
<Insert Picture Here>

Edition-based Redefinition:

 Testing Live Application Upgrades (Without

 Actually Being Live)

Melanie Caffrey

Senior Development Manager, Unbreakable Linux Network, Oracle Linux

The following is intended to outline our general

product direction. It is intended for information

purposes only, and may not be incorporated into any

contract. It is not a commitment to deliver any

material, code, or functionality, and should not be

relied upon in making purchasing decisions.

The development, release, and timing of any

features or functionality described for Oracle’s

products remain at the sole discretion of Oracle.

What Problem Are We Trying to Solve?

PL/SQL Application Upgrades that

Require Downtime (and Testing …)

• Not possible to obtain long (or frequent) downtime

windows

• The testing window during downtime can be

inadequate

• An upgraded application can be difficult to back out

of, if necessary

Edition-based Redefinition:

Edition Object Type and EBR Features

By the way, it’s free!

• Not to keep you in suspense…

• EBR is not a priced option

• Nor is it even restricted to just the Enterprise Edition

• Available with any licensed version of

Oracle Database 11g Release 2, or later

Edition Object Type
• 11.2 introduces the new object type, edition – each

edition can have its own private occurrence of “the

same” object

• A database must have at least one edition (by default

this is ora$base)

• You create a new edition as the child of an existing

edition (and an edition can’t have more than one

child)

Edition-based Redefinition Features

• Edition

• Editioning View

• Cross-edition Trigger

• Code changes are

installed in the privacy

of a new edition

(namespace addition)

• Data changes can write

to new columns or

tables (and not be seen

by old edition)

Edition-based Redefinition Features

• Edition

• Editioning View

• Cross-edition Trigger

• Exposes a different

projection of a table into

each edition to allow

each to see just its own

columns

Edition-based Redefinition Features

• Edition

• Editioning View

• Cross-edition Trigger

• Propagates data

changes made by the old

edition into the new

edition’s columns, or (in

hot-rollover) vice-versa

Ready Your Application for

Editions and EBR

Editionable and non-editionable object types
• Not all object types are editionable

• Synonyms, views, and PL/SQL units of all kinds (including triggers,

procedures and packages) are editionable

• Objects of all other object types – for example, tables – are non-

editionable

• However, you can achieve the goal of table-editioning with an

editioning view. You version the structure of a table manually.

• Instead of changing a column, you add a replacement column.

• Then you rely on the fact that a view is editionable

Pre-Upgrade implementation model

Trigger

Procedure

Function

Package

Ora$base edition
– App v1

Edition Setup
 As of 11gR2, each database has at least one edition

 CONN / AS SYSDBA

 SELECT property_value

 FROM database_properties

 WHERE property_name = 'DEFAULT_EDITION';

 PROPERTY_VALUE

 ORA$BASE

Edition Setup
• You need the CREATE ANY EDITION or DROP ANY EDITION

system privilege to create or drop editions

 SQL> create edition uln_edition_2

 2 as child of ora$base;

Edition created.

 SQL> select * from dba_editions;

 EDITION_NAME PARENT_EDITION_NAME USA

 ---------------------- ------------------------ ---

 ORA$BASE YES

 ULN_EDITION_2 ORA$BASE YES

Editions: implementation model

Object_4

Object_3

Object_2

Object_1

Object_2

Object_1

Ora$base edition
– App v1

ULN_Edition_2 edition
– App v2

is child of

(inherited)

(inherited)

(inherited)

(inherited)

Object_4

Object_3

Edition Setup
• Alter your application user to be editions-enabled and grant them

the ability to use the newly-created edition

SQL> alter user app_user

 2 enable editions;

User altered.

SQL> grant use

 2 on edition uln_edition_2

 3 to app_user;

 Grant succeeded.

Switch to the New Edition to Make Code

Changes
 CONN uln_app_user/pw

 SQL> alter session

 2 set edition = uln_edition_2;

 Session altered.

 SQL> SELECT SYS_CONTEXT('USERENV', 'SESSION_EDITION_NAME')

 2 AS edition FROM dual;

 EDITION

 --

 ULN_EDITION_2

Editioning Views

• Physical Table = Scott.Emp_T

• Logical View = Scott.Emp

• Ora$Base.Scott.Emp <> ULN_Edition_2.Scott.Emp

• If Scott owns Emp_T, then Scott must also own Emp

• All Application code refers only to Scott.Emp (NOT

Scott.Emp_T)

• Drop all Triggers from Emp_T and Recreate them on

Emp

Readying the application for editions
• “Slide in” an editioning view in front of every table

• Rename each table you want to edition (e.g. rpm becomes

rpm_t (to distinguish it now as a table, _t, as opposed to an

editioning view, which rpm will become))

• alter table rpm rename to rpm_t;

• Create an editioning view for each table that has the same

name that the table originally had

• create editioning view rpm as select * from rpm_t;

• NOTE: You will need an outage to create your editioning

views.

Readying the application for editions
• Alter your real and actual tables as needed:

• alter table rpm_t add (vers1 number(10), vers2 number(10)

…. rel1 number(10), rel2 number(10) …);

• “Move” triggers to the editioning views … (next slide)

• Revoke privileges from the tables and grant them to the

editioning views

• Move VPD policies to the editioning views

Readying the application for editions
• Of course,

• All indexes on the original RPM table remain valid but

User_Ind_Columns now shows the new values for Table_Name and

Column_Name

• All constraints (foreign key and so on) on the original RPM remain in

force for RPM_T

• However,

• Triggers don’t fully “follow” the rename

• Just drop the trigger and re-run the original create trigger statement

to “move” the trigger onto the editioning view

Editions: implementation model

Object_4

Object_3

Object_2

Object_1

Object_4*

Object_3*

Object_2

Object_1

Pre-upgrade
edition

Post-upgrade
edition

is child of

(actual)

(actual)

(inherited)

(inherited)

Editions: implementation model

Object_4

Object_3

Object_2

Object_1

(Object_4*)

Object_2

Object_1

Pre-upgrade
edition

Post-upgrade
edition

is child of

(dropped)

(actual)

(inherited)

(inherited)

Object_3*

Many, if not Most, of Your Application

Upgrades Can Be Completed Just By

Using Editions and Editioning Views

Here is Where it Starts To Get Tricky …

What if DML cannot stop during upgrade?
• If the upgrade needs to change the structure that stores

transactional data – like the RPM data customers use with

ULN – then the installation of values into the replacement

columns must keep pace with these changes

• Triggers have the ideal properties to do this safely

• Each trigger must fire appropriately to propagate changes

to pre-upgrade columns into the post-upgrade columns –

and vice versa

The solution: crossedition triggers
• Crossedition triggers directly access the table.

• The 11gR2 crossedition trigger has special firing rules

• You create crossedition triggers in the Post_Upgrade (child) edition

• The paradigm is: don’t interfere with the Pre_Upgrade (parent)
edition

• The firing rules assume that

• Pre-upgrade column values are changed – by ordinary application

code – only by sessions using the Pre_Upgrade (parent) edition

• Post-upgrade column values are changed only by sessions using the

Post_Upgrade (child) edition

The solution: crossedition triggers
• A forward crossedition trigger is fired by application DML issued

by sessions using the Pre_Upgrade (parent) edition

• A reverse crossedition trigger is fired by application DML issued

by sessions using the Post_Upgrade (child) edition

• Both types of crossedition triggers are owned by the

Post_Upgrade (child) edition

(even though, for a forward crossedition trigger, the session that

fires it is using the Pre_Upgrade (parent) edition)

<Insert Picture Here>

Case study –

The edition-based redefinition

exercise proper

Case study
• The Oracle Linux RPM packages, downloadable when

Unbreakable Linux Network Support is purchased, are stored as

four components in four columns:

• It is necessary to parse those “dot-delimited” parts of the version

and release strings into their own separate components in order

to evaluate and compare one kernel RPM to another, to

determine which is more recent

Name Epoch Version Release

kernel (null) 2.6.32 100.21.1.el5

kernel (null) 2.6.18 92.1.6.el5

Case study (continued)
• So we want a uniform representation with as many version-

related and release-related columns as necessary (for purposes

of brevity, this example includes only versions and releases with

four parts):

• This way, instead of comparing Varchar2 strings, we can

compare individual numeric values

Name Epoch V1 V2 V3 V4 R1 R2 R3 R4

kernel (null) 2 6 32 (0) 100 21 1 el5 (000)

kernel (null) 2 6 18 (0) 92 1 6 el5 (000)

Maintain_RPMs RPM

Pre_Upgrade (ora$base)

Starting point.
Pre-upgrade app in normal use.

ID Name Epoch Ver Rel

1 kernel (null) … …

2 kernel (null) … …

RPM_T

Maintain_RPMs RPM

Pre_Upgrade (ora$base)

Starting point.
Pre-upgrade app in normal use.

edition

editioning view

table

PL/SQL package
ID Name Epoch Ver Rel

1 kernel (null) … …

2 kernel (null) … …

RPM_T

Post_Upgrade (uln_edition_2)

Pre_Upgrade (ora$base)

RPM Maintain_RPMs Start the edition-based
redefinition exercise.

Create the new edition as the
child of the existing one.

This is fast because initially all
the editioned objects are just
inherited.

Maintain_RPMs RPM

ID Name Epoch Ver Rel

1 kernel (null) … …

2 kernel (null) … …

RPM_T

Pre_Upgrade (ora$base)

Create the replacement
columns in the underlying
table.

The editioning view shields
the app from this change.

Post_Upgrade (uln_edition_2)

RPM Maintain_RPMs

Maintain_RPMs RPM

ID Vers. …

RPM_T

Ver1 Ver2

Altering Your Underlying Table(s)

• Put your replacement columns in place
SQL> alter table rpm_t add

 2 (ver1 number, ver2 number, ver3 number, ver4 number,

 3 rel1 number, rel2 number, rel3 number, rel4 number);

Table altered.

 (You can successfully avoid the error message, ORA-00054:

resource busy and acquire with NOWAIT specified)

• Prepare to migrate the relevant data to these newly added

columns

• You will do so in your child (next version) edition
SQL> alter session set edition = uln_edition_2;

Post_Upgrade (uln_edition_2)

Pre_Upgrade (ora$base)

Maintain_RPMs RPM

ID Vers. …

RPM_T

Ver1 Ver2

Change RPM DML code to
select the new columns.

Change Maintain_RPMs to
implement the new behavior.

Maintain_RPMs RPM

ID Vers. …

RPM_T

Ver1 Ver2

Post_Upgrade (uln_edition_2)

Pre_Upgrade (ora$base)

Maintain_RPMs RPM

Fwd Xed

Create the forward crossedition
trigger.

Maintain_RPMs RPM

crossedition trigger

Create Your Forward Cross-edition Trigger

 Your cross-edition trigger is necessary for ongoing data

migration/population during an online application upgrade
SQL> create or replace trigger rpm_fwdxedition

 2 before insert or update of version, release on rpm_t

 3 for each row

 4 forward crossedition

 5 declare

 6 v_verstring VARCHAR2(50) := ‘.’||:new.version||’.’;

 7 v_relstring VARCHAR2(50) := ‘.’||:new.release||’.’;

 8 begin

 9 :new.ver1 := substr(v_verstring,

 10 instr(v_verstring,'.',1,1)+1, instr(v_verstring,'.',1,2) -

 11 instr(v_verstring,'.',1,1)-1);

 12 …

Create Your Forward Cross-edition Trigger
 21 :new.rel1 := substr(v_relstring,

 22 instr(v_relstring,'.',1,1)+1, instr(v_relstring,'.',1,2) -

 23 instr(v_relstring,'.',1,1)-1);

 24 …

 33 end;

 34 /

Trigger created.

ID Vers. …

RPM_T

Ver1 Ver2

Post_Upgrade (uln_edition_2)

Pre_Upgrade (ora$base)

Maintain_RPMs RPM

Fwd Xed
Rvrs Xed

Create the reverse crossedition
trigger.

Maintain_RPMs RPM

Create your Reverse Cross-edition Trigger
• Your reverse cross-edition trigger is necessary for hot rollover

purposes
SQL> create or replace trigger rpm_revxedition

 2 before insert or update of ver1, ver2, ver3, ver4, rel1, rel2,

 3 rel3, rel4, on rpm_t

 4 for each row

 5 reverse crossedition

 6 begin

 7 :new.version :=

 8 rtrim(:new.ver1||’.’||:new.ver2||’.’||:new.ver3||’.’||

 9 :new.ver4, ‘.’);

 10 :new.release :=

 11 rtrim(:new.rel1||’.’||:new.rel2||’.’||:new.rel3||’.’||

 12 :new.rel4, ‘.’);

 13 end;

Rvrs Xed

ID Vers. …

RPM_T

Ver1 Ver2

Post_Upgrade (uln_edition_2)

Pre_Upgrade (ora$base)

Maintain_RPMs RPM

Fwd Xed

and

Transform

Apply the transform to the data
for the new app to use

Maintain_RPMs RPM

Transform Your Data for New Columns
• Get the data from the old columns into the new columns

• You could do the following

SQL> update rpm_t

 2 set version = version,

 3 release = release;

• Beware: This action locks the entire table

• Consider DBMS_PARALLEL_EXECUTE if your tables are large

SQL> begin

 2 dbms_parallel_execute.create_task(

 3 'update rpm_t');

 4 dbms_parallel_execute.create_chunks_by_rowid

 5 (task_name => 'update rpm_t',

 6 table_owner => user,

 7 table_name => ‘RPM_T',

Transform Your Data for New Columns
 8 by_row => false,

 9 chunk_size => 10);

 10 end;

 11 /

PL/SQL procedure successfully completed.

• Running the task

SQL> begin

 2 dbms_parallel_execute.run_task

 3 (task_name => 'update rpm_t',

 4 sql_stmt => 'update rpm_t

 5 set version = version, release = release

 6 where rowid between :start_id and :end_id',

 7 language_flag => DBMS_SQL.NATIVE,

 8 parallel_level => 2);

 9 end;

Transform Your Data for New Columns
• When satisifed with the results, simply drop the task

SQL> begin

 2 dbms_parallel_execute.drop_task('update rpm_t');

 3 end;

 4 /

PL/SQL procedure successfully completed.

Post_Upgrade (uln_edition_2)

Pre_Upgrade (ora$base)

Maintain_RPMs RPM

Fwd Xed
Rvrs Xed

ID Vers. …

RPM_T

Ver1 Ver2

Hot rollover period.

Maintain_RPMs RPM

Maintain_RPMs RPM

Post_Upgrade (uln_edition_2)

Pre_Upgrade (ora$base)

Maintain_RPMs RPM

ID Vers. …

RPM_T

Ver1 Ver2

The Pre_Upgrade edition
is retired.

The edition-based redefinition
exercise is complete.

Move Your End-users to the New Edition
 Set a logon trigger for sessions to use the new edition once they log

on or reconnect

SQL> grant use on edition uln_edition_2 to public;

Grant succeeded.

SQL> create or replace trigger set_edition_on_logon

 2 after logon on database

 3 begin

 4 dbms_session.set_edition_deferred(‘ULN_EDITION_2');

 5 end;

 6 /

Trigger created.

Move Your End-users to the New Edition
 Or … if you are using a connection pool

SQL> begin

 dbms_epg.set_dad_attribute('APEX', 'database-edition',

 ULN_EDITION_2');

 end; --If using the PL/SQL Embedded Gateway

In your dads.conf file: PlsqlDatabaseEdition*

 --If using the Oracle Apache Http Server

<Insert Picture Here>

Case study – continued

Rolling back the upgrade

Rolling back an online app upgrade
• Rolling back an application upgrade that’s been installed classically is

easy until you go live with the post-upgrade application

• Presumably you took a backup at the start of the offline period and

you just restore to that

• But once you go live with the post-upgrade application, you can’t

rollback to the pre-upgrade one

• If you did this, you’d lose transactions made during the live use of

the post-upgrade application

• It’s just the same with online application upgrade

• Without a hot rollover, your grace-period ends when you go live with

the post-upgrade application

Rolling back an online app upgrade
• If you haven’t gone live with the post-upgrade

application

• Drop the Post_Upgrade (child) edition (cascade)

• Set any new replacement columns you created unused

• At a convenient later time, recoup the space

EBR exercise vs offline upgrade:
incremental extra effort

Very often

e
d
itio

n
s

e
d
itio

n
in

g
 v

ie
w

s

fo
rw

a
rd

 c
ro

s
s
e
d
itio

n
 trig

g
e
rs

re
v
e
rs

e
 c

ro
s
s
e
d
itio

n
 trig

g
e
rs

P
ro

p
o
rtio

n
a
l o

c
c
u
rre

n
c
e

P
Change only editioned objects

P P
Make only additive table changes Often

Change only non-transaction tables
P P

Less Often

P P P
Change the structure of transaction tables non-additively Infrequent

P P P P
Support hot rollover Very Seldom

In Summary
• Online application upgrade is a high-availability sub-goal

• Edition-based redefinition helps make that possible

• Not for the ease of the developer or administrator – definitely for

the convenience of the end-user

• If as-close-to-zero downtime is one of your company mandates,

then you can easily be brought closer with EBR

• And best of all, it’s available to any user of any version of Oracle

11gR2

<Insert Picture Here>

A Q &

