
Application Express

Dynamic Duo
Josh Millinger

Niantic Systems

info@nianticsystems.com

Niantic Systems

June 7, 2011



Speaker Qualifications

• Josh Millinger, President, Niantic Systems, LLC

• CS degrees from UW-Madison, Johns Hopkins

• Former Oracle Sales Consultant and Founder of the Oracle 
Partner Technology Center

• 15+ Years of Oracle Web Development Experience

• Have Been Developing with and Teaching ApEx Since Well • Have Been Developing with and Teaching ApEx Since Well 
Before It Was Even Released as a Product! 

• Started with Excel Migration as first project

• Presenter at NYOUG, IOUG, ODTUG, Oracle OpenWorld

info@nianticsystems.com



Niantic Systems

• Oracle Consulting with a Focus on Application Express

• Application Express Training

• Oracle Forms/Reports

• Discoverer

• Mentoring• Mentoring

• Forms/Reports to Apex Migration

• Customers in the Federal, Commercial, Healthcare, 

Higher Education, Financial, and Construction verticals

info@nianticsystems.com



Agenda

• Define Dynamic SQL

• When to use Dynamic SQL

• Using bind variables to secure SQL

• Using with Interactive Reports

info@nianticsystems.com



Agenda

• Javascript Overview

• Dynamic Action Overview

• Demonstration

info@nianticsystems.com



What is Dynamic SQL?

info@nianticsystems.com



What is Dynamic SQL?

Dynamic SQL is a programming technique that enables you to build SQL 
statements dynamically at runtime. You can create more general purpose, 
flexible applications by using dynamic SQL because the full text of a SQL 
statement may be unknown at compilation. For example, dynamic SQL lets 
you create a procedure that operates on a table whose name is not known 
until runtime. 

info@nianticsystems.com

You can use dynamic SQL to create applications that execute dynamic queries, 
whose full text is not known until runtime. Many types of applications need to 
use dynamic queries, including:

•Applications that allow users to input or choose query search or sorting criteria at runtime 
•Applications that allow users to input or choose optimizer hints at run time 
•Applications that query a database where the data definitions of tables are constantly changing 
•Applications that query a database where new tables are created often 

Reference: Oracle Application Developers Guide - Fundamentals



Static vs. Dynamic

Static:

select patient, service_date, exam from exams

In this case the SQL statement is well known as design time

Dynamic:

info@nianticsystems.com

Dynamic:

declare

l_sql varchar2(1000);

begin

l_sql := ‘select ‘ || :PX_COLNAME||’ from exams’;

return l_sql;

end;

In this case, the column to select is user defined at runtime



When do I need to use Dynamic SQL

declare

info@nianticsystems.com

declare

l_sql varchar2(10000);

begin

l_sql := ‘select col1, col2 from jobs where 1=1 ‘;

..filters here…

l_sql := l_sql || ‘ order by ‘|| v(‘P1_ORDERBY’) ;

return l_sql;

end;



When do I need to use Dynamic SQL - Example

info@nianticsystems.com



Region Type Definition

info@nianticsystems.com



Where do I create Dynamic SQL?

• When creating a complex function to generate 
dynamic SQL, it is best to place function in 
database either standalone or in package

– Easier to edit

– Creates ability to reuse it on other pages

• Call function through normal “return” syntax

info@nianticsystems.com

• Call function through normal “return” syntax

return my_pkg.get_page25_query(:P25_ITEMNAME);



Apex Parsing

• If the builder cannot parse the sql statement you 
will have to select:

Use Generic Column Names (parse query at runtime only)

info@nianticsystems.com

Best Practice:  For performance and productivity purposes, change the 

maximum number of colums to something equal or slightly higher than 

maximum number of possible columns

Warning:  You might get error if column number greater than the number of 

columns in query is higher on Report Attributes Page



Dynamic SQL and Charts

Dynamic SQL can also be used in:

• Charts

• List of Values

info@nianticsystems.com



How to debug

• When using Dynamic SQL it is important to be 
able to see what query is being generated

• Use “DEBUG” to help you determine the query

declare

l_sql varchar2(1000);

info@nianticsystems.com

l_sql varchar2(1000);

begin

l_sql := ‘select ‘ || :PX_COLNAME||’ from exams’;

apex_application.debug(‘My query is : ‘||l_sql);

return l_sql;

end;



Using bind variables in Dynamic SQL

• When generating in database still use the :BINDVAR syntax

declare

l_sql varchar2(1000);

l_col varchar2(100);

begin

This will allow the optimizer to reuse execution plan

info@nianticsystems.com

begin

if v(‘P1_TEST’) = 1 then  l_col := ‘mycol1’ ; else l_col := ‘mycol2’; end if;

l_sql := ‘select ‘ || v(‘PX_COLNAME’)||’ from exams where id = :P1_ID ’;

apex_application.debug(‘My query is : ‘||l_sql);

return l_sql;

end;



Using bind variables in Dynamic SQL

• Prevent SQL Injection Attacks

• Take a block of code that generates a query

declare
q varchar2(4000); 

begin 
q := ‘select  * 

info@nianticsystems.com

q := ‘select  * 
from tasks 
where assigned = :APP_USER ';

if :P1_SEARCH is not NULL THEN
q := q || ' AND category   
= ' ||:P1_SEARCH ;

end if; 
return q;

end;



Using bind variables in Dynamic SQL

When a user provides “email” for P1_SEARCH our 
query will be:

select * 
from tasks 

info@nianticsystems.com

from tasks 
where assigned=:app_user
and category = ‘email’



Using bind variables in Dynamic SQL

…but when a user provides “email’ or ‘a’=‘a” for 
P1_SEARCH our query becomes

select * 
from tasks 

info@nianticsystems.com

from tasks 
where ….
and category = ‘email’ or 
‘a’ = ‘a’

…So never arbitrarily append user input into your 
application queries.



Interactive Reports

• Interactive Reports were introduced in version 3.0 

• They provide

– End users the ability to customize the data to their liking using controls 
such as column filters, aggregates, computations, groupings, etc.

• IR’s are based off a SQL query

• Limitation is SQL query HAS to be static

info@nianticsystems.com



Interactive Reports and Collections

• To overcome this limitation we use Collections

• Collections defined:
– Collections enable you to temporarily capture one or more nonscalar values. You can use 

collections to store rows and columns currently in session state so they can be accessed, 
manipulated, or processed during a user's specific session. You can think of a collection as a 
bucket in which you temporarily store and name rows of information (Apex Documentation)

– Useful when data is needed across page views as temporary tables won’t 

work

info@nianticsystems.com

work



Interactive Reports and Collections

1.  Create collection when the page renders

declare
l_sql varchar2(1000);
begin
if apex_collection.collection_exists(‘P25_ROWS’)
then
apex_collection.delete_collection(‘P25_ROWS’);

end if;

l_sql :=  my_pkg.get_my_query (:P1_VAR);  -- get the dynamic sql query here

info@nianticsystems.com

apex_collection.create_collection_from_query_b(‘P25_ROWS’,l_sql);  -- create the collection
end;

2.  Create Interactive Report from Collection

select col1, col2 

from my_table m,

apex_collections a

where m.id = a.c001

and a.collection_name = ‘P25_ROWS’



Dynamic Sql - Conclusion

• Dynamic SQL
• Is useful when a query not known at develop time

• Unknown table

• Unknown columns

• Unknowns sorting

• Can be used with Interactive Reports

• By using collection or other row collecting mechanism

info@nianticsystems.com

• By using collection or other row collecting mechanism

• Can be used with Reports, Charts, and LOV’s



Apex and Javascript

• Apex is reliant on Javascript
• Object Browser

• Builder  - Drag/Drop, Delete Confirmation

• apex.submit

• Hide/Show of relevant fields in Builder

• Region Selector

• Javascript can also be used by developers

info@nianticsystems.com

• Javascript can also be used by developers
• Allow for custom interactive actions on page

• Should not be confused with Java

• See previous presentation by Niantic for NYOUG



Apex and Javascript

• Developers use Javascript for
• Validations

• Computations and Calculations

• Dynamic Control of the GUI

• Alerts

• Confirm Boxes

• Region Selectors

info@nianticsystems.com

• Region Selectors

• Interactive Reports

• AJAX



Apex and Javascript

• Before Apex 4.0 Javascript would be either

• Placed in  .js file on filesystem

• Placed in HTML Header

• Placed in Page Template

• Placed on Page Zero

• Placed in Region on Page where needed

info@nianticsystems.com

• Placed in Region on Page where needed

• Would require manual creation of code

• Needed knowledge of how to code Javascript



Dynamic Actions

• Introduced in Apex 4.0

• Allow for declarative creation of Javascript

• Developers no longer need to be JS coders

• Wizard based and Re-entrant

• Created at Page Level

info@nianticsystems.com



Dynamic Actions

• Two types of Dynamic Actions

• Standard

• Advanced

info@nianticsystems.com



Dynamic Actions - Standard

• Selection Type:  Item, Region, jQuery or DOM Object

• Can be conditionally executed

info@nianticsystems.com



Dynamic Actions - Standard

• Action can  Hide/Show or Enable/Disable page elements

• Can create opposite False Action

• If Dynamic Action shows item when the condition is 
TRUE, then this created DA that hides item when FALSE

info@nianticsystems.com



Dynamic Actions - Standard

Select what elements are affected by TRUE/FALSE action

info@nianticsystems.com



Dynamic Actions - Advanced

Event Based

• Change of Value

• Losing Focus

• Mouse entering/leaving

• Page load/unload

• Scroll

info@nianticsystems.com

• Double Click

• Key Up/Down



Dynamic Actions - Advanced

Declare what action to take

• Clear

• Hide/Show

• Set Value

• Execute JS or PL/SQL

• Add remove classes

info@nianticsystems.com



Dynamic Actions – Code Generation

• Code is automatically generated for the page

• Can be seen when looking at page source

• Located at bottom of page

info@nianticsystems.com



Dynamic Actions – Conclusion

• Javascript is integral to Apex

• Previous to 4.0, manual coding was necessary

• Dynamic Actions allow for easy generation without coding

• Get opposite action for “free”

• Can extend with custom Javascript, PL/SQL, jQuery

• Makes everyone a Javascript Developer!

info@nianticsystems.com



Questions?

info@nianticsystems.com

Questions?

Topics for Next Time?



Thank You!

Josh Millinger

info@nianticsystems.com

Josh Millinger

jmillinger@nianticsystems.com

202.642.6845


