
Managing Statistics of Volatile Tables
in Oracle

Iordan K. Iotzov

Senior Database Administrator

News America Marketing (NewsCorp)

iiotzov@newsamerica.com

Blog: http://iiotzov.wordpress.com/

mailto:iiotzov@newsamerica.com

About me

•10+ years of database administration and development
experience
•MS in Computer Science, BS in Electrical Engineering
•Presented at Hotsos, NYOUG and Virta-Thon
•Active blogger and OTN participant
•Senior DBA at News America Marketing (NewsCorp)

https://itunes.apple.com/us/app/smartsource-xpress-mobile/id494281041?mt=8
https://itunes.apple.com/us/app/smartsource-xpress-mobile/id558320415?mt=8

Agenda

• Definition of volume and distribution volatility

• Reducing volatility
– tradeoffs

• Dealing with volatility
– robust execution plans

• adaptive stats locking

– follow the change
• gather stats in places you never thought you could

• Conclusions

Definition of volume volatility

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11

Volatile Table Regular Table

Time Time

Size(K) Size(K)

Definition of distribution volatility

0

200

400

AZRF BBTS CGZO DFRR EGTY FHHS GDVR HHUD JUUL KYTR LTTP MDDR

0

200

400

AZRF BBTS CGZO DFRR EGTY FHHS GDVR HHUD JUUL KYTR LTTP MDDR

Time 1

Time 2

Size(K)

Size(K)

Little Distribution Volatility

Definition of distribution volatility

0

200

400

AZRF BBTS CGZO DFRR EGTY FHHS GDVR HHUD JUUL KYTR LTTP MDDR

Time 1

Time 2

Size(K)

Size(K)

0

200

400

AZRF BBTS CGZO DFRR EGTY FHHS GDVR HHUD JUUL KYTR LTTP MDDR

Significant Distribution Volatility

Reducing volatility

• Proactive

– Rethink database design

• does this temporary set have to be stored in the DB?

• Reactive

– Two-phase removal of data

• Delete => Update flag (logical removal)

• Physical removal by a scheduled batch process

• Addresses volume volatility only

Reducing Volatility

Pros
No need to change
select statements
Stable execution plans

Cons
Does not help with distribution
volatility
Limited options for CBO(no FTS)
Column statistics represent average
Larger footprint

Reducing Volatility

table tab

(col1 NUMBER,

…

col10 VARCHAR2)

table tab_internal

(col1 NUMBER,

…

col10 VARCHAR2,

deleted VARCHAR2(1)

constraint del check (deleted

in ('Y','N')))

view tab as

select col1, col2, … col10

from tab_internal

where deleted = ‘N’

Original Logical Removal

Reducing Volatility

- Requires changes to the application code

Pros
Ability to achieve
high performance by
utilizing bulk operations

Cons
Have to change the code

Keeping bulk DML operations solution

Reducing Volatility

insert into tab

(col1,..col10)

values

(col1,..col10)

delete tab

where col1=

..

insert into tab_internal

(col1,..col10,deleted)

values

col1,..col10,’N’)

update into tab_internal

set deleted = ‘Y’

where deleted = ‘N’

and col1= ..

Keeping bulk DML operations solution

Reducing Volatility

-Does not requires changes
 to the application code

Pros
No need to change
the application code

Cons
Some DML performance
limited by row-by-row
processing

Trigger-based solution

Reducing Volatility

create or replace trigger v_t_tr instead

of insert on tab

 begin

 insert into tab_internal (col1,..col10,deleted)

 values (col1,..col10, 'N');

 end;

create or replace trigger v_t_del

 instead of delete on tab referencing new

as new old as old

 begin

 update tab_internal set deleted = 'Y'

 where col1 = :old.col1

 and col2 = …

end;

Trigger-based solution

Reducing Volatility

0

2000

4000

6000

8000

10000

1 101 201 301

Original Soft DeleteSize(K)

Time

0

50

100

1 101

Original

Time

Size(K)

Dealing with volatility
Robust execution plans

What is robust?
– capable of performing without failure under a wide range

of conditions (Merriam Webster)

Paradigm shift
– Looking for optimal is no longer the goal

– Searching for “reasonable” performance, execution time
within certain limits

Statistics are used for determining:

Join Method
– Hash Join vs Nested Loops

Join Order
– The sequence the tables would be joined

Dealing with volatility
Robust execution plans

Dealing with volatility
Robust execution plans

0
0.5

1
1.5

2
2.5

3
3.5

NL HJ

HJ

NL

Variance Reduction => Robust System (Taguchi)

Execution time
for join involving volatile table

Size of volatile table

10

20

30

40

(K)

Join Method

Dealing with volatility
Robust execution plans

Join Method

Oracle 12c – Adaptive Execution Plans
Join Method selected at run time and based on the actual row count

• Able to mitigate some of the problems related to cardinality

miscalculations, including those caused by data volatility.

• Run-time decision NL/HJ done only with the first execution.
 Adjust expectations when reusing SQL.

Dealing with volatility
Robust execution plans

Join Order

 table A table B

 table C

Intermediate set

Final set

Intermediate set

Final set

 table A

 table B

 table C

Suboptimal join order frequently results in huge intermediate sets.

Good Suboptimal

Dealing with volatility
Robust execution plans

• Locking statistics
– Best Practices for Automatic Statistics Collection

[ID 377152.1]

• (Long-term) Issues with locking statistics
– How to know the maximum size in advance?
– Data changes…

Column Low Column High

C
ar

d
in

al
it

y

Dealing with volatility
Robust execution plans

Time

Min/Max
Column Value

C
o

l.
Lo

w

C
o

l H
ig

h

Cardinality

select min(col1), max(col1)

from <volatile table>

Dealing with volatility
Robust execution plans

Count the records
in the table

Count larger than
 threshold x
last count?

1. Unlock table stats
2. Gather table stats
3. Lock table stats

Yes

No

Skip

Adaptive Stats Locking

Threshold (%)

Time since last gathering

5%

1%

1/(5*

(abs(i.days_since_last_analyze)-3)

)

Example:

Dealing with volatility
Robust execution plans

0

40

80

120

160

200

x
1

0
0

0
0

Table Size Stats for Table

Time

Real World Example
Number of
records

Dealing with volatility
Robust execution plans

Implementation highlights: The table size can
change significantly at any time! – Oracle 10g

Step SQL

Backup existing statistics truncate table prev_stats ;

execute DBMS_STATS.EXPORT_TABLE_STATS

(<DB_USER>,<TAB>, stattab =>

'prev_stats');

Gather statistics exec

dbms_stats.gather_table_stats(<DB_USER

>,<TAB>)

Verify that the gathered
stats
are what was expected?

select num_rows from dba_tables

where owner = <DB_USER> and table_name

= <TAB>

If not – restore statistics
from backup

exec DBMS_STATS.IMPORT_TABLE_STATS

(<DB_USER>,<TAB>, stattab =>

'prev_stats');

Dealing with volatility
Robust execution plans

Implementation highlights: The table size can
change significantly at any time! – Oracle 11g

Step SQL

Keep new stats in pending
state

exec

dbms_stats.set_table_prefs((<DB_USER>,

<TAB>,'PUBLISH', 'false');

Gather statistics exec

dbms_stats.gather_table_stats(<DB_USER

>,<TAB>)

Verify that the gathered
stats
are what was expected?

select num_rows from

dba_tab_pending_stats

where owner = <DB_USER> and table_name

= <TAB>

If yes – publish the
statistics

exec

dbms_stats.publish_pending_stats(<DB_U

SER>,<TAB>);

Dealing with volatility
Robust execution plans

Implementation highlights: Unintended side
affects when manually managing statistics

Column TRANS_ID

SELECT *

FROM A , B

WHERE A.TRANS_ID = B.TRANS_ID

Estimated cardinality of is 1!!!

Table A

Table B minA

maxA

maxB
 minB

Dealing with volatility
Robust execution plans

Implementation highlights: Unintended side
affects when manually managing statistics

Table A

Table B minA

maxA

Column TRANS_ID

maxA
E minA

E

minB

maxB

 maxA
E

minB
E

Artificially extending min/max ranges:
• Improve join selectivity
• Deteriorate single table selectivity

Sample range extending techniques:
• Number: minE = min /2 ; maxE = max * 2
• Date: minE = min - 365 days ; maxE = max + 365 days

Dealing with volatility
Follow the change

Goal:
Statistics should precisely represent the

 underlying data at any point in time

Implementation:
Dynamic sampling
Explicit stats gathering after
 significant data change

Dealing with volatility
Follow the change

Dynamic sampling

Pros

Easy to set up (for basic
level dynamic sampling)

No need for functional
testing

Cons

Needs hard parsing
(manageable)

Suboptimal in load
once, select many times
scenarios

Hard-parse triggered on-the-fly statistics
gathering where the resulting statistics are used
for the generation of a single SQL plan only

Dealing with volatility
Follow the change

Explicit statistics gathering after
 every significant data change (DBMS_STATS package)

Pros

Suitable for all
scenarios

Cons

Needs application code
changes (possibly
numerous)

Issues an implicit
COMMIT

Dealing with volatility
Follow the change

Explicit statistics gathering after
 every significant data change (DBMS_STATS package)

Oracle 12c introduced
Session-Private Statistics for Global Temporary Tables

 GLOBAL_TEMP_TABLE_STATS table preference allows gathering
 session level statistics

 Greatly improves the ability to handle volatile tables in
 multi-user environments

Dealing with volatility
Follow the change

Required testing after a change

Non-functional testing Functional testing

Create/drop indexes

Change init.ora parameters
 (most cases)

Hints

Dynamic Sampling

Change/Create application SQL

Materialized views
 (most cases)

Custom de-normalizations/aggregations

COMMIT

DBMS_STATS (implicit COMMIT)

JUST_STATS (no COMMIT!)

Dealing with volatility
Follow the change

Then why DBMS_STATS issues a COMMIT?
To shorten the duration of DDL locks(Tom Kyte) /valid point/
Because we should gather the statistics only after the application
change has been successful and committed (MOS Analyst)

When to a COMMIT a transaction?
… data integrity is the driving force behind the size of your
transaction (Tom Kyte)
transaction should be committed when it must and never before
(Tom Kyte)
to perform non-functional operations such statistics gathering

Dealing with volatility
Follow the change

JUST_STATS package functional overview

Functionally equivalent to DBMS_STATS, but
with limited features

 GATHER_TABLE_STATS
 GATHER_INDEX_STATS
 Limited Histograms
 Most data types
 No “Auto” options

Does not issue a COMMIT

 Stats do not rollback after the transaction

 is rolled back

 Other sessions can sees the new stats without

 seeing the data behind those stats

Dealing with volatility
Follow the change

Inside JUST_STATS package

type ..is table of

dbms_stats.statrec

index by binary integer

type ..is table of

dbms_stats.NumArray

…..

Package Variables

select count(*), distinct(col2),…

into ……

from <TABLE>

dbms_stats.set_table_stats(‘TABLE’,…)

main

autonomous

Dealing with volatility
Follow the change

Uses for JUST_STATS package

create or replace trigger cust_stats

after insert or delete or update on <TAB>

begin

 just_stats.gather_table_stats('<USER>','<TAB>');

end;

Wherever DBMS_STATS should be used, but
COMMIT is not desired – batch processes
Post statement table triggers
 – a great place to gather statistics!

Example:

Dealing with volatility
Follow the change

Online Statistics Gathering for Bulk Loads

 After CTAS or direct path INSERT INTO .. SELECT

 Does not collect index statistics and histograms

 Check “Notes” column in DBA_TAB_COL_STATISTICS
 to confirm

Oracle 12c alternative

Dealing with volatility
Follow the change

Customizations for stats gathering in triggers

Frequently, it is not wise to gather stats after every DML…

Before
statement

Before
row

After
row

After
statement

Reset
counter
to zero

Increment
counter

Gather
statistics
if conditions
are met

Dealing with volatility
Follow the change

create package stats_aux as

 cnt number;

end stats_aux;

create or replace

trigger stats_cnt_reset

before insert or delete

or update on <TABLE>

begin

 stats_aux.cnt:=0;

end;

Customizations for stats gathering in triggers

create or replace

trigger stats_cnt_increment

before insert or delete

or update on <TABLE>

for each row

begin

 stats_aux.cnt:=stats_aux.cnt+1;

end;

Before statement After row

Auxiliary package

Dealing with volatility
Follow the change

Customizations for stats gathering in triggers

create or replace trigger cond_stats_gather

after insert or delete or update on <TAB>

declare

dd_cnt number;

begin

 select num_rows

 into dd_cnt

 from user_tables

 where table_name = ‘<TAB>';

 if stats_aux.cnt*10 > dd_cnt then

 just_stats.gather_table_stats(‘<USR>’,’<TAB>’);

 end if;

end;

Gather statistics only after a single DML modifies
at least 10% of the records

Dealing with volatility
Follow the change

Support “resolution” of
 Oracle bug# 12897196 !

More about JUST_STATS package:

Free to download and use (I wrote it!)

No support

Would like to make JUST_STATS functionality mainstream?

No liability

Thank you

