Leverage the Star Schema for Star Query Transformation & Optimization

Presented to the New York Oracle Users Group Data Warehouse Special Interest Group by;

Mike Richards, Advanced Information Systems

For further information contact: mrichards@advanis.com
Utilize the Star Schema to leverage ‘Star Query Transformation’

Oracle optimizer prunes a query’s results set with it’s conversion of many logical joins into a single operation with Bitmap Indexes
Bitmap Indexes are up to 100 times smaller in size and hence up to 100 times faster
Bitmaps are not just for low cardinality

Central table in a star schema is called a FACT table
A fact table typically has two types of columns: those that contain facts and those that are foreign keys to dimension tables
In a star schema every dimension will have a primary key
In a star schema, a dimension table will not have any parent table

Whereas in a snow flake schema, a dimension table will have one or more parent tables
In the example figure 1.6, sales fact table is connected to dimensions; Product, Location, Organization and Time.
A Star query is a join between a fact table and a number of dimension tables.

Each dimension table is joined to the fact table using a primary key to foreign key join.

The dimension tables are not joined to each other.

The Oracle 10g cost-based optimizer recognizes star queries and generates the most efficient execution plans for them.

Leverage the skills of the experts who developed Oracle Unleashed now!
For *star_transformation* join plans, the following parameters must also be considered:

- *star_transformation_enabled* = TRUE
- No hint STAR: So forcing a *star_query* excludes *star_transformation*
- No BIND VARIABLE in SELECT statement
- No CONNECT BY and *start with*
- Fact table columns in EQUIJOIN predicate, must have bitmap index defined on them
- More than 2 bitmap indexes on fact table
- Fact table must have more than 15,000 rows
- Fact table cannot be a view or a remote table
- No hint FULL on fact table
A successful star_transformation join execution (explain) plan looks like:

0 SELECT STATEMENT Optimizer=CHOOSE
1 0 NESTED LOOPS
2 1 HASH JOIN
3 2 HASH JOIN
4 2 TABLE ACCESS (FULL) OF 'MINUTE_DIMENSION'
5 2 PARTITION CONCATENATED
6 2 TABLE ACCESS BY ROWID
7 2 BITMAP CONVERSION TO ROWIDS
8 2 BITMAP AND
9 2 BITMAP MERGE
10 2 BITMAP KEY ITERATION
11 2 SORT BUFFER
12 2 TABLE ACCESS (FULL) OF 'MINUTE_DIMENSION'
The Star Transformation Execution Plan looks like:

- SELECT STATEMENT C=301
- NESTED LOOPS
- HASH JOIN
- HASH JOIN
- HASH JOIN
- TABLE ACCESS ... D1
- PARTITION CONCATENATED
- TABLE ACCESS BY ROWID F
- BITMAP CONVERSION TO ROWIDS
- BITMAP AND
- BITMAP MERGE
- BITMAP KEY ITERATION
- SORT BUFFER
- TABLE ACCESS ... D1
- BITMAP INDEX RANGE SCAN I_C1
- BITMAP MERGE
- BITMAP KEY ITERATION
- SORT BUFFER

Leverage the skills of the experts who developed Oracle Unleashed now!
The main components are a large fact table and a surrounding collection of dimension tables.

A row in the fact table consists of a number of useful data elements, and a set of identifiers - typically short codes making up the concatenated key to the Dimensions.

Each dimension table is joined to the fact table using a Primary Key to Foreign Key join.

The identifying Primary Key fact or Foreign Key dimension column, have a single column bitmap index created over it on both the Fact and Dimension tables.

Single Column Bitmaps are best used by the optimizer for any combination of column order in your query; i.e. 123, 321, 213, 312, etc.

An identifying column on the fact table corresponds to one of the dimension tables, and the short codes that appear in that column must be selected from the (declared) primary key of that table.
Keyword RELY or USING TRUSTED CONSTRAINTS

Regarding materialized views and partitioned tables, such foreign key constraints in DSS databases are quite likely to be declared as disabled, not validated, and rely. (on keyword integrity)

Oracle 10g adds the ability of a materialized view to choose more query rewrite options, generally resulting in better and more efficient execution of refreshes, via the USING TRUSTED CONSTRAINTS clause

The USING TRUSTED CONSTRAINTS clause tells Oracle to use dimension and constraint information that the DBA has declared trustworthy, but that the database has not yet validated

if Oracle determines that this information is invalid, the refresh procedure may instead corrupt the materialized view even though the refresh operation itself returns a successful status

If USING TRUSTED CONSTRAINTS is not specified, Oracle will use the default method, USING ENFORCED CONSTRAINTS, during the refresh operation
Data loading

Having created the tables, loaded them with suitable data, and then enabled the feature by issuing:

```sql
alter session set
  star_transformation_enabled = true;
```

Following the data load we build the Bitmap indexes on the Primary Keys of the fact and Foreign Keys of the dimension tables.

This optimizes the fact join, referencing the dimension tables that are required for the Star Transformation of our query.

Estimate or compute statistics on the new objects and our star schema is now ready for action.
select
 {pe.fact columns}
from
 towns wt,
 towns ht,
 people pe
where
 wt.name = 'Coventry'
and ht.name = 'Birmingham'
and pe.id_town_home = ht.id
and pe.id_town_work = wt.id
;

select
 wt.name,
 ht.name,
 st.name
 {pe.fact columns}
from
 states st,
 towns wt,
 towns ht,
 people pe
where
 st.name = 'Alabama'
and wt.id_state = st.id
and ht.name = 'Birmingham'
and pe.id_town_home = ht.id
The bitmap star transformation can be applied to partitioned tables, so extra steps relating to partitioning may appear, such as degree of parallelism.

The path can execute in parallel, introducing extra levels of messy parallel distribution elements in the plan.

The join back of the dimension tables could be implemented as a series of hash joins, or sort merge joins instead of nested loop joins.
Data Warehouse books & links for Ralph Kimball

The world of data warehousing has changed remarkably since the first edition of *The Data Warehouse Lifecycle Toolkit* was published in 1998. The Kimball Group recently refined the original set of lifecycle methods and techniques. With significant amounts of new and updated material, the *Data Warehouse Lifecycle Toolkit, 2nd Edition* will set the standard for DW/BI system design and development for the next decade.
Conclusion

- The mind once expanded by a new idea, can never return to it’s former Dimension
 Justice Oliver Wendal Holmes

- For further information contact A/S: mrichards@advanis.com