
1 of 43

Top 5 Issues that Cannot be

Resolved by DBAs

(other than missed bind variables)

Michael Rosenblum

Dulcian, Inc.

www.dulcian.com

March 12, 2013

2 of 43

Who Am I? – “Misha”

Oracle ACE

Co-author of 2 books

 PL/SQL for Dummies

 Expert PL/SQL Practices

Won ODTUG 2009 Speaker of the Year

Known for:

 SQL and PL/SQL tuning

 Complex functionality

 Code generators

 Repository-based development

3 of 43

Houston, we have a problem!

Common thought process:

 Our IT system has an new issue… OMG!

 Production code should not be touched (scary!)

 DBAs should be able to “do something.”

Reasoning:

 Configuration of the database is NOT considered

production code.

 DBAs are usually on staff, while the majority of

developers are contractors.

 In the Oracle universe, DBAs are considered to be

the most knowledgeable.

4 of 43

Black Hawk Down…

Results:

 Significant system architectural problems are

covered up using tactical bug-fixes.

 Systems become even less maintainable and more

fragile (I’ve seen 11g systems with RBO still

enabled!)

 Architects and developers become lazy. They expect

DBAs to adjust everything afterwards.

 DBAs become frustrated and remove all privileges

from developers.

5 of 43

So what?

Yes, there are problems that DBAs cannot fix.

No, I will NOT talk about bind variables

But I will discuss:

 Problems usually passed to DBAs

 Correct solutions of those problems

 Potential workarounds in cases when a real fix is

indeed impossible

6 of 43

Personal Top 5 Non-DBA issues

Architect’s mistakes:

 1. “Smart” columns

 2. “STUFF” table

 3. “Insufficient” hierarchical structures

Developer’s mistakes:

 4. Datatype misuse

 5. Misuse of user-defined functions

7 of 43

Issue 1: “Smart” Columns

8 of 43

Column vs. Attribute

Column

 Represents a single logical attribute

 Does not make sense if split

“Smart” column

 Has internal structure

 May even change meaning depending upon the data

Reasons for use:

 Save time when querying closely related data

elements

 Avoid changes to table structures

9 of 43

Example of “Smart” Columns (1)

Organization rollup

 Pipe-delimited combination of Region/State/City/Zip

Why is it a problem?

 Adding extra level to rollup is an extremely

challenging task.

 Search is very expensive.

What should be done:

 Split smart columns

 Aggregate them back using either virtual columns or

views

10 of 43

Example of “Smart” Columns (2)

Answers on questionnaires:

 Single text line where number of characters =

number of questions: “YYYNNNNYYNY”

Why is it a problem?

 Versioning of question sets could cause data

corruption.

What should be done:

 High-quality version control

 Function-based indexes for the most frequently

referenced questions

11 of 43

Issue 2: “STUFF” Table

12 of 43

Over-Generalization Trap

Reasons for generic solutions:

 Changes are costly.

 We feel “protected” against the future.

 Generic models are “cool” (especially now with the

Big Data movement)

BUT

 Generic solutions often mask incomplete

understanding of subject area.

 Generic solutions in one area could cause major

issues in others.

13 of 43

Almost Totally Useless

Generic Model

Object AttribValue
- Name

- Value_NR

- Value_DT

- Value_TX

Assoc

0..*

0..* 0..*

1

1 1

14 of 43

Why is it a bad idea?

Data entry:

 Uses a lot of operations to retrieve a single object

 Data quality is hard to enforce.

Data retrieval

 Indexes are useless.

 CBO goes crazy.

 Performance is sporadic and does not follow any

meaningful logic.

Functional complex reporting is impossible.

15 of 43

Although…

There are cases when key-value stores are

perfect (NoSQL environments)

BUT they should not be mixed with:

 OLTP solutions when high data quality is required

 Heavy reporting workload

What could be done:

 Storage is cheap. Create duplicate structures that

would look like real tables

16 of 43

Issue 3: Insufficient Hierarchical

Structures

17 of 43

Good Idea/Bad Implementation

Recursion

 Powerful modeling technique

 Can be used for a number of reasons

 Linked lists (e.g. contract versions)

 Storage of tree structures (e.g. organizational hierarchy)

BUT

 Storage mechanisms are wrong, which causes a lot of

issues

18 of 43

Pseudo-Recursion Trap

Real recursion

“Kind of”-recursion

THING

THING

ASSOCIATION

from/to date

1 < Child of 0..*

1 < Parent of 0..*

THING

Child of 0..1

0..*

19 of 43

Why is it a trap?

Reasons why people do it:

 Versioning

 Historical data

 Reporting purposes

Why it is challenging:

 Hierarchical data consistency is not enforced.

 Timing can be very easily be off.

What should be done:

 Very strict data quality checking!

 Denormalized data sources for querying

20 of 43

Issue 4: Datatype Misuse

21 of 43

Datatypes as Constraints (1)

Datatypes ARE parts of metadata

 Oracle uses them to make a lot of decisions about

execution plans.

 Wrong datatypes often mean wrong Explain Plans.

 Wrong datatypes open possibilities for corrupted data.

What should be done:

 Fix datatypes as much as possible.

 Use views/virtual columns to separate storage and

representation.

 Worst case – Add check constraints to at least enforce

data quality.

22 of 43

Date vs. Varchar2 (1)

Problem:
 storing DATE as VARCHAR2 (~ YYYYMMDD)

Reasons of issues
 Date range {December 31, 2012 to January 1, 2013}

consists of only two distinct date values

 The textual range {‘20121231’,’20130101’} is huge.
Since it is text, starting with the 4th character there could
be any valid character in the current charset.

Result:
 Column-level statistics are not utilized and indexes are

often ignored.

What could be done:
 Build virtual column (TO_DATE) and let developers

use it.

23 of 43

Date vs Varchar2(2)

create table misha_date01

as

select owner, object_name,

 to_char(created,'YYYYMMDD') created_tx,

 created created_dt

from dba_objects

create index misha_date_tx_idx on

 misha_date01(created_tx);

create index misha_date_dt_idx on

 misha_date01(created_dt);

begin

 dbms_stats.gather_table_stats(user,'MISHA_DATE01');

end;

24 of 43

Date vs Varchar2 (3)
SQL> explain plan for

 2 select *

 3 from misha_date01

 4 where created_tx between '20121231' and '20130101';

Explained.

SQL> select * from table(dbms_xplan.display());

PLAN_TABLE_OUTPUT

| 0 | SELECT STATEMENT | | 48100 | 2113K| 299 (1)|

|* 1 | TABLE ACCESS FULL| MISHA_DATE01 | 48100 | 2113K| 299 (1)|

SQL> explain plan for

 2 select *

 3 from misha_date01

 4 where created_dt between to_date('20121231','YYYYMMDD')

 5 and to_date('20130101','YYYYMMDD');

Explained.

SQL> select * from table(dbms_xplan.display());

--

| 0 | SELECT STATEMENT | | 212 | 9540

| 1 | TABLE ACCESS BY INDEX ROWID| MISHA_DATE01 | 212 | 9540

|* 2 | INDEX RANGE SCAN | MISHA_DATE_DT_IDX | 212 |

--

Index is used!

Full table scan

25 of 43

Implicit datatype conversion

 Implicit datatype conversion is EVIL!

 Security nightmare

 A lot of confusion everywhere:

 Statistics

 Execution Plans

 Overload calls

26 of 43

Number vs Varchar2
SQL> explain plan for select * from misha_date01

 2 where created_tx = 20121231;

SQL> select * from table(dbms_xplan.display());

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | 573 | 25785 | 300 (1)|

|* 1 | TABLE ACCESS FULL| MISHA_DATE01 | 573 | 25785 | 300 (1)|

--

SQL> explain plan for select * from misha_date01

 2 where created_tx = '20121231';

SQL> select * from table(dbms_xplan.display());

--

| Id | Operation | Name | Rows | Bytes

--

| 0 | SELECT STATEMENT | | 573 | 25785

| 1 | TABLE ACCESS BY INDEX ROWID| MISHA_DATE01 | 573 | 25785

|* 2 | INDEX RANGE SCAN | MISHA_DATE_TX_IDX | 573 |

--

Index is used!

Full table scan

27 of 43

Issue 5: Misuse of

User-Defined Functions

28 of 43

Why bother?

PL/SQL functions as a part of SQL can cause a
lot of side effects.

 Cost of SQL to PL/SQL context switch is very high.

 Depending upon the execution plan, the same
function could be called different numbers of times
for the same SQL statement.

What could be done:

 Make sure that the CBO takes into account the
impact of PL/SQL functions on the overall cost.

 Manage the total number of calls.

29 of 43

Problem Areas/Solutions

OO-like get/set APIs

PL/SQL functions in SELECT and WHERE
clauses

 Managing execution order

 Short-circuit evaluation

 Statistics-based cost

 Decreasing total number of function calls

 Scalar sub-query caching

 RESULT_CACHE

 In-line views based on PL/SQL functions returning
nested tables

30 of 43

OO-like thinking

People are accustomed to GET/SET APIs for

every attribute

 Real story of 1 insert into table with 100 attributes

 1 insert with only PK column

 99 updates using PK

 System collapsed under its own weight because of

thousands of roundtrips

What could be done:

 train your developers to NOT use JAVA-style

coding in PL/SQL development

31 of 43

PL/SQL functions inside of

SQL
 The CBO is not psychic and cannot figure out what is going on inside

of your PL/SQL function.

 UNLESS you tell it using associated statistics, because Oracle
defaults are not perfect:
 Selectivity – 1% (0.01)

 CPU cost – 3000

 I/O cost – 0

 Network cost - 0

 There are two ways of doing it:
 Simple way

 Associate statistics with

 functions <function name>

 Default selectivity <value>

 Default cost (<CPU>,<IO>,<NETWORK>)

 Complex way [outside of the scope for today]
 Associate statistics with

 functions <function name>

 using <special object type>

32 of 43

Why does it matter?
 Because you may have multiple functions in the same SQL

statement!

 Example
 Two functions: One is light and one is heavy

associate statistics with functions f_misha_light_tx

default selectivity 0.1

default cost (0,0,0);

associate statistics with functions f_misha_heavy_tx

default selectivity 0.1

default cost (99999,99999,99999);

 Both of them are used in the query

select /*+ gather_plan_statistics */*

from emp

where f_misha_heavy_nr(empno) = 1

and f_misha_light_nr (empno) = 0

33 of 43

Explain Plan Impact

SQL_ID a5u0gvdt0ju36, child number 0

select /*+ gather_plan_statistics */* from emp where

f_misha_heavy_tx(empno) = 1 and f_misha_light_tx (empno) = 0

Plan hash value: 3956160932

| Id | Operation | Name | E-Rows | A-Rows | A-Time | Buffers |

| 0 | SELECT STATEMENT | | | 14 |00:00:00.01 | 33 |

|* 1 | TABLE ACCESS FULL| EMP | 1 | 14 |00:00:00.01 | 33 |

Predicate Information (identified by operation id):

 1 - filter(("F_MISHA_LIGHT_TX"("EMPNO")=0 AND

 "F_MISHA_HEAVY_TX"("EMPNO")=1))

Order of functions has been changed!

34 of 43

Function calls (1)

Setup:

create package misha_pkg is

 v_nr number:=0;

end;

create or replace function f_change_tx (i_tx varchar2)

return varchar2 is

begin

 misha_pkg.v_nr:=misha_pkg.v_nr+1;

 return lower(i_tx);

end;

Create or replace procedure p_check is

begin

 dbms_output.put_line('Fired:'||misha_pkg.v_nr);

 misha_pkg.v_nr:=0;

end;

35 of 43

Function calls (2)
SQL> select empno, ename, f_change_tx(job) job_change_tx

 2 from emp;

 ...

14 rows selected.

SQL> exec p_check

Fired:14

PL/SQL procedure successfully completed.

SQL> select empno, ename, (select f_change_tx(job) from dual)

 2 from emp;

 ...

14 rows selected.

SQL> exec p_check

Fired:5

PL/SQL procedure successfully completed.

SQL>

Only 5 executions!

Scalar sub-query

36 of 43

Function calls (3)
create or replace function f_change_tx (i_tx varchar2)

return varchar2 result_cache is

begin

 misha_pkg.v_nr:=misha_pkg.v_nr+1;

 return lower(i_tx);

end;

SQL> select empno, ename, f_change_tx(job) from emp;

...

14 rows selected.

SQL> exec p_check

Fired:5

SQL> select empno, ename, f_change_tx(job) from emp;

...

14 rows selected.

SQL> exec p_check

Fired:0

Enable function result cache

Only distinct values

No calls – cache only!

37 of 43

Collection IN-lists (1)

 It is very convenient to build an IN-list as a collection
and pass it to a WHERE clause
 But Oracle may or may not correctly interpret incoming data!

 Example (setting)
create table misha_demo_inlist as

select object_id, created

from dba_objects

where owner = 'MISHA'

and object_id is not null;

alter table misha_demo_inlist add constraint
misha_demo_inlist_pk primary key (object_id) using index;

begin

dbms_stats.gather_table_stats(user,'MISHA_DEMO_INLIST');

end;

38 of 43

Collection IN-lists (2)

create type id_tt is table of number;

select /*+ gather_plan_statistics*/

 max(created)

from misha_demo_inlist

where object_id in (

 select t.column_value

 from table(id_tt(227011,227415)) t

)

39 of 43

Collection IN-lists (3)
SQL_ID 6509b6f6d1mgy, child number 0

select /*+ gather_plan_statistics */ max(created) from
misha_demo_inlist where object_id in (
select t.column_value
from table(id_tt(227011,227415)) t)

Plan hash value: 22551403

| Id | Operation | Name | E-Rows | A-Rows |

0	SELECT STATEMENT			1
1	SORT AGGREGATE		1	1
* 2	HASH JOIN		8168	2
3	COLLECTION ITERATOR CONSTRUCTOR FETCH		8168	2
4	TABLE ACCESS FULL	MISHA_DEMO_INLIST	29885	29885

Predicate Information (identified by operation id):

 2 - access("OBJECT_ID"=VALUE(KOKBF$))

Wrong cardinality

40 of 43

Collection IN-lists (4)

 Oracle does not correctly recognize how many objects are
in the collection.

 Alternatives:
 Explicit cardinality hint

select /*+ gather_plan_statistics */ max(created)
from misha_demo_inlist
where object_id in (
 select /*+ cardinality (t 2) */t.column_value
 from table(id_tt(227011,227415)) t
)

 Dynamic sampling

select /*+ gather_plan_statistics */ max(created)
from misha_demo_inlist
where object_id in (
 select /*+ dynamic_sampling (t 4) */t.column_value
 from table(id_tt(227011,227415)) t
)

41 of 43

Collection IN-lists (5)

 Result for both options is the same – and uses the index!

--
| Id | Operation | Name |E-Rows |A-Rows
--
| 0 | SELECT STATEMENT | | | 1
| 1 | SORT AGGREGATE | | 1 | 1
| 2 | NESTED LOOPS | | | 2
| 3 | NESTED LOOPS | | 2 | 2
| 4 | COLLECTION ITERATOR CONSTRUCTOR FETCH| | 2 | 2
|* 5 | INDEX UNIQUE SCAN | MISHA_DEMO_INLIST_PK | 1 | 2
| 6 | TABLE ACCESS BY INDEX ROWID | MISHA_DEMO_INLIST | 1 | 2
--

Predicate Information (identified by operation id):

 5 - access("OBJECT_ID"=VALUE(KOKBF$))

 Dynamic sampling will also have a special note about its
level (it can be lower than requested)

Note

 - dynamic sampling used for this statement (level=2)

Correct cardinality!

42 of 43

Summary

Not all errors can be fixed by DBAs.

Strategic problems should not be covered by

tactical solutions.

Enterprise-level thinking is required from the

very beginning.

… and let’s not forget about bind variables

43 of 43

Contact Information

 Michael Rosenblum – mrosenblum@dulcian.com

 Blog – wonderingmisha.blogspot.com

 Website – www.dulcian.com

Available now:

Expert PL/SQL Practices

