d).

Top 5 Issues that Cannot be
Resolved by DBAS
(other than missed bind variables)

D o

March 12, 2013

Michael Rosenblum
Dulcian, Inc.

www.dulcian.com L of 43

e ' | Who Am |? — *Misha”

¢ Oracle ACE

Co-author of 2 books TR opade pLSQL
> PL/SQL for Dummies —
> Expert PL/SQL Practices

¢ Won ODTUG 2009 Speaker of the Year

¢ Known for:
» SQL and PL/SQL tuning

» Complex functionality
= Code generators
= Repository-based development

2 0f 43

) { e Houston, we have a problem!

+ Common thought process:
> Our IT system has an new issue... OMG! ‘“
» Production code should not be touched (scary!)
> DBASs should be able to “do something.”

¢ Reasoning:

» Configuration of the database is NOT considered
production code.

» DBASs are usually on staff, while the majority of
developers are contractors.

> In the Oracle universe, DBAS are considered to be
the most knowledgeable.

30f43

el Black Hawk Down...

¢ Results:

» Significant system architectural problems are
covered up using tactical bug-fixes.

» Systems become even less maintainable and more

fragile (I’ve seen 11g systems with RBO still
enabled!)

» Architects and developers become lazy. They expect
DBASs to adjust everything afterwards.

» DBASs become frustrated and remove aII privileges
from developers.

4 of 43

So what?

¢ Yes, there are problems that DBAS cannot fix.
¢ No, | will NOT talk about bind variables ©

¢ But | will discuss:
» Problems usually passed to DBAS
» Correct solutions of those problems
» Potential workarounds in cases when a real fix Is

Indeed impossible e

P

50f43

47~ """ Ppersonal Top 5 Non-DBA issues

& Architect’s mistakes:
> 1. “Smart” columns
> 2. “STUFF” table

> 3. “Insufficient” hierarchical structures
¢ Developer’s mistakes:

> 4. Datatype misuse
> 5. Misuse of user-defined functions

6 of 43

;@'-;DULCIAN;'

Issue 1: “Smart” Columns

7 of 43

21 Column vs. Attribute

¢ Column
» Represents a single logical attribute
» Does not make sense If split

¢ “Smart” column
» Has Internal structure
» May even change meaning depending upon the data

& Reasons for use:

» Save time when querying closely related data
elements

» Avold changes to table structures

8 of 43

s Example of “Smart” Columns (1)

< Organization rollup

» Pipe-delimited combination of Region/State/City/Zip

¢ Why Is It a problem?

» Adding extra level to rollup Is an extremely
challenging task.

» Search Is very expensive.

¢ \What should be done:
» Split smart columns

—

» Aggregate them back using either virtual columns or

Views

90f 43

(R—

s Example of “Smart” Columns (2)

¢ Answers on questionnaires:

» Single text line where number of characters =
number of questions: “YYYNNNNYYNY”

¢ Why Is It a problem?

» Versioning of question sets could cause data
corruption.

¢ What should be done:
» High-quality version control

» Function-based indexes for the most frequently
referenced questions

10 of 43

Issue 2: “STUFF” Table

11 of 43

(R—

s Over-Generalization Trap

¢ Reasons for generic solutions:
» Changes are costly.

> We feel “protected” against the future.

> Generic models are “cool” (especially now with the
Big Data movement)

¢BUT

» Generic solutions often mask incomplete
understanding of subject area.

» Generic solutions in one area could cause major
Issues In others.

12 of 43

Almost Totally Useless
Generic Model

AttribValue

- Name
- Value_NR
- Value DT

-Value _TX

13 of 43

" —

s Why Is it a bad idea?

¢ Data entry:
» Uses a lot of operations to retrieve a single object
» Data quality Is hard to enforce.

& Data retrieval \'&

S
> Indexes are useless. ‘ _,
> CBO goes crazy. !

» Performance Is sporadic and does not follow any
meaningful logic.

< Functional complex reporting Is impossible.

14 of 43

Although...

¢ There are cases when key-value stores are
perfect (NoSQL environments)

¢ BUT they should not be mixed with:
» OLTP solutions when high data quality Is required
» Heavy reporting workload

¢ \What could be done:

» Storage Is cheap. Create duplicate structures that
would look like real tables

15 of 43

Issue 3: Insufficient Hierarchical
Structures

16 of 43

" —

=P Good Idea/Bad Implementation

& Recursion l@§‘
» Powerful modeling technique
> Can be used for a number of reasons

L\
= Linked lists (e.g. contract versions)

= Storage of tree structures (e.g. organizational hierarchy)

¢BUT

» Storage mechanisms are wrong, which causes a lot of
Issues

17 of 43

A P Pseudo-Recursion Trap

¢ Real recursion 0.1 chitd of
THING 0.7
¢ “Kind of’-recursion
1 < Child of (0
THING

THING | 1 < Parent of 0..x | ASSOCIATION
from/to date

18 of 43

(R—

=P Why is it a trap?

¢ Reasons why people do It:
» Versioning
» Historical data
» Reporting purposes
¢ Why It Is challenging: ___,
» Hierarchical data consistency Is not enforced.
» Timing can be very easily be off.

¢ What should be done:
> Very strict data quality checking!
» Denormalized data sources for querying

19 of 43

Issue 4. Datatype Misuse

20 of 43

Datatypes as Constraints (1)

¢ Datatypes ARE parts of metadata

> Oracle uses them to make a lot of decisions about
execution plans.

» Wrong datatypes often mean wrong Explain Plans.
» Wrong datatypes open possibilities for corrupted data.

¢ What should be done:
> Fix datatypes as much as possible.

» Use views/virtual columns to separate storage and
representation.

> Worst case — Add check constraints to at least enforce
data quality.

21 of 43

Date vs. Varchar2 (1)

¢ Problem:
» storing DATE as VARCHARZ2 (~ YYYYMMDD)

& Reasons of 1ssues

» Date range {December 31, 2012 to January 1, 2013}
consists of only two distinct date values

> The textual range {20121231°,°20130101°} 1s huge.
Since it is text, starting with the 4t character there could
be any valid character in the current charset.

¢ Result:

» Column-level statistics are not utilized and indexes are
often ignored.

¢ \What could be done:

» Build virtual column (TO_DATE) and let developers
use it.

22 of 43

LT Date vs Varchar2(2)

create table misha date0l

as

select owner, object name,
to char (created, 'YYYYMMDD') created tx,
created created dt

from dba objects

create index misha date tx 1dx on

misha dateOl (created tx);
create index misha date dt 1dx on

misha dateOl (created dt);

begin

dbms stats.gather table stats(user, "MISHA DATEOQO1'");
end;

23 of 43

dap. Date vs Varchar2 (3)

SQL> explain plan for
2 select *
3 from misha dateOl
4 where created tx between '20121231' and '20130101';
Explained.
SQL> select * from table (dbms xplan.display()):;
PLAN TABLE OUTPUT
| 0 | SELECT STATEMENT | | 48100 | 2113K| 299 (1) |
1 | TABLE ACCESS FULL| MISHA DATEO1l | 48100 | 2113K| 295 (1) |

SQL> explain plan for \\\\\\\;

2 select * Full table scan

3 from misha dateOl
4 where created dt between to_date('20121231','YYYYMMDD')
5 and to _date('20130101','YYYYMMDD') ;

Explained.

SQL> select * from table (dbms xplan.display()):

| 0 | SELECT STATEMENT | | 212 | 9540
| 1 | TABLE ACCESS BY INDEX ROWID| MISHA DATEO1 | 212 | 9540
|* 2 | INDEX RANGE SQ&E‘_¥ | MISHA DATE DT IDX | 212 |

24 of 43

Implicit datatype conversion

¢ Implicit datatype conversion is EVIL!
» Security nightmare

> A lot of confusion everywhere:
= Statistics
= Execution Plans
= Overload calls

25 of 43

- —

ol Number vs Varchar2

SQL> explain plan for select * from misha date0l
2 where created tx = 20121231;
SQL> select * from table (dbms xplan.display());

Id	Operation	Name	Rows	Bytes	Cost (%CPU)
0O	SELECT STATEMENT		573	25785	300 (1)
* 1	TABLE ACCESS FULL	MISHA DATEOLl	573	25785	300 (1)

SQL> explain plan for select * from misha dateOl Full table scan

2 where created tx = '20121231';
SQL> select * from table (dbms xplan.display()):

| Id | Operation | Name | Rows | Bytes
| 0O | SELECT STATEMENT | | 573 | 25785
| 1 | TABLE ACCESS BY INDEX ROWID| MISHA DATEO1l | 573 | 25785
|* 2 | INDEX RANGE SCAN | MISHA DATE TX IDX | 573 |

Index is used! 26 of 43

sy A B i—i '
‘;“ - <

—DULCIA

Issue 5: Misuse of
User-Defined Functions

27 of 43

a=P. Why bother? Y?J
®

¢ PL/SQL functions as a part of SQL can cause a
lot of side effects.

» Cost of SQL to PL/SQL context switch is very high.

» Depending upon the execution plan, the same
function could be called different numbers of times
for the same SQL statement.

¢ \What could be done:

» Make sure that the CBO takes into account the
Impact of PL/SQL functions on the overall cost.

» Manage the total number of calls.

28 of 43

" —

i Problem Areas/Solutions

¢ OO-like get/set APIs

¢ PL/SQL functions in SELECT and WHER
clauses £y
» Managing execution order

= Short-circuit evaluation
= Statistics-based cost

» Decreasing total number of function calls

= Scalar sub-query caching
« RESULT_CACHE

¢ In-line views based on PL/SQL functions returning
nested tables

29 of 43

OO-like thinking

¢ People are accustomed to GET/SET APIs for
every attribute
> Real story of 1 insert into table with 100 attributes

= 1 insert with only PK column
= 99 updates using PK

» System collapsed under its own weight because of
thousands of roundtrips

¢ \What could be done:

» train your developers to NOT use JAVA-style
coding in PL/SQL development

30 of 43

=p. ULCIAN: PL/SQL functions inside of
SQL

¢ The CBO is not psychic and cannot figure out what is going on inside
of your PL/SQL function.

¢ UNLESS you tell it using associated statistics, because Oracle
defaults are not perfect:

> Selectivity — 1% (0.01)

> CPU cost — 3000 Q

> I/Ocost—0 S P
O

> Network cost - 0 P

-

¢ There are two ways of doing it:
> Simple way

Associliate statistics with
functions <function name>

Default selectivity <value>
Default cost (<KCPU>,<IO>,<NETWORK>)

» Complex way [outside of the scope for today]
Associate statistics with
functions <function name>
using <special object type>

310f43

el V Why does it matter?

¢ Because you may have multiple functions in the same SQL
statement!

¢ Example
» Two functions: One is light and one is heavy

associate statistics with functions f misha light tx
default selectivity 0.1
default cost (0,0,0);

associate statistics with functions f misha heavy tx
default selectivity 0.1
default cost (99999,99999,99999);

> Both of them are used in the query

select /*+ gather plan statistics */*
from emp

where f misha heavy nr (empno) = 1

and f misha light nr (empno) = 0

32 of 43

s Explain Plan Impact

SQL ID ab5ulOgvdtOju36, child number O

select /*+ gather plan statistics */* from emp where

f misha heavy tx(empno) = 1 and f misha light tx (empno) = 0

Plan hash wvalue: 3956160932

Id	Operation	Name	E-Rows	A-Rows	A-Time	Buffers
0	SELECT STATEMENT			14 100:00:00.01	33	
* 1	TABLE ACCESS FULL	EMP	1	14	100:00:00.01	33

Predicate Information (identified by operation id):

1 - filter (("F_MISHA LIGHT TX" ("EMPNO")

0 AND
"F MISHA HEAVY TX" ("EMPNO")=1)

=l

Order of functions has been changed!

33 0f 43

LT Function calls (1)
& Setup:

create package misha pkg is
v_nr number:=0;

end;

create or replace function f change tx (i tx varchar?2)
return varchar?2 1is
begin

misha pkg.v nr:=misha pkg.v nr+l;

return lower (i tx);

end;

Create or replace procedure p check is

begin
dbms output.put line('Fired:'||misha pkg.v nr);
misha pkg.v nr:=0;

end;
34 of 43

» —

ol Function calls (2)

SQL> select empno, ename, f change tx(job) job change tx

2 from emp;

14 rows selected.

SQL> exec p check
Fired:14
PL/SQL procedure successfully completed.

SQL> select empno, ename, (select f change tx(job) from dual)

2 from emp; \\\

14 lected.
rows selecte Scalar sub-query

SQL> exec p check

Fired:5

PL/SQL procedure successfully completed. Only 5 executions!

SQL> 35 of 43

- —

ol Function calls (3)

create or replace function f change tx (i tx varchar?2)

return varchar? result_cache is

begin

misha pkg.v nr:=misha pkg.v nr+l; :
Enable function result cache

|/

return lower (i tx);

end;
SQL> select empno, ename, f change tx(job) from emp;

14 rows selected.

SQL> exec p check

Fired:5 Only distinct values

SQL> select empno, ename, f change tx(job) from emp;

14 rows selected.

— - No calls — cache only!

Fired:O0 36 of 43

—

2.

¢ It is very convenient to build an IN-list as a collection
and pass it to a WHERE clause

» But Oracle may or may not correctly interpret incoming data!

Collection IN-lists (1)

¢ Example (setting)

create table misha demo inlist as
select object id, created

from dba objects

where owner = 'MISHA'

and object id is not null;

alter table misha demo inlist add constraint
misha demo inlist pk primary key (object id) using index;

begin
dbms stats.gather table stats(user, '"MISHA DEMO INLIST');
end;

37 of 43

21 e Collection IN-lists (2)
create type 1d tt 1s table of number;

select /*+ gather plan statistics*/
max (created)
from misha demo inlist
where object i1d 1in (
select t.column value
from table(id tt(227011,227415)) t

)

<

38 of 43

y - Collection IN-lists (3)

SQL ID 6509b6f6dlmgy, child number 0

select /*+ gather plan statistics */ max(created) from
misha demo inlist where object id in (

select t.column value

from table(id tt(227011,227415)) t)

Plan hash value: 22551403

Id	Operation	Name	E-Rows	A-Rows
0O	SELECT STATEMENT			1
1	SORT AGGREGATE		1	1
= 2	HASH JOIN		8168	2
3 COLLECTION ITERATOR CONSTRUCTOR FETCH		8168	2	
4	TABLE ACCESS FULL	MISHA_DEMO_INLIST	29885 29885	

Predicate Information (identified by operation id):

2 - access ("OBJECT ID"=VALUE (KOKBFS))

Wrong cardinality

39 of 43

- —

A P Collection IN-lists (4)

Oracle does not correctly recognize how many objects are
In the collection.

& Alternatives:
> Explicit cardinality hint

select /*+ gather plan statistics */ max (created)
from misha demo inlist
where object id in (
select /*+ cardinality (t 2) */t.column value
from table(id tt(227011,227415)) t B

)

» Dynamic sampling

select /*+ gather plan statistics */ max(created)

from misha demo inlist

where object id in (
select /*+ dynamic sampling (t 4) */t.column value
from table(id_tt(2§7011,2274l5)) t B

)

40 of 43

il Collection IN-lists (5)
¢ Result for both options is the same — and uses the index!

| Id | Operation | Name |E-Rows |A-Rows

| 0O | SELECT STATEMENT | | | 1
| 1 | SORT AGGREGATE | | 1 | 1
| 2 | NESTED LOOPS | | | 2
| 3 | NESTED LOOPS | | 2 | 2
| 4 | COLLECTION ITERATOR CONSTRUCTOR FETCH | | 2 | 2
|* 5 | INDEX UNIQUE SCAN | MISHA DEMO INLIST PK | / 1| 2
| o | TABLE ACCESS BY INDEX ROWID | MISHAiDEMO_INLIST_ | 1 | 2

Predicate Information (identified by operation id):

5 - access ("OBJECT ID"=VALUE (KOKBF$)) Correct cardinality!

+ Dynamic sampling will also have a special note about its
level (it can be lower than requested)

- dynamic sampling used for this statement (level=2)

41 of 43

=P Summary

¢ Not all errors can be fixed by DBA:s.

¢ Strategic problems should not be covered by
tactical solutions.

¢ Enterprise-level thinking Is required from the
very beginning.

¢ ... and let’s not forget about bind variables ©

42 of 43

Ay ULCIAN. Contact Information

¢ Michael Rosenblum — mrosenblum@dulcian.com
¢ Blog — wonderingmisha.blogspot.com
& Website — www.dulclan.com

— Expert
oL PL/SQL Practices
Or GC’e P L/ S for Oracle Developers and DBAs

Apress

A Reference

for the
Rest of Us!

B

Avalilable now:
Expert PL/SQL Practices

Ox. Paul Dorsey
Michael Rasenbiuen

43 of 43

