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About this Session

• This is not an introduction to partitioning
– Will not cover syntax

• What type of partitioning
• When to use partitioning
• Why partition something
• How to use partitioning to overcome common 

challenges
• A complete case study to show how decisions are 

made
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When

• Overlap between Logical Modeling and Physical Design

• Last part of logical design and first part of physical design
• When should partitioning be used 

– In almost all the time for large tables

• There is no advantage in partitioning small tables, right?
– Wrong. In some cases small tables benefit too 

Logical PhysicalPartition
Design

Partitioning Why When What and How
3

Why? Common Reasons

• Easier Administration:
– Smaller chunks are more manageable 

– Rebuilding indexes partition-by-partition

– Data updates, does not need counters

• Performance:
– full table scans are actually partition scans

– Partitions can be joined to other partitions

– Latching
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More Important Causes

• Data Purging
– DELETEs are expensive – REDO and UNDO

– Partition drops are practically free

– Local indexes need not be rebuilt

• Archival
– Usual approach: insert into archival table select * from 

main table

– Partition exchange

– Local indexes need not be rebuilt
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Materialized Views Refreshes

• Partition Exchange
– Create a temp table

– Create Indexes, etc.

– When done, issue:
alter table T1 exchange 
partition sp11 with table 
tmp1;

– Data in TMP1 is available
sp41

sp31

sp21

sp11

sp32

sp22

sp12

sp33

sp13
partition p1

partition p2

partition p3

partition p4
Table

Temp
Table
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Backup Efficiency
• When a tablespace is read-only, it does not change 

and needs only one backup
– RMAN can skip it in backup

– Very useful in DW databases

– Reduces CPU cycles and disk space

• A tablespace can be read only when all partitions in 
them can be so

SQL> alter tablespace Y08M09 read only;
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Data Transfer

• Traditional Approach
insert into target select * from 
source@dblink

• Transportable Tablespace
– Make it read only

– Copy the file

– "Plug in" the file as a new tablespace into 
the target database

– Can also be cross-platform

Source Target

TS1
TST

TS1
TST
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Information Lifecycle Management
• When data is accessed less frequently, that can 

be moved to a slower and cheaper storage, e.g. 
from DMX to SATA

• Two options:
1. Create a tablespace ARC_TS on cheaper 

disks
ALTER TABLE TableName MOVE 

PARTITION Y07M08 TABLESPACE 
ARC_TS;
Reads will be allowed; but not writes

2. ASM Approach
ALTER DISKGROUP DROP DISK … ADD DISK 

…
Fully available

Fast
Disk

Slow
Disk

TS1 ARC_TS
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Index Blocks Too Hot to Handle

• Consider an index on RES_ID, 
or CK_ID – a monotonically 
increasing number

• It may make a handful of leaf 
blocks experience severe 
contention

• This hot area shifts as the 
access patterns change

9 11

10

12

13

14
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Hash Partitioned Index

• Index Can be hash-partitioned, regardless of the partitioning status of 
the table 
create index IN_RES_01 on RES (RES_ID) global 

partition by hash (RES_ID)

partitions 8

• Table RES is un-partitioned; while index is partitioned.

• This creates multiple segments for the same index, forcing index 
blocks to be spread on many branches

• Can be rebuilt:
alter index IN_RES_01 rebuild partition <PartName>;

• Can be moved, renamed, etc.
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How to Decide

• First, decide on the objectives of partitioning. Multiple 
objectives possible

• Objectives
– Data Purging

– Data Archival

– Performance

– Improving Backups

– Data Movement

– Ease of Administration

– Different Type of Storage

Assign priorities to 
each of these 
objectives

Partitioning Why When What and How
12



Global-vs-Local Index

• Whenever possible, use local index

• In Primary Key (or Unique) Indexes:
– If part column is a part of the PK – local is possible and should be 

used

– e.g. RES table. PK – (RES_DT, RES_ID) and part key is 
(RES_DT)

• If not, try to include the column in PKs
– E.g. if RES_ID was the PK of RES, can you make it (RES_DT, 

RES_ID)?

• Ask some hard design questions
– Do you really need a PK constraint in the DW?
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Case Study

• Large Hotel Company

• Fictitious; any resemblance to real or fictional 
entities is purely coincidental
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Background

• Hotel reservations made for future dates

• When guests check out, the CHECKOUTS table is 
populated

• RESERVATIONS has RES_DT
– Is always in future (up to three years)

• CHECKOUTS has CK_DT
– Is always present or past.

Partitioning Why When What and How
15

Thought Process

• Q: How will the tables be purged?

• A: Reservations are deleted 3 months after they are past. 
They are not deleted when cancelled.

– Checkouts are deleted after 18 months.

• Decision:
– Since the deletion strategy is based on time, Range 

Partitioning is the choice with one partition per month.
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Column

• Since deletion is based on RES_DT and CK_DT, 
those columns were chosen as partitioning key for 
the respective tables

• Scripts:
create table reservations (…)

partition by range (res_dt) (

partition Y08M02 values less than 
(to_date('2008-03-01','yyyy-mm-dd')),

partition PMAX values less than (MAXVALUE)

)
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Access Patterns

• Q: Will checkouts within last 18 months be uniformly
accessed?
– A: No. Data <= 3 months is heavily accessed. 4-9 

months is light; 9+ is rarely accessed.

• Decision:
– Use Information Lifecycle Management to save storage 

cost.
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Access Types

• Q: Is it possible that data in past months can 
change?
– A: Yes, within 3 months to make adjustments.

• Q: How likely that it will change?
– A: Infrequent; but it does happen. 3+ months: very rare.

• Q: How about Reservations?
– A: They can change any time for the future.

• Decision: Make partitions read only.
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Partitioning 1st Pass

RESERVATIONS

RES_ID 
UPD_DT
RES_DT 
GST_IDFK

CHECKOUTS

CK_ID 
CK_DT
UPD_DT
FOLIO_ID FK

FOLIOS

FOLIO_ID 
FOLIO_DT
RES_ID

GUESTS

GST_ID 
GST_NAME

TRANSACTIONS

FOLIO_ID 
TRAN_ID
TRANS_DT

No FOLIO_DT column

Part
Part

Part
Part
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Column Add for Partitioning

RESERVATIONS

RES_ID 
UPD_DT
RES_DT 
GST_IDFK

CHECKOUTS

CK_ID 
CK_DT
UPD_DT
FOLIO_ID FK

FOLIOS

FOLIO_ID 
FOLIO_DT
RES_ID

GUESTS

GST_ID 
GST_NAME

TRANSACTIONS

FOLIO_ID 
TRAN_ID
TRANS_DT
FOLIO_DT

Part
Part

Part

Part

FOLIO_DT column was 
addedPartitioning Why When What and How
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Problem

• Purge on CHECKOUTS, FOLIOS and 
TRANSACTIONS is based on CK_DT, not 
FOLIO_DT

• FOLIO_DT is the date of creation of the record; 
CK_DT is updated date

• The difference could be months; so, purging can't 
be done on FOLIO_DT

• Solution: Partitioning Key = CK_DT

• Add CK_DT to other tables
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2nd Pass

RESERVATIONS

RES_ID 
UPD_DT
RES_DT 
GST_IDFK

CHECKOUTS

CK_ID 
CK_DT
UPD_DT
FOLIO_ID FK

FOLIO

FOLIO_ID 
FOLIO_DT
RES_ID FK

CK_DT

GUESTS

GST_ID 
GST_NAME

TRANSACTIONS

FOLIO_ID FK

TRAN_ID 
TRANS_DT
CK_DT

CK_DT column 
was added

Part
Part

Part Part
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Problems after 2nd Pass

• #1 FOLIOS records created at Check-in
– CK_DT is updated at Check-out; the record may move 

to a different partition

– Decision = Acceptable

• #2 CK_DT will not be known at Check-in; so value 
will be NULL. Which partition?
– Decision = not NULL; set to tentative date

– against Relational Database Puritan Design
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Problems, cont..

• #3: TRANS table may have many rows; updating 
CK_DT may impact negatively
– Decision: Remove CK_DT from TRANS

– Partition on TRANS_DT

– Fact: TRANS_DT <= CK_DT

– So, when partition SEP08 of CHECKOUTS is dropped, 
SEP08 partition of TRANSACTIONS can be dropped 
too

– Just because part columns are different, purge does not 
have to different.
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3rd Pass

RESERVATIONS

RES_ID 
UPD_DT
RES_DT 
GST_IDFK

CHECKOUTS

CK_ID 
CK_DT
UPD_DT
FOLIO_ID FK

CK_DT

FOLIO

FOLIO_ID 
FOLIO_DT
RES_ID FK

CK_DT

GUESTS

GST_ID 
GST_NAME

TRANSACTIONS

FOLIO_ID FK

TRAN_ID 
TRANS_DT

CK_DT column 
was removed

Part

Part

Part
Part
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Scenario #1

• Reservation made on Aug 31st for Sep 30th checking 
out tentatively on Oct 1st
– Records Created:

Table        Part Key UPD_DT Partition

RESERVATIONS 09/30    08/31  SEP08

• Guest checks in on 9/30
FOLIOS       10/01    09/30  OCT08 

• Checks out on Oct 2nd:
CHECKOUTS    10/02    10/02  OCT08

TRANSACTIONS 10/02    10/02  OCT08
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CK_DT in RES?

• New Thought:
– Why not partition RESERVATIONS table by CK_DT as 

well?

• CK_DT column not present in RES
– But can be calculated; since we know the number of 

days of stay.

• Tentative Checkout Date column added
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4th Pass

RESERVATIONS

RES_ID 
UPD_DT
CK_DT
RES_DT 
GST_IDFK

CHECKOUTS

CK_ID 
CK_DT
UPD_DT
FOLIO_ID FK

CK_DT

FOLIO

FOLIO_ID 
FOLIO_DT
RES_ID FK

CK_DT

GUESTS

GST_ID 
GST_NAME

TRANSACTIONS

FOLIO_ID FK

TRAN_ID 
TRANS_DT

CK_DT 
column 
added

Part

Part

Part
Part
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Scenario #1 Modified

• Reservation made on Aug 31st for Sep 30th checking 
out tentatively on Oct 1st
– Records Created:

Table        Part Key UPD_DT Partition
RESERVATIONS 10/01    08/31  OCT08

• Guest checks in on 9/30
FOLIOS       10/01    09/30  OCT08 

• Checks out on Oct 2nd:
CHECKOUTS    10/02    10/02  OCT08
TRANSACTIONS 10/02    10/02  OCT08
RESERVATIONS 10/02    10/02  OCT08

New record

New record

New record

Update

Partitioning Why When What and How
30



Scenario #2

• Guest checks out on Nov 1st, instead of Oct 1st:

– Records Created:
Table        Part Key UPD_DT Partition
RESERVATIONS 10/01    08/31  OCT08

• Guest checks in on 9/30
FOLIOS       10/01    09/30  OCT08 

• Checks out on Nov 1st:
CHECKOUTS    11/01    11/01  NOV08
TRANSACTIONS 11/01    11/01  NOV08
RESERVATIONS 11/01    11/01  NOV08
FOLIOS       11/01    11/01  NOV08

New record

New record

New record

Row Migration

Row Migration
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New Column for Partitioning

• Added a column CK_DT

• Two Options for Populating:
– Apps populate it (possible since this is still in design)

• Apps will have to change

• Guaranteed logic

– Triggers populate (retrofitting partitioning after the apps 
are written)

• No change to apps

• No guarantee of logic
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11g Reference Partitions

• No need to have a new 
column

• Partitions are defined on 
Foreign Keys, which 
follow the parent's 
partitioning scheme.

• One of the most useful 
innovations in 11g

create table trans (
trans_id number not null,
folio_id number not null,
trans_date date not null,
amt number,
constraint fk_trans_01

foreign key (folio_id)
references folios

)
partition by reference

(fk_trans_01);
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Non-Range Cases

• GUESTS table is unique:
– 500 million+ records

– No purge requirement

– No logical grouping of data. GUEST_ID is just a 
meaningless number

– All dependent tables are accessed concurrently, e.g. 
GUESTS and ADDRESSES are joined by GUEST_ID

• No meaningful range partitions possible
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Hash Partitions

• GUESTS table is hash partitioned on GUEST_ID

• Number of Parts: in such a way that each partition 
holds 2 million records

• Number of partitions must be a power of 2. So 256 
was chosen.

• All dependent tables like ADDRESSES were also 
partitioned by hash (guest_id)
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Hotels Tables

• HOTELS table holds the names of the hotels

• Several dependent tables exist – DESCRIPTIONS, 
AMENITIES, etc. – all joined to HOTELS by 
HOTEL_ID

• Partitioning by LIST?
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Hotels Table Partitioning

• Requirements:
– Very small

– No regular purging needs

– Mostly static; akin to reference data

– Can't be read only; since programs update them 
regularly.

• Decision: No partitioning
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Tablespace Decisions

• Partitions of a table can go to
– Individual tablespaces

– The same tablespace

• How do you decide?
– Too many tablespaces  too many datafiles  longer 

checkpoints
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Individual Tablespaces

• Tablespaces named in line with partitions, e.g. 
RES0809 holds partition Y08M09 of 
RESERVATION table.

• Easy to make the tablespace READ ONLY
• Easy to backup – backup only once
• Easy to ILM

Move datafiles to lower cost disks
ALTER DATABASE DATAFILE '/high_cost/…' 
RENAME TO '/low_cost/…';
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Combined Solution

• Create a tablespace for each period
– TS0809 for Sep '08

• Contains partitions Y08M09 for all tables –
RESERVATIONS, CHECKOUTS, …

• Partitions of the same period for all the tables are 
usually marked read only
– If not possible, then this approach fails
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Final Design

Y08M09

Y08M08

Y08M07

Y08M09

Y08M08

Y08M07

Y08M09

Y08M08

Y08M07

RESERVATIONS CHECKOUTS TRANSACTIONS

F1.dbf

F2.dbf

F1.dbf

F3.dbf

F6.dbf

F5.dbf

F4.dbf

F1.dbfTablespace TS0807

Tablespace TS0808
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Backup

Y08M09

Y08M08

Y08M07

Y08M09

Y08M08

Y08M07

Y08M09

Y08M08

Y08M07

RESERVATIONS CHECKOUTS TRANSACTIONS

F1.dbf

F2.dbf

F1.dbf

F3.dbf

F6.dbf

F5.dbf

F4.dbf

F1.dbfTablespace TS0807

Tablespace TS0808

READ ONLY
backed up 
only once
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ILM

Y08M09

Y08M08

Y08M07

Y08M09

Y08M08

Y08M07

Y08M09

Y08M08

Y08M07

RESERVATIONS CHECKOUTS TRANSACTIONS

F1.dbf

F2.dbf

F1.dbf

F3.dbf

F6.dbf

F5.dbf

F4.dbf

F1.dbfTablespace TS0807

Tablespace TS0808

fastest

slowest

medium
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Partitioning Tips

• List the objectives of partitioning, in the order of 
priority

• Try to make the same partitioning for all related 
tables

• Try to introduce new columns

• Avoid Global Indexes
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Tips for Choosing Part Key

• Changeable columns do not automatically mean 
they are not good for part key

• If partition ranges are wide enough, row movement 
is less likely

• Row movement may not be that terrible, compared 
to the benefits
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Thank You!

My Blog: arup.blogspot.com
My Tweeter: arupnanda
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