
1 of 43

Top 5 Issues that Cannot be

Resolved by DBAs

(other than missed bind variables)

Michael Rosenblum

Dulcian, Inc.

www.dulcian.com

March 12, 2013

2 of 43

Who Am I? – “Misha”

Oracle ACE

Co-author of 2 books

 PL/SQL for Dummies

 Expert PL/SQL Practices

Won ODTUG 2009 Speaker of the Year

Known for:

 SQL and PL/SQL tuning

 Complex functionality

 Code generators

 Repository-based development

3 of 43

Houston, we have a problem!

Common thought process:

 Our IT system has an new issue… OMG!

 Production code should not be touched (scary!)

 DBAs should be able to “do something.”

Reasoning:

 Configuration of the database is NOT considered

production code.

 DBAs are usually on staff, while the majority of

developers are contractors.

 In the Oracle universe, DBAs are considered to be

the most knowledgeable.

4 of 43

Black Hawk Down…

Results:

 Significant system architectural problems are

covered up using tactical bug-fixes.

 Systems become even less maintainable and more

fragile (I’ve seen 11g systems with RBO still

enabled!)

 Architects and developers become lazy. They expect

DBAs to adjust everything afterwards.

 DBAs become frustrated and remove all privileges

from developers.

5 of 43

So what?

Yes, there are problems that DBAs cannot fix.

No, I will NOT talk about bind variables 

But I will discuss:

 Problems usually passed to DBAs

 Correct solutions of those problems

 Potential workarounds in cases when a real fix is

indeed impossible

6 of 43

Personal Top 5 Non-DBA issues

Architect’s mistakes:

 1. “Smart” columns

 2. “STUFF” table

 3. “Insufficient” hierarchical structures

Developer’s mistakes:

 4. Datatype misuse

 5. Misuse of user-defined functions

7 of 43

Issue 1: “Smart” Columns

8 of 43

Column vs. Attribute

Column

 Represents a single logical attribute

 Does not make sense if split

“Smart” column

 Has internal structure

 May even change meaning depending upon the data

Reasons for use:

 Save time when querying closely related data

elements

 Avoid changes to table structures

9 of 43

Example of “Smart” Columns (1)

Organization rollup

 Pipe-delimited combination of Region/State/City/Zip

Why is it a problem?

 Adding extra level to rollup is an extremely

challenging task.

 Search is very expensive.

What should be done:

 Split smart columns

 Aggregate them back using either virtual columns or

views

10 of 43

Example of “Smart” Columns (2)

Answers on questionnaires:

 Single text line where number of characters =

number of questions: “YYYNNNNYYNY”

Why is it a problem?

 Versioning of question sets could cause data

corruption.

What should be done:

 High-quality version control

 Function-based indexes for the most frequently

referenced questions

11 of 43

Issue 2: “STUFF” Table

12 of 43

Over-Generalization Trap

Reasons for generic solutions:

 Changes are costly.

 We feel “protected” against the future.

 Generic models are “cool” (especially now with the

Big Data movement)

BUT

 Generic solutions often mask incomplete

understanding of subject area.

 Generic solutions in one area could cause major

issues in others.

13 of 43

Almost Totally Useless

Generic Model

Object AttribValue
- Name

- Value_NR

- Value_DT

- Value_TX

Assoc

0..*

0..* 0..*

1

1 1

14 of 43

Why is it a bad idea?

Data entry:

 Uses a lot of operations to retrieve a single object

 Data quality is hard to enforce.

Data retrieval

 Indexes are useless.

 CBO goes crazy.

 Performance is sporadic and does not follow any

meaningful logic.

Functional complex reporting is impossible.

15 of 43

Although…

There are cases when key-value stores are

perfect (NoSQL environments)

BUT they should not be mixed with:

 OLTP solutions when high data quality is required

 Heavy reporting workload

What could be done:

 Storage is cheap. Create duplicate structures that

would look like real tables

16 of 43

Issue 3: Insufficient Hierarchical

Structures

17 of 43

Good Idea/Bad Implementation

Recursion

 Powerful modeling technique

 Can be used for a number of reasons

 Linked lists (e.g. contract versions)

 Storage of tree structures (e.g. organizational hierarchy)

BUT

 Storage mechanisms are wrong, which causes a lot of

issues

18 of 43

Pseudo-Recursion Trap

Real recursion

“Kind of”-recursion

THING

THING

ASSOCIATION

from/to date

1 < Child of 0..*

1 < Parent of 0..*

THING

Child of 0..1

0..*

19 of 43

Why is it a trap?

Reasons why people do it:

 Versioning

 Historical data

 Reporting purposes

Why it is challenging:

 Hierarchical data consistency is not enforced.

 Timing can be very easily be off.

What should be done:

 Very strict data quality checking!

 Denormalized data sources for querying

20 of 43

Issue 4: Datatype Misuse

21 of 43

Datatypes as Constraints (1)

Datatypes ARE parts of metadata

 Oracle uses them to make a lot of decisions about

execution plans.

 Wrong datatypes often mean wrong Explain Plans.

 Wrong datatypes open possibilities for corrupted data.

What should be done:

 Fix datatypes as much as possible.

 Use views/virtual columns to separate storage and

representation.

 Worst case – Add check constraints to at least enforce

data quality.

22 of 43

Date vs. Varchar2 (1)

Problem:
 storing DATE as VARCHAR2 (~ YYYYMMDD)

Reasons of issues
 Date range {December 31, 2012 to January 1, 2013}

consists of only two distinct date values

 The textual range {‘20121231’,’20130101’} is huge.
Since it is text, starting with the 4th character there could
be any valid character in the current charset.

Result:
 Column-level statistics are not utilized and indexes are

often ignored.

What could be done:
 Build virtual column (TO_DATE) and let developers

use it.

23 of 43

Date vs Varchar2(2)

create table misha_date01

as

select owner, object_name,

 to_char(created,'YYYYMMDD') created_tx,

 created created_dt

from dba_objects

create index misha_date_tx_idx on

 misha_date01(created_tx);

create index misha_date_dt_idx on

 misha_date01(created_dt);

begin

 dbms_stats.gather_table_stats(user,'MISHA_DATE01');

end;

24 of 43

Date vs Varchar2 (3)
SQL> explain plan for

 2 select *

 3 from misha_date01

 4 where created_tx between '20121231' and '20130101';

Explained.

SQL> select * from table(dbms_xplan.display());

PLAN_TABLE_OUTPUT

| 0 | SELECT STATEMENT | | 48100 | 2113K| 299 (1)|

|* 1 | TABLE ACCESS FULL| MISHA_DATE01 | 48100 | 2113K| 299 (1)|

SQL> explain plan for

 2 select *

 3 from misha_date01

 4 where created_dt between to_date('20121231','YYYYMMDD')

 5 and to_date('20130101','YYYYMMDD');

Explained.

SQL> select * from table(dbms_xplan.display());

--

| 0 | SELECT STATEMENT | | 212 | 9540

| 1 | TABLE ACCESS BY INDEX ROWID| MISHA_DATE01 | 212 | 9540

|* 2 | INDEX RANGE SCAN | MISHA_DATE_DT_IDX | 212 |

--

Index is used!

Full table scan

25 of 43

Implicit datatype conversion

 Implicit datatype conversion is EVIL!

 Security nightmare

 A lot of confusion everywhere:

 Statistics

 Execution Plans

 Overload calls

26 of 43

Number vs Varchar2
SQL> explain plan for select * from misha_date01

 2 where created_tx = 20121231;

SQL> select * from table(dbms_xplan.display());

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 573 | 25785 | 300 (1)|

|* 1 | TABLE ACCESS FULL| MISHA_DATE01 | 573 | 25785 | 300 (1)|

--

SQL> explain plan for select * from misha_date01

 2 where created_tx = '20121231';

SQL> select * from table(dbms_xplan.display());

--

| Id | Operation | Name | Rows | Bytes

--

| 0 | SELECT STATEMENT | | 573 | 25785

| 1 | TABLE ACCESS BY INDEX ROWID| MISHA_DATE01 | 573 | 25785

|* 2 | INDEX RANGE SCAN | MISHA_DATE_TX_IDX | 573 |

--

Index is used!

Full table scan

27 of 43

Issue 5: Misuse of

User-Defined Functions

28 of 43

Why bother?

PL/SQL functions as a part of SQL can cause a
lot of side effects.

 Cost of SQL to PL/SQL context switch is very high.

 Depending upon the execution plan, the same
function could be called different numbers of times
for the same SQL statement.

What could be done:

 Make sure that the CBO takes into account the
impact of PL/SQL functions on the overall cost.

 Manage the total number of calls.

29 of 43

Problem Areas/Solutions

OO-like get/set APIs

PL/SQL functions in SELECT and WHERE
clauses

 Managing execution order

 Short-circuit evaluation

 Statistics-based cost

 Decreasing total number of function calls

 Scalar sub-query caching

 RESULT_CACHE

 In-line views based on PL/SQL functions returning
nested tables

30 of 43

OO-like thinking

People are accustomed to GET/SET APIs for

every attribute

 Real story of 1 insert into table with 100 attributes

 1 insert with only PK column

 99 updates using PK

 System collapsed under its own weight because of

thousands of roundtrips

What could be done:

 train your developers to NOT use JAVA-style

coding in PL/SQL development

31 of 43

PL/SQL functions inside of

SQL
 The CBO is not psychic and cannot figure out what is going on inside

of your PL/SQL function.

 UNLESS you tell it using associated statistics, because Oracle
defaults are not perfect:
 Selectivity – 1% (0.01)

 CPU cost – 3000

 I/O cost – 0

 Network cost - 0

 There are two ways of doing it:
 Simple way

 Associate statistics with

 functions <function name>

 Default selectivity <value>

 Default cost (<CPU>,<IO>,<NETWORK>)

 Complex way [outside of the scope for today]
 Associate statistics with

 functions <function name>

 using <special object type>

32 of 43

Why does it matter?
 Because you may have multiple functions in the same SQL

statement!

 Example
 Two functions: One is light and one is heavy

associate statistics with functions f_misha_light_tx

default selectivity 0.1

default cost (0,0,0);

associate statistics with functions f_misha_heavy_tx

default selectivity 0.1

default cost (99999,99999,99999);

 Both of them are used in the query

select /*+ gather_plan_statistics */*

from emp

where f_misha_heavy_nr(empno) = 1

and f_misha_light_nr (empno) = 0

33 of 43

Explain Plan Impact

SQL_ID a5u0gvdt0ju36, child number 0

select /*+ gather_plan_statistics */* from emp where

f_misha_heavy_tx(empno) = 1 and f_misha_light_tx (empno) = 0

Plan hash value: 3956160932

| Id | Operation | Name | E-Rows | A-Rows | A-Time | Buffers |

| 0 | SELECT STATEMENT | | | 14 |00:00:00.01 | 33 |

|* 1 | TABLE ACCESS FULL| EMP | 1 | 14 |00:00:00.01 | 33 |

Predicate Information (identified by operation id):

 1 - filter(("F_MISHA_LIGHT_TX"("EMPNO")=0 AND

 "F_MISHA_HEAVY_TX"("EMPNO")=1))

Order of functions has been changed!

34 of 43

Function calls (1)

Setup:

create package misha_pkg is

 v_nr number:=0;

end;

create or replace function f_change_tx (i_tx varchar2)

return varchar2 is

begin

 misha_pkg.v_nr:=misha_pkg.v_nr+1;

 return lower(i_tx);

end;

Create or replace procedure p_check is

begin

 dbms_output.put_line('Fired:'||misha_pkg.v_nr);

 misha_pkg.v_nr:=0;

end;

35 of 43

Function calls (2)
SQL> select empno, ename, f_change_tx(job) job_change_tx

 2 from emp;

 ...

14 rows selected.

SQL> exec p_check

Fired:14

PL/SQL procedure successfully completed.

SQL> select empno, ename, (select f_change_tx(job) from dual)

 2 from emp;

 ...

14 rows selected.

SQL> exec p_check

Fired:5

PL/SQL procedure successfully completed.

SQL>

Only 5 executions!

Scalar sub-query

36 of 43

Function calls (3)
create or replace function f_change_tx (i_tx varchar2)

return varchar2 result_cache is

begin

 misha_pkg.v_nr:=misha_pkg.v_nr+1;

 return lower(i_tx);

end;

SQL> select empno, ename, f_change_tx(job) from emp;

...

14 rows selected.

SQL> exec p_check

Fired:5

SQL> select empno, ename, f_change_tx(job) from emp;

...

14 rows selected.

SQL> exec p_check

Fired:0

Enable function result cache

Only distinct values

No calls – cache only!

37 of 43

Collection IN-lists (1)

 It is very convenient to build an IN-list as a collection
and pass it to a WHERE clause
 But Oracle may or may not correctly interpret incoming data!

 Example (setting)
create table misha_demo_inlist as

select object_id, created

from dba_objects

where owner = 'MISHA'

and object_id is not null;

alter table misha_demo_inlist add constraint
misha_demo_inlist_pk primary key (object_id) using index;

begin

dbms_stats.gather_table_stats(user,'MISHA_DEMO_INLIST');

end;

38 of 43

Collection IN-lists (2)

create type id_tt is table of number;

select /*+ gather_plan_statistics*/

 max(created)

from misha_demo_inlist

where object_id in (

 select t.column_value

 from table(id_tt(227011,227415)) t

)

39 of 43

Collection IN-lists (3)
SQL_ID 6509b6f6d1mgy, child number 0

select /*+ gather_plan_statistics */ max(created) from
misha_demo_inlist where object_id in (
select t.column_value
from table(id_tt(227011,227415)) t)

Plan hash value: 22551403

| Id | Operation | Name | E-Rows | A-Rows |

0	SELECT STATEMENT			1
1	SORT AGGREGATE		1	1
* 2	HASH JOIN		8168	2
3	COLLECTION ITERATOR CONSTRUCTOR FETCH		8168	2
4	TABLE ACCESS FULL	MISHA_DEMO_INLIST	29885	29885

Predicate Information (identified by operation id):

 2 - access("OBJECT_ID"=VALUE(KOKBF$))

Wrong cardinality

40 of 43

Collection IN-lists (4)

 Oracle does not correctly recognize how many objects are
in the collection.

 Alternatives:
 Explicit cardinality hint

select /*+ gather_plan_statistics */ max(created)
from misha_demo_inlist
where object_id in (
 select /*+ cardinality (t 2) */t.column_value
 from table(id_tt(227011,227415)) t
)

 Dynamic sampling

select /*+ gather_plan_statistics */ max(created)
from misha_demo_inlist
where object_id in (
 select /*+ dynamic_sampling (t 4) */t.column_value
 from table(id_tt(227011,227415)) t
)

41 of 43

Collection IN-lists (5)

 Result for both options is the same – and uses the index!

--
| Id | Operation | Name |E-Rows |A-Rows
--
| 0 | SELECT STATEMENT | | | 1
| 1 | SORT AGGREGATE | | 1 | 1
| 2 | NESTED LOOPS | | | 2
| 3 | NESTED LOOPS | | 2 | 2
| 4 | COLLECTION ITERATOR CONSTRUCTOR FETCH| | 2 | 2
|* 5 | INDEX UNIQUE SCAN | MISHA_DEMO_INLIST_PK | 1 | 2
| 6 | TABLE ACCESS BY INDEX ROWID | MISHA_DEMO_INLIST | 1 | 2
--

Predicate Information (identified by operation id):

 5 - access("OBJECT_ID"=VALUE(KOKBF$))

 Dynamic sampling will also have a special note about its
level (it can be lower than requested)

Note

 - dynamic sampling used for this statement (level=2)

Correct cardinality!

42 of 43

Summary

Not all errors can be fixed by DBAs.

Strategic problems should not be covered by

tactical solutions.

Enterprise-level thinking is required from the

very beginning.

… and let’s not forget about bind variables 

43 of 43

Contact Information

 Michael Rosenblum – mrosenblum@dulcian.com

 Blog – wonderingmisha.blogspot.com

 Website – www.dulcian.com

Available now:

Expert PL/SQL Practices

