
Partitioning WWWH
What, When, Why & How

Arup Nanda
Longtime Oracle DBA

About this Session

• This is not an introduction to partitioning
– Will not cover syntax

• What type of partitioning
• When to use partitioning
• Why partition something
• How to use partitioning to overcome common

challenges
• A complete case study to show how decisions are

made

Partitioning Why When What and How
2

When

• Overlap between Logical Modeling and Physical Design

• Last part of logical design and first part of physical design
• When should partitioning be used

– In almost all the time for large tables

• There is no advantage in partitioning small tables, right?
– Wrong. In some cases small tables benefit too

Logical PhysicalPartition
Design

Partitioning Why When What and How
3

Why? Common Reasons

• Easier Administration:
– Smaller chunks are more manageable

– Rebuilding indexes partition-by-partition

– Data updates, does not need counters

• Performance:
– full table scans are actually partition scans

– Partitions can be joined to other partitions

– Latching

Partitioning Why When What and How
4

More Important Causes

• Data Purging
– DELETEs are expensive – REDO and UNDO

– Partition drops are practically free

– Local indexes need not be rebuilt

• Archival
– Usual approach: insert into archival table select * from

main table

– Partition exchange

– Local indexes need not be rebuilt

Partitioning Why When What and How
5

Materialized Views Refreshes

• Partition Exchange
– Create a temp table

– Create Indexes, etc.

– When done, issue:
alter table T1 exchange
partition sp11 with table
tmp1;

– Data in TMP1 is available
sp41

sp31

sp21

sp11

sp32

sp22

sp12

sp33

sp13
partition p1

partition p2

partition p3

partition p4
Table

Temp
Table

Partitioning Why When What and How
6

Backup Efficiency
• When a tablespace is read-only, it does not change

and needs only one backup
– RMAN can skip it in backup

– Very useful in DW databases

– Reduces CPU cycles and disk space

• A tablespace can be read only when all partitions in
them can be so

SQL> alter tablespace Y08M09 read only;

Partitioning Why When What and How
7

Data Transfer

• Traditional Approach
insert into target select * from
source@dblink

• Transportable Tablespace
– Make it read only

– Copy the file

– "Plug in" the file as a new tablespace into
the target database

– Can also be cross-platform

Source Target

TS1
TST

TS1
TST

Partitioning Why When What and How
8

Information Lifecycle Management
• When data is accessed less frequently, that can

be moved to a slower and cheaper storage, e.g.
from DMX to SATA

• Two options:
1. Create a tablespace ARC_TS on cheaper

disks
ALTER TABLE TableName MOVE

PARTITION Y07M08 TABLESPACE
ARC_TS;
Reads will be allowed; but not writes

2. ASM Approach
ALTER DISKGROUP DROP DISK … ADD DISK

…
Fully available

Fast
Disk

Slow
Disk

TS1 ARC_TS

Partitioning Why When What and How
9

Index Blocks Too Hot to Handle

• Consider an index on RES_ID,
or CK_ID – a monotonically
increasing number

• It may make a handful of leaf
blocks experience severe
contention

• This hot area shifts as the
access patterns change

9 11

10

12

13

14

Partitioning Why When What and How
10

Hash Partitioned Index

• Index Can be hash-partitioned, regardless of the partitioning status of
the table
create index IN_RES_01 on RES (RES_ID) global

partition by hash (RES_ID)

partitions 8

• Table RES is un-partitioned; while index is partitioned.

• This creates multiple segments for the same index, forcing index
blocks to be spread on many branches

• Can be rebuilt:
alter index IN_RES_01 rebuild partition <PartName>;

• Can be moved, renamed, etc.

Partitioning Why When What and How
11

How to Decide

• First, decide on the objectives of partitioning. Multiple
objectives possible

• Objectives
– Data Purging

– Data Archival

– Performance

– Improving Backups

– Data Movement

– Ease of Administration

– Different Type of Storage

Assign priorities to
each of these
objectives

Partitioning Why When What and How
12

Global-vs-Local Index

• Whenever possible, use local index

• In Primary Key (or Unique) Indexes:
– If part column is a part of the PK – local is possible and should be

used

– e.g. RES table. PK – (RES_DT, RES_ID) and part key is
(RES_DT)

• If not, try to include the column in PKs
– E.g. if RES_ID was the PK of RES, can you make it (RES_DT,

RES_ID)?

• Ask some hard design questions
– Do you really need a PK constraint in the DW?

Partitioning Why When What and How
13

Case Study

• Large Hotel Company

• Fictitious; any resemblance to real or fictional
entities is purely coincidental

Partitioning Why When What and How
14

Background

• Hotel reservations made for future dates

• When guests check out, the CHECKOUTS table is
populated

• RESERVATIONS has RES_DT
– Is always in future (up to three years)

• CHECKOUTS has CK_DT
– Is always present or past.

Partitioning Why When What and How
15

Thought Process

• Q: How will the tables be purged?

• A: Reservations are deleted 3 months after they are past.
They are not deleted when cancelled.

– Checkouts are deleted after 18 months.

• Decision:
– Since the deletion strategy is based on time, Range

Partitioning is the choice with one partition per month.

Partitioning Why When What and How
16

Column

• Since deletion is based on RES_DT and CK_DT,
those columns were chosen as partitioning key for
the respective tables

• Scripts:
create table reservations (…)

partition by range (res_dt) (

partition Y08M02 values less than
(to_date('2008-03-01','yyyy-mm-dd')),

partition PMAX values less than (MAXVALUE)

)

Partitioning Why When What and How
17

Access Patterns

• Q: Will checkouts within last 18 months be uniformly
accessed?
– A: No. Data <= 3 months is heavily accessed. 4-9

months is light; 9+ is rarely accessed.

• Decision:
– Use Information Lifecycle Management to save storage

cost.

Partitioning Why When What and How
18

Access Types

• Q: Is it possible that data in past months can
change?
– A: Yes, within 3 months to make adjustments.

• Q: How likely that it will change?
– A: Infrequent; but it does happen. 3+ months: very rare.

• Q: How about Reservations?
– A: They can change any time for the future.

• Decision: Make partitions read only.

Partitioning Why When What and How
19

Partitioning 1st Pass

RESERVATIONS

RES_ID 
UPD_DT
RES_DT
GST_IDFK

CHECKOUTS

CK_ID 
CK_DT
UPD_DT
FOLIO_ID FK

FOLIOS

FOLIO_ID 
FOLIO_DT
RES_ID

GUESTS

GST_ID 
GST_NAME

TRANSACTIONS

FOLIO_ID 
TRAN_ID
TRANS_DT

No FOLIO_DT column

Part
Part

Part
Part

Partitioning Why When What and How
20

Column Add for Partitioning

RESERVATIONS

RES_ID 
UPD_DT
RES_DT
GST_IDFK

CHECKOUTS

CK_ID 
CK_DT
UPD_DT
FOLIO_ID FK

FOLIOS

FOLIO_ID 
FOLIO_DT
RES_ID

GUESTS

GST_ID 
GST_NAME

TRANSACTIONS

FOLIO_ID 
TRAN_ID
TRANS_DT
FOLIO_DT

Part
Part

Part

Part

FOLIO_DT column was
addedPartitioning Why When What and How

21

Problem

• Purge on CHECKOUTS, FOLIOS and
TRANSACTIONS is based on CK_DT, not
FOLIO_DT

• FOLIO_DT is the date of creation of the record;
CK_DT is updated date

• The difference could be months; so, purging can't
be done on FOLIO_DT

• Solution: Partitioning Key = CK_DT

• Add CK_DT to other tables

Partitioning Why When What and How
22

2nd Pass

RESERVATIONS

RES_ID 
UPD_DT
RES_DT
GST_IDFK

CHECKOUTS

CK_ID 
CK_DT
UPD_DT
FOLIO_ID FK

FOLIO

FOLIO_ID 
FOLIO_DT
RES_ID FK

CK_DT

GUESTS

GST_ID 
GST_NAME

TRANSACTIONS

FOLIO_ID FK

TRAN_ID 
TRANS_DT
CK_DT

CK_DT column
was added

Part
Part

Part Part

Partitioning Why When What and How
23

Problems after 2nd Pass

• #1 FOLIOS records created at Check-in
– CK_DT is updated at Check-out; the record may move

to a different partition

– Decision = Acceptable

• #2 CK_DT will not be known at Check-in; so value
will be NULL. Which partition?
– Decision = not NULL; set to tentative date

– against Relational Database Puritan Design

Partitioning Why When What and How
24

Problems, cont..

• #3: TRANS table may have many rows; updating
CK_DT may impact negatively
– Decision: Remove CK_DT from TRANS

– Partition on TRANS_DT

– Fact: TRANS_DT <= CK_DT

– So, when partition SEP08 of CHECKOUTS is dropped,
SEP08 partition of TRANSACTIONS can be dropped
too

– Just because part columns are different, purge does not
have to different.

Partitioning Why When What and How
25

3rd Pass

RESERVATIONS

RES_ID 
UPD_DT
RES_DT
GST_IDFK

CHECKOUTS

CK_ID 
CK_DT
UPD_DT
FOLIO_ID FK

CK_DT

FOLIO

FOLIO_ID 
FOLIO_DT
RES_ID FK

CK_DT

GUESTS

GST_ID 
GST_NAME

TRANSACTIONS

FOLIO_ID FK

TRAN_ID 
TRANS_DT

CK_DT column
was removed

Part

Part

Part
Part

Partitioning Why When What and How
26

Scenario #1

• Reservation made on Aug 31st for Sep 30th checking
out tentatively on Oct 1st
– Records Created:

Table Part Key UPD_DT Partition

RESERVATIONS 09/30 08/31 SEP08

• Guest checks in on 9/30
FOLIOS 10/01 09/30 OCT08

• Checks out on Oct 2nd:
CHECKOUTS 10/02 10/02 OCT08

TRANSACTIONS 10/02 10/02 OCT08

Partitioning Why When What and How
27

CK_DT in RES?

• New Thought:
– Why not partition RESERVATIONS table by CK_DT as

well?

• CK_DT column not present in RES
– But can be calculated; since we know the number of

days of stay.

• Tentative Checkout Date column added

Partitioning Why When What and How
28

4th Pass

RESERVATIONS

RES_ID 
UPD_DT
CK_DT
RES_DT
GST_IDFK

CHECKOUTS

CK_ID 
CK_DT
UPD_DT
FOLIO_ID FK

CK_DT

FOLIO

FOLIO_ID 
FOLIO_DT
RES_ID FK

CK_DT

GUESTS

GST_ID 
GST_NAME

TRANSACTIONS

FOLIO_ID FK

TRAN_ID 
TRANS_DT

CK_DT
column
added

Part

Part

Part
Part

Partitioning Why When What and How
29

Scenario #1 Modified

• Reservation made on Aug 31st for Sep 30th checking
out tentatively on Oct 1st
– Records Created:

Table Part Key UPD_DT Partition
RESERVATIONS 10/01 08/31 OCT08

• Guest checks in on 9/30
FOLIOS 10/01 09/30 OCT08

• Checks out on Oct 2nd:
CHECKOUTS 10/02 10/02 OCT08
TRANSACTIONS 10/02 10/02 OCT08
RESERVATIONS 10/02 10/02 OCT08

New record

New record

New record

Update

Partitioning Why When What and How
30

Scenario #2

• Guest checks out on Nov 1st, instead of Oct 1st:

– Records Created:
Table Part Key UPD_DT Partition
RESERVATIONS 10/01 08/31 OCT08

• Guest checks in on 9/30
FOLIOS 10/01 09/30 OCT08

• Checks out on Nov 1st:
CHECKOUTS 11/01 11/01 NOV08
TRANSACTIONS 11/01 11/01 NOV08
RESERVATIONS 11/01 11/01 NOV08
FOLIOS 11/01 11/01 NOV08

New record

New record

New record

Row Migration

Row Migration

Partitioning Why When What and How
31

New Column for Partitioning

• Added a column CK_DT

• Two Options for Populating:
– Apps populate it (possible since this is still in design)

• Apps will have to change

• Guaranteed logic

– Triggers populate (retrofitting partitioning after the apps
are written)

• No change to apps

• No guarantee of logic

Partitioning Why When What and How
32

11g Reference Partitions

• No need to have a new
column

• Partitions are defined on
Foreign Keys, which
follow the parent's
partitioning scheme.

• One of the most useful
innovations in 11g

create table trans (
trans_id number not null,
folio_id number not null,
trans_date date not null,
amt number,
constraint fk_trans_01

foreign key (folio_id)
references folios

)
partition by reference

(fk_trans_01);

Partitioning Why When What and How
33

Non-Range Cases

• GUESTS table is unique:
– 500 million+ records

– No purge requirement

– No logical grouping of data. GUEST_ID is just a
meaningless number

– All dependent tables are accessed concurrently, e.g.
GUESTS and ADDRESSES are joined by GUEST_ID

• No meaningful range partitions possible

Partitioning Why When What and How
34

Hash Partitions

• GUESTS table is hash partitioned on GUEST_ID

• Number of Parts: in such a way that each partition
holds 2 million records

• Number of partitions must be a power of 2. So 256
was chosen.

• All dependent tables like ADDRESSES were also
partitioned by hash (guest_id)

Partitioning Why When What and How
35

Hotels Tables

• HOTELS table holds the names of the hotels

• Several dependent tables exist – DESCRIPTIONS,
AMENITIES, etc. – all joined to HOTELS by
HOTEL_ID

• Partitioning by LIST?

Partitioning Why When What and How
36

Hotels Table Partitioning

• Requirements:
– Very small

– No regular purging needs

– Mostly static; akin to reference data

– Can't be read only; since programs update them
regularly.

• Decision: No partitioning

Partitioning Why When What and How
37

Tablespace Decisions

• Partitions of a table can go to
– Individual tablespaces

– The same tablespace

• How do you decide?
– Too many tablespaces  too many datafiles  longer

checkpoints

Partitioning Why When What and How
38

Individual Tablespaces

• Tablespaces named in line with partitions, e.g.
RES0809 holds partition Y08M09 of
RESERVATION table.

• Easy to make the tablespace READ ONLY
• Easy to backup – backup only once
• Easy to ILM

Move datafiles to lower cost disks
ALTER DATABASE DATAFILE '/high_cost/…'
RENAME TO '/low_cost/…';

Partitioning Why When What and How
39

Combined Solution

• Create a tablespace for each period
– TS0809 for Sep '08

• Contains partitions Y08M09 for all tables –
RESERVATIONS, CHECKOUTS, …

• Partitions of the same period for all the tables are
usually marked read only
– If not possible, then this approach fails

Partitioning Why When What and How
40

Final Design

Y08M09

Y08M08

Y08M07

Y08M09

Y08M08

Y08M07

Y08M09

Y08M08

Y08M07

RESERVATIONS CHECKOUTS TRANSACTIONS

F1.dbf

F2.dbf

F1.dbf

F3.dbf

F6.dbf

F5.dbf

F4.dbf

F1.dbfTablespace TS0807

Tablespace TS0808

Partitioning Why When What and How
41

Backup

Y08M09

Y08M08

Y08M07

Y08M09

Y08M08

Y08M07

Y08M09

Y08M08

Y08M07

RESERVATIONS CHECKOUTS TRANSACTIONS

F1.dbf

F2.dbf

F1.dbf

F3.dbf

F6.dbf

F5.dbf

F4.dbf

F1.dbfTablespace TS0807

Tablespace TS0808

READ ONLY
backed up
only once

Partitioning Why When What and How
42

ILM

Y08M09

Y08M08

Y08M07

Y08M09

Y08M08

Y08M07

Y08M09

Y08M08

Y08M07

RESERVATIONS CHECKOUTS TRANSACTIONS

F1.dbf

F2.dbf

F1.dbf

F3.dbf

F6.dbf

F5.dbf

F4.dbf

F1.dbfTablespace TS0807

Tablespace TS0808

fastest

slowest

medium

Partitioning Why When What and How
43

Partitioning Tips

• List the objectives of partitioning, in the order of
priority

• Try to make the same partitioning for all related
tables

• Try to introduce new columns

• Avoid Global Indexes

Partitioning Why When What and How
44

Tips for Choosing Part Key

• Changeable columns do not automatically mean
they are not good for part key

• If partition ranges are wide enough, row movement
is less likely

• Row movement may not be that terrible, compared
to the benefits

Partitioning Why When What and How
45

Thank You!

My Blog: arup.blogspot.com
My Tweeter: arupnanda

Exadata Demystified 46

