To prevent such unpleasant moments, just turn on
auditing to track all DDL statements. It’s conceivable
that many statements in the database will be DML, not
DDL; so this action will not overwhelm the audit trail
but provide important information later. Suppose you
want to audit table creation, truncations and drop, you
will issue:

SQL> audit table by session;

www.nyoug.org 212.978.8890 7

This tracks all those statements. To find out all the
statements you can issue, check the table
stmt_audit_option_map in the SYS schema.

Another shortcut is the statement: AUDIT ALL BY
SESSION, which audits most DDLs.

There is a little caveat: in DW environments, users
create and drop a large number of tables; so this may not
be advisable.

(11) OS Specific Tweaks
Many DBAs do not pay attention to the scope of tuning
possibilities in the specific platforms. For instance, in
HP/UX, you can set the initialization parameter
sched_noage to a low value to set the priority for the
user. You can also make "dba" group part of MLOCK to
take advantage of the asynch I/O. Similarly on Solaris
you can use Intimate Shared Memory. The effect of
these OS tuning is sometimes dramatic and you should
explore the possibility of such tuning.

(12) Redo is Not a LOG
A very common practice many DBAs follows is naming
the redo log files with an extension “.log”; even DBCA
does it. There are two problems in that case:

Sometimes you may want to run a script or a program to
delete log files via cron, e.g. sqlnet.log. Naming the redo
log file with .log extension makes it likely for it to be
deleted by mistake.

A listener attack that can change the listener log to
redo1.log using the command set log_directory and set
log_file commands. If the redo log file name is different,
then listener attack will fail.

The best practice is to choose the extension .redo or .rdo
for redo log files.

(13) To ASSM, or not?
Automatic Segment Space Management (MSSM), a new
way to manage free space in the block, has been around
since 9i days. It uses bitmap of free space on the block;
so a session trying to fit more data does not need to
check the UET$ table, as it does in case of Manual
Segment Space Management (MSSM) extent
management. It’s great for performance and eliminates
or reduces some waits like buffer busy waits.

But, bitmap states are only for full, 25, 50 and 75% free
and then empty block. So it can potentially lose up to
25% space on each block.

So, it’s a good idea to use:
• ASSM for non-DW databases
• MSSM for DW databases

Buffer busy waits not common on DW anyway; so using
MSSM may not cause a problem.

(14) Aliases
Aliases make some repetitive job faster and quicker.
Here is a set of common aliases I use:

alias bdump='cd
$ORACLE_BASE/admin/$ORACLE_SID/bdump'
alias pfile='cd
$ORACLE_BASE/admin/$ORACLE_SID/pfile'
alias obase='cd $ORACLE_BASE'
alias tns='cd $ORACLE_HOME/network/admin'
alias oh='cd $ORACLE_HOME'
alias os='echo $ORACLE_SID'

(15) Protect the Listener

Restrict Parameter Changes
Did you know that you can change the location of the
listener log file by issuing the SET LOG_DIRECTORY
command at the LSNRCTL prompt?

This is a favorite tactic by hackers to change the listener
log to the redo log directory and corrupt the redo log
files. To prevent such an event, simply place this
parameter in the listener.ora file.

admin_restrictions_listener=on

This prevents online modification of the listener
parameters. To change a parameter, you have to modify
the listener.ora file and then reload the listener.

$ lsnrctl reload

This does not stop the listener; just loads the new
parameters into memory. So your applications will not
be affected.

www.nyoug.org 212.978.8890 8

Different Listener for External
Procedures
External procedures are particularly vulnerable to
attacks. Do you use external procedures? If so, they are
placed in the listener.ora file as well. If you do not use
the external listener, you should remove the entry from
the listener.ora file. The entry is placed by default.

If you use external procedures, always create a new
listener for them alone and let them run on a different
port. This allows you to be more restrictive on that port
and add more security in the external procedures.

(16) Build a Metadata Repository
How do you know when some structural modification
occurred in the database? For instance a tablespace was
added, a table was added, someone changed the
tablespace parameter, a user was added and so on? Once
way to go through the change control tickets to figure
out the changes – a rather painful and error prone way.
The other way is to carefully document every time the
change occurs. Both options are not particularly
attractive.

A much easier option, in Oracle 10g is to use Data Pump
to build a repository automatically:

$ expdp u/p content=metadata_only full=y
diectory=tmp_dir dumpfile=md.dmp

Import this to create an SQL File

$ impdp u/p diectory=tmp_dir
dumpfile=md.dmp sqlfile=md.sql

This creates the DDLs of all objects in the database in
the file md.sql. You can create a separate file everyday
and perform a comparison to see if something changed.
For more information and several other tips for Data
Pump, see my paper: Datapump: Not Just for Data
Movement.

(17) Validate Database
Many people are not aware of a powerful command in
RMAN – the VALIDATE command, which allows you
to check the integrity of the database components such
as backupsets, archived logs and even datafiles. Here is
how you use them for archived logs:

RMAN> backup validate database archivelog all;

Then check for corrupt blocks in view
v$database_block_corruption. This allows you to
proactively check for archived log errors that might
prevent a failure in recovery later.

To detect logical corruption, you can use a slightly
different command:

RMAN> backup validate check logical
database archivelog all;

This command checks for logical errors in the archived
logs. As a best practice, always check for consistency
and integrity of the archived logs after they are created.
Remember, if an archived log is bad, you can’t recover
beyond that point. So, if you detect a corruption in the
archived log, immediately take an incremental backup
(or a full one, if you take only full backups).

(18) Preview RMAN Restore
You have been taking database backups diligently; but
do you know if all the backups are available? That’s a
very critical question: what good are the backups if they
are missing? How can you make sure all the backup files
are available without actually restoring it?

Another under-utilized and relatively unknown option in
RMAN is the PREVIEW clause. The clause can be
added to any restore command. Here is an example:

RMAN> restore tablespace users preview;

It does not actually restore but checks the availability of
files that will be used in the recovery. If a file is not
present, it errors out, alerting you.

It’s not the same as the VALIDATE command. Preview
checks for the availability of the files that are required;
validate assumes you know that and validates the
physical and logical integrity of those files. So, they are
complementary in function.

It’s not the same as TEST clause, either. Test clause
expects the tablespace (or the datafile) to be offline:

RMAN> restore tablespace users test;

Preview does not actually start the recovery process; so
the tablespace need not be offline. In a production
database that’s the best option.

www.nyoug.org 212.978.8890 9

Here is an example of the preview clause:

RMAN> restore tablespace users preview;

List of Datafile Copies
Key File S Completion Time Ckp SCN Ckp Time Name
------- ---- - --------------- ---------- --------------- ----
173716 238 A 30-MAR-07 62872433554 30-MAR-07 /f.rman
... And so on ...
173775 2074 A 31-MAR-07 62918498516 31-MAR-07 /j.rman

no backup of log thread 1 seq 92170 lowscn 62872343042 found to restore
... And so on ...
no backup of log thread 1 seq 92173 lowscn 62902345362 found to restore

List of Archived Log Copies
Key Thrd Seq S Low Time Name
------- ---- ------- - --------- ----
92212 1 92174 A 30-MAR-07 /PROPRD1_1_92174_525355299.arc
... And so on ...
92239 1 92201 A 01-APR-07 /PROPRD1_1_92201_525355299.arc
Media recovery start SCN is 62872433554
Recovery must be done beyond SCN 62948207913 to clear data files fuzziness
Finished restore at 06-APR-07

The output clearly states the files that will be required
for restore and what archived logs are needed and which
ones are not found. All this is done without actually
restoring anything. Performing this in regular intervals
allows you to check if all the backups are available. The
best practice is to run this after every backup.

(19) Save the RMAN Log
If you take RMAN backups, I’m sure you backup those
backuppieces to tape or some other offline media. But do
you copy the RMAN log files? I bet you don’t.

RMAN Logs contain information about the backup
pieces, names, location, etc.,
which proves invaluable during recovery. Here is one
snippet from the RMAN log file:

input datafile fno=00084 name=/f1.dbf
output filename=/backup/loc3/data_D-
CRMPRD_I-79785763_TS-DWT_ODS8_RES_FN
O-96_43ie2scm.rman tag=FULLBKPFS
recid=174298 stamp=618757792

The logs show filename and the backuppice associations.
The same information can also be retrieved from catalog
or the controlfile; but what if the controlfile is lost? If all
is lost, you can fall back on the logfiles that allows you

to look for specific files from backup sets. It also tells
you the controlfile backups should you decide to get
them later.

It’s not difficult to backup the RMAN logfiles; but it
may save you a ton of headache later. So, a best practice
is save the RMAN log file to tape as a part of the
backupsset and separately on a tape.

(20) Auto-Document DBID
Do you know the DBID of the database? You probably
don’t. Who would? The number is pretty meaningless
except under some circumstances during recovery. The
database ID (DBID) is very important for recovery. Of
course, if you have the current controlfile, you need not
know the DBID; but in some cases of recovery, you
need to know the DBID. Where do you find it?

As a best practice, note the DBID and keep it in a
separate place somewhere; but don’t stop there.
Document the DBID every time you get a chance. What
is the best place to document it? How about the alert
log?

Write DBID to alert log every time backup is taken. This
simple PL/SQL code does the trick:

www.nyoug.org 212.978.8890 10

declare
 l_dbid number;
begin
 select dbid into l_dbid from
v$database;
 dbms_system.ksdwrt(2,'DBID='||l_dbid);
end;

You can call the code segment after the backup is
completed; or put in a scheduler job to be called at
regular intervals.

(21) Do Not Use SPFILE
You have heard about SPFILE, which is a pseudo-binary
version of the initialization parameter file – init.ora (or
PFILE). It has been sort of a rule of thumb to use spfile
in lieu of pfile, which then transformed into a best
practice. Let’s see the pros and cons of using spfile:

SPFILE Advantages:
• Can be on shared filesystem, very useful for RAC

databases, where only one SPFILE is necessary.
• It can be created on ASM
• Can be backed up automatically by RMAN
• Can be updated by command line by ALTER

SYSTEM SET … SCOPE = SPFILE;

But Here Are The SPFILE
Disadvantages:
• The biggest issue is that spfile has only version of a

parameter. If you change the parameter, there is no
way of knowing what the value was earlier, who
changed it and, most important, why.

• Comments are possible; but only for the current
entry. Once the entry is overwritten, the older
comments are gone.

Instead of using spfile, if you use pfile, you have a
chance to record the comments that led to the changes. I
recommend placing extensive comments on what was
changed, why and who changed it, along with anything
that may be considered relevant. Here is a sample from
the pfile:

AKN 3/20/06 added because ...
RJN 4/10/06 changed from 1M to 2M
JER 10/3/06 changed from 2M to 4M
DFW 12/7/06 changed from 4M to 6M SR# …
log_buffers = 6M

As you can see, it has a history of changes, with the
names and dates of changes and reason for the change.
In one case the DBA, whose acronym is DFW also put a
SR# (TAR#) on the pfile as well.

In case of descriptive parameters, such as
log_arch_dest_1, do not update the line; rather comment
that line and put a new line with the new value. Here is
an example of what not to do. Suppose the original line
was log_archive_dest_1 = ‘/u01/arch’, which
you want updated. You may have been following the
practice of updating the loine in the file as:

updated DFW 9/12/07
log_archive_dest_1 = '/arch/u01'

Instead, use this line:

log_archive_dest_1 = '/u01/arch'
updated DFW 9/12/07
log_archive_dest_1 = '/arch/u01'

This maintains a history of the changes. It is very useful
for troubleshooting purposes. When a problem occurs
you may be able to draw a connection between the
changes and the problems. If you spfile, this is not
possible. So, I recommend not using spfile, even though
it offers all those advantages mentioned earlier.

If you must use spfile, then make sure you have a good
version control system in place to track parameter
changes. Since the spfile is binary (sort of), it’s difficult
to track changes as you would be in case of a text file.
So one option is to use strings function to extract the text
portion of the spfile and compare them. Other option,
more preferred one, is to convert the spfile to pfile, e.g.

SQL> create pfile='/tmp/a' from spfile;

This creates a file called /tmp/a as a pfile which you can
use. Now you can use this file to check differences
between this and the previous spfile. Write the
differences to a log file; update the logfile with the name
and other details of the changes and save it. This
becomes your version control system. Needless to say, it
becomes convoluted and highly error prone. Instead the
pfile offers none of those risks.

In Oracle 11g, you can create PFILE from memory,
which allows you to create a pfile from the parameters
that has been already changed:

www.nyoug.org 212.978.8890 11

SQL> create pfile='...' from memory;

You can create an spfile from memory as well.

(22) Use ORAENV
The ORAENV is an Oracle supplied tool, found in
$ORACLE_HOME/bin directory. The purpose of this
tool is to set the appropriate parameters such as PATH
and ORACLE_HOME. The ORACLE_SID and
ORACLE_HOME values are defined in the file
/etc/oratab (/var/opt/oracle/oratab in
Solaris). If you have multiple Oracle Homes on the
server, it makes it easier to switch from one to the other.

Why use this tool instead of using your own script that
has lines something like this:

export ORACLE_HOME=…
export ORACLE_SID=…

The purpose is simple. Oraenv provides a consitent
interface and functionality. Regardless how many
environments you deal with or how many other DBAs
you have to interact with, this is a common framework
for setting variables. And the best of all, it’s already
there; you don’t have to write the script. It makes your
job easier while changing Oracle Home, especially in
jobs and commands

(23) New Oracle User for Clients
In many cases the server is exclusively used as one for
Oracle database and no client is allowed to run on it.
Sometimes you may have other client running there who
just need access to client tools like SQL*Plus and
SQL*Loader. Since the Oracle Home already has these
tools, you may be inclined to set the Oracle Home and
PATH of the client to the existing Oracle Home and
client.

But that also causes a huge security issue. App running
on the DB server needs SQL*Plus; but the
$ORACLE_HOME/bin/sqlplus is not executable to
others. So there are two solutions:

1. Change $ORACLE_HOME permissions to execute

by all others. This allows any app to call the sqlplus
or sqllldr executables. But this is hardly desirable
since any user on the server can access any
executable in Oracle Home.

2. Make app part of the “dba” group, which of course
does not need the execute by others permission set;
but now the app, being in the dba group can startup
or shutdown the database. Again not a very good
option.

Instead, I recommend creating a separate user: “appora”.
Install the Oracle client under that user under a different
Oracle Home. This makes the Oracle software running
the database different from the client; so there is no risk
to one from the other. This also conforms to many
security and privacy regulations and mandates.

(24) Separate Instance and DB Names
When you create a single instance database, you
probably keep the name of the instance the same as the
database. For instance, if the name of the database is
MYDB, you call the instance MYDB as well. In a RAC
database, you have to keep the same database name; but
different instance names. In a single instance, you don’t
have to:

This is not wrong; but I recommend separating the
names of database and instance. You can follow any
convention as you find fit. Here is an example: append
“1” after DB name for the instance name. If the DB
name is PRODB, the instance can be PRODB1, even
though this is a single instance database.

Why? If you ever need to convert the DB to a RAC one,
you will not need to change the instance name. You
simply create the other instances as PRODB2, PRODB3
and so on. Since you are not changing the instance name,
you don’t have to create instance name specific files
such as pfile (or spfile), password file, background dump
destiinations and so on. Of course you can make the
change when instance name changes; but it just makes it
easier.

(25) Uniform-sized Raw Devices
Do you use raw devices (or raw logical volumes) for
datafiles? In some cases such as some RAC databases, or
databases requiring high I/O performance you may be
using raw devices or volumes. Typically, the raw
devices are created as per the space requirement in the
datafiles. For instance, if you need a 100GB tablespace,
you create a raw device /dev/rdsk/users01.dbf of 100GB
and then create a tablespace USERS with the raw device
as the datafile. When the tablespace USERS needs more

www.nyoug.org 212.978.8890 12

room, you typically expand the raw device and then
resize the device.

The practice works; but it needs coordination among
DBAs and Sys Admins. This may not be real challenge;
but there some additional issues that makes this
unattractive under any circumstance:

1. You have to know precisely how much each

tablespace would be and create raw devices
accordingly.

2. When the raw device is resized, it has to be offlined;
so the tablespace is not available during that time. In
a true production database that may not be possible;
at least it’s not desirable.

3. When you need to shrink the file, you can; but the
raw volume is already allocated. You can’t put two
files on the same raw volume; so you can’t reuse the
space freed up by the first datafile.

4. When you want to drop the tablespace, you can’t
drop the raw volume. You can reuse the raw volume
for another tablespace but the name will be
mismatched leading to confusion. For instance you
don’t want the datafile of tablespace USERS be
named system01.

So, as a best practice, you should create uniform size
raw volumes (or devices), say, of 30GB each. Name
them as generically as possible without any tablespace
name references, e.g. /dev/rdsk/d1, /dev/rdsk/d2, etc.
When you need to create a tablespace, use datafiles as
the devices d1, d2 and d3. When USERS tablespace
needs more room, add a new device to the tablespace
instead of expanding it. This is done without any outage.
When you drop the tablespace, all these raw volumes get
freed up and can be used in any other tablespace. The
names are generic – d1, d2, etc.; so they will not
mismatch with the tablespace name.

So, in summary, the advantages are:
• No outage while adding room
• Reuse of devices possible
• No need to have sys admin involved in the process.

(26) Archivelog Location
Here is a simple question: rate the most critical of the
three below:
• Datafiles
• Archivelogs
• Backup of datafiles

All three are critical. But if you had a choice to pick the
only one you need to preserve, which one will you
choose? The most critical one is archivelog. If datafiles
are lost, they can be recreated, provided you have
backup. If you lose the backup, you can still recreate the
datafile using the archivelog. If archived logs are lost,
you have no progress option; you can’t recreate the
archived logs. You can recover up to that point only.

This is a fact you should careful consider in your storage
and fileystem design. If you are short on space and you
have to cut corners somewhere such as making RAID0
diskgroup instead of RAID5, you know better not to put
the archived logs on those disks. In many cases I see
people putting archived logs on those disks.

A related best practice is directly contrary to what Oracle
Corp usually pushes for – the use of Flash Recovery
Area (FRA). If you use FRA, do not place your archived
logs there. If you lose the datafile backup and archived
log backup on FRA, make sure the archived logs are on
a separate location on a different set of disks. This
allows you to recover the database from either the
archived log or the backup of the archived log.

(27) Create a Controlfile on Trace
You can run the following SQL statement on a database
anytime:

SQL> alter database backup controlfile to
trace as '/path/cr_db.sql‘ reuse;

It creates a CREATE CONTROLFILE script as
/path/cr_db.sql. This file is used to recreate the
controlfile by a SQL script. But you can use this to
recreate the database. Of course, you do not create the
controlfile or the database everyday; but this file serves a
very important purpose. It documents the components of
the database such as datafiles, redo log files, database
parameters, controlfiles etc. This documentation comes
extremely handy when you need to recreate the datafiles
(or tempfiles) after the recovery process ends. In any
case you have created a documentation of the system.
Since you used the “reuse” option, the same gets
overwritten every time; so you don’t create a large
number of files.

Case for Change Control
As a special case, you can write a separate file for each
day, instead of using the “reuse” option. Then, you can

www.nyoug.org 212.978.8890 13

perform a “diff” operation to find out what changed. It’s
crude but effective and simple.

(28) Using ORADEBUG
The database is not responding and you want to take
some dumps to analyze the results or kill some
processes. You can use the ORADEBUG tool. But, alas!
The database is hung. How can you connect to the
database to run the tool?

When SQL*Plus does not work, use the prelim flag.

$ sqlplus –prelim

It does not establish a connection. So if the database is
hung, it will still work. You can run ORADEBUG now.
Here are some tips for dumping different components of
the database.

1. To dump a data block b of datafile d:
alter system dump datafile d block b;

2. To dump the other components, here is the

command:
alter session set events 'immediate trace
name <Key> level 10';

The value of <Key> depends on what you want to
dump, which is as follows:

To dump this: <Key> should be:
Controlfile CONTROLF

File Headers FILE_HDRS

Redo Headers REDOHDR

System State SYSTEMSTATE

Process State PROCESSSTATE

Library Cache LIBRARY_CACHE

For instance, to dump the library cache, use the
following statement:

SQL> alter session set events 'immediate
trace name library_cache level 10';

Conclusion
In conclusion, I want to reiterate the characteristics of
the best practices:

1. It’s not a best practice, if it is not justified
2. You have to understand why; not just what

3. Best practice needs to be situation-aware, which
goes back to “you have to understand”

Always question whenever someone tells you it’s a best
practice and understand why it is so. If this is not
justified, it may not be a best practice.

About the Author
Arup Nanda has been an Oracle DBA for more than 13
years working in all aspects of database management
from modeling to performance management and disaster
recovery. He is the author of books Oracle PL/SQL for
DBAs (O'Reilly 2005) and Oracle Privacy Security
Auditing (Rampant 2003). He was awarded the DBA of
the Year by Oracle in 2003.

www.nyoug.org 212.978.8890 14

	Introduction
	What Makes a Practice Best?
	It Must be Justified
	It Has to Be Situation Aware

	(1) Set Audit Trail to DB
	(2) Think outside the "OFA"
	(3) Different Oracle Homes
	What Are The Benefits:

	(4) Keep ASM Home Separate from Database
	(5) Set Parameters at Start
	(6) Kill Inactive Sessions
	Suggestion

	(7) Check Listener Log
	(8) Service Names
	Enable Service Names
	Why Service Names?

	(9) Analyze CPU and IO Usage
	Purpose

	(10) Audit DDL
	(11) OS Specific Tweaks
	(12) Redo is Not a LOG
	(13) To ASSM, or not?
	(14) Aliases
	(15) Protect the Listener
	Restrict Parameter Changes
	Different Listener for External Procedures

	(16) Build a Metadata Repository
	(17) Validate Database
	(18) Preview RMAN Restore
	(19) Save the RMAN Log
	(20) Auto-Document DBID
	(21) Do Not Use SPFILE
	SPFILE Advantages:
	But Here Are The SPFILE Disadvantages:

	(22) Use ORAENV
	(23) New Oracle User for Clients
	(24) Separate Instance and DB Names
	(25) Uniform-sized Raw Devices
	(26) Archivelog Location
	(27) Create a Controlfile on Trace
	Case for Change Control

	(28) Using ORADEBUG
	Conclusion
	About the Author

