
Looping the Loop:

Different Ways of Working with

Recursive Structures

Dr. Paul Dorsey
Michael Rosenblum

Dulcian, Inc.

www.dulcian.com

NYOUG - June 7, 2011

Overview

Recursion

 Powerful modeling technique

 Can be used for a number of reasons

 Linked lists (contract versions)

 Storage of tree structures (organizational hierarchy)

Makes PL/SQL code more efficient

 Issues

Why is recursion underutilized?

 Is there anything new?

Pre-Requisites

This presentation assumes that:

 1. You know what a basic recursive table looks like.

 2. You have used the CONNECT BY clause.

 3. You can correctly place PRIOR in your code (at

least on the second try).

Simple Recursion

Not as useful as one might think:

Data values tend to change over time.

Those changes are “of interest” (meaning they

must be kept).

THING

Child of0..1

0..*

Pseudo-Recursion Model

 Alternative models to support “versions” – BAD IDEA

 Add Start Dates and End Dates everywhere.

 Place VERSIONING table off to the side of the THING table.

 Create generic THING/THING ASSOCIATION structure.

THING

THING

ASSOCIATION

1 < Child of 0..*

1 < Parent of 0..*

Hmm…

People are building incomprehensible

models.

Simple recursion is inadequate to model

business needs.

Is there an alternative?

YES!

Using Recursion

Business Case

System Requirements:

Organizational tree structure with 6 levels

 The tree changes over time.

 People are also parts of the tree (not just organizations)

 Scheduling future changes

 Reporting

 Historical reports should use all trees between Start Date

and End Date.

 Events roll up using the tree valid at the time of the event.

Basic Model

Tree TreeNode

Thing1 Thing2

1

0..*

0..*

0..*

0..1 0..1

0..1

0..*

Tree Class

Each object is a tree structure of a particular type

for a period of time.

Attributes:
 Name: Logical name for the tree – rarely used

 Description: Also a cool idea that is rarely ever used.

 StartDate and EndDate: Dates for which the tree is valid.

 Type: VERY important - type of the tree. In this example,

“FUNCTIONAL” or “GEOGRAPHIC”.

 Always include a Type attribute!

 Status: Current, Future, Past, Potential

Tree Node Class

 Each object is a node.

 Primarily a set of pointers to “Thing” classes.

 Can also be a simple Folder node that does not point to any

“thing” object.

 No Start/End Date attribute in this class.

 Time dependency is only at the tree level.

 Attribute:

 FolderName (populated only for a grouping folder)

Thing 1 / Thing 2 Classes

Represent the standard object classes in your

model

 Could be OrgUnit or Person classes

Demonstrate that you can have a tree with more

than one kind of thing in it

Model Pros and Cons

Model Strengths
 Each tree exists as its own recursive

structure.

 Query is a simple recursive query.

 No need to deal with dates in node

elements.

 Model pattern is reusable any time.

 Clear depiction of what is being

modeled

Model Limitations
 This model does not completely

enforce everything.

 Only one tree of a specific type can

be valid for any date range.

 Only specific types of Orgs are

allowed to be children of other

types of Orgs.

Model Extensions

Questions:

How can you manage scheduled changes to the

model (ones that did not yet happen)?

How can you correctly report over the desired period

of time?

Implementing Future Trees

 Create special LOG table

 Include complete description of the required change

 Define moment when the change should be applied

 Create AUDIT table to stores applied changes.

 Keep LOG table consistent

 Mutually exclusive future changes null themselves out.

 Meaningless future changes are automatically detected and removed.

 Apply changes using a database job, fired after midnight.

 Move successfully applied changes LOG AUDIT

 Unsuccessful changes raise alarms

Maintaining Future Changes

 Create special temporary “future tree” as clone of current

one.

 User must enter requested date (“Tree date”)

 Apply all previously scheduled changes to the “future tree”

 All changes are converted into an event in the LOG table

 Scheduled date = “Tree date”

 When editing the tree, the temporary tree is removed

 Concurrent future modifications:

 “Clone to the future” only part of the tree starting with the selected

node

 This root note (and all dependent nodes) must be locked until the

future tree is removed.

Time machine overview

Reasons to do it:

 Clear visibility of all changes and sequence of their

application

 Resolve all scheduling conflicts directly rather than

using some type of complex analysis.

Handling Data “as of now”

 Problem is purely performance-related.

 TreeDetail eventually grows to millions of rows.

 Requests become expensive.

 Usually there are a lot of requests about current information.

 Solution: “Current snapshot"

 De-normalized MView (each levels = separate column)

 Also include most often called data elements

 Refresh is done either by request or during the midnight

database job.

 A lot of indexes!

Handling Data Between Dates

 Reporting problem:

 There may be many valid hierarchies over a period of time.

 Concept:

 Log a full hierarchical rollup as of the moment of occurrence and exact

timestamp for every critical event.

 Quickly query which hierarchical chains were active.

 Solution to querying:

 Appendable de-normalized table (each level = one column)

 Shows the length of time that the specified hierarchical chain existed

 Appended any time that a scheduled change to the organizational tree is

being applied

Recursion in PL/SQL

Recursion in PL/SQL

Textbook example:

CREATE OR REPLACE FUNCTION f_factorial_nr

(in_nr INTEGER) RETURN NUMBER AS

BEGIN

IF in_nr in (0,1) THEN

RETURN 1;

ELSIF in_nr < 0 then

RETURN NULL;

ELSE

RETURN(in_nr * f_factorial_nr(in_nr-1));

END IF;

END;

Using Recursion

Wrong case!

 PL/SQL is rarely used for heavy mathematical tasks.

Correct case should be:

 Repetitive data-related processes

Always associated with recursive data structure

 Completely different set of issues

 Cursors

 Variables

 Transaction control

 Exception handling

Cursors in Recursion

Recursion in FOR-loops is a VERY BAD idea

All cursors are kept open until the end of the tree.

 Concurrent users create scores of cursors.

Keeping multiple versions of data is very resource

intensive.

Right idea:

 Bulk fetch into to the collection on each level

 Spin through the collection

Bad Idea

function f_LevelDown_tx (i_fk number) return varchar2 is

v_out_tx varchar2(32000);

begin

for c in (select * from emp where mgr = i_fk) loop

dbms_output.put_line(c.ename);

v_out_tx:=f_LevelDown_tx(c.empno);

if v_out_tx!='OK' then

raise_application_error(-20999,v_out_tx);

end if;

end loop;

return 'OK';

exception

when others then

return 'E:FK'||i_fk||'> error:'||sqlerrm;

end;

Good Idea

function f_LevelDown_tx (i_fk number) return varchar2 is

v_out_tx varchar2(32000);

type rec_tt is table of emp%rowtype;

v_tt rec_tt;

begin

select * bulk COLLECT into v_tt

from emp where mgr = i_fk;

if v_tt.count()>0 then

for i in v_tt.first..v_tt.last loop

v_out_tx:=f_LevelDown_tx(v_tt(i).empno);

...

end loop;

end if;

return 'OK';

...

end;

Variables

What is going on?

 All local variables exist only in the current scope.

 Two options to make variables visible:

 1. Passed down to the child call as input parameters

 2. Stored as global PL/SQL variables in a separate package

 Rule of thumb:

 If the value is used directly in the child and nowhere else, it is

a parameter

 if the same value could be used in multiple places, it is a

global variable

 Scalar type if the value can be overridden

 Collection type if multiple copies of the variable should be kept active

Example of Global Variables

...

for i in v_tt.first..v_tt.last loop

if main_pkg.v_process_tt(v_tt(i).deptno)!=

'Processing failed!'

then
v_out_tx:=f_LevelDown_tx(v_tt(i).empno);

end if;

if v_out_tx!='OK' then

main_pkg.v_process_tt(v_tt(i).deptno):=

'Processing failed!';

end if;

end loop;

...

Transaction Control

What is going on?

 If procedure is marked “autonomous transaction”

 each recursive call would also spawn another autonomous

transaction.

 all transaction-level resources would be separate for each

call

Rule of thumb:

 Try to avoid recursive autonomous transactions –

may be too resource intense

Exception Handling

 Two main issues:

 How to know precisely where an error occurred

 What to do after the problem is detected.

 Error logging

 Should be handled manually

 Add used-defined variables (such as chain of input parameters) to

Oracle’s error stack

 Error handling:

 Completely roll back changes to the moment before the recursive call.

 Good: much simpler and significantly less complex than a full cleanup

 Bad: May not be available in the case of explicit commits or autonomous

transactions as part of a recursion.

Exception Handling Example

-- Main caller

declare

v_tx varchar2(32000);

begin

savepoint beforeLoop;

begin

v_tx:=f_LevelDown_tx(7839);

-- business logic failure

if v_tx!='OK' then

rollback to savepoint beforeLoop;

end if;

exception

when others then
-- abnormal failure

rollback to savepoint beforeLoop;

raise;

end;

end;

CONNECT-BY

CONNECT BY

 Oracle’s method of working with recursive data:

select SYS_CONNECT_BY_PATH(empno,'|') path_tx,

CONNECT_BY_ROOT ename root_tx,

CONNECT_BY_ISCYCLE isCycle_yn,

CONNECT_BY_ISLEAF isLeaf_yn,

LEVEL level_nr,

a.*

from emp a

start with mgr is null

connect by nocycle mgr = prior empno

order siblings by ename

 Key elements:

 Clause to link the parent/child structure

 List of Oracle built-in functions

WHERE Clause

Beware of performance trap with WHERE-

clauses in the recursive query!

Business case:

Get all tree nodes belonging to a certain tree

Data volume:1.6 million nodes, 800 trees (2000

nodes per tree) up to 6 levels deep

 Indexes are created on all related columns (TreeNode

PK, TreeNode RFK, TreeNode FK).

Handling WHERE Clause

Simplest Version (bad)
select *

from TreeNode

where Tree_oid = :1

connect by TreeNode_rfk =

prior TreeNode_oid

start with

TreeNode_rfk is null

 Takes 2 minutes to run

 Reason: WHERE clause is applied

only AFTER the whole lookup is

finished all trees are processed

Better Version
select *

from TreeNode

where Tree_oid = :1

connect by TreeNode_rfk=

prior TreeNode_oid

start with

TreeNode_rfk is null

and Tree_oid=:1

 Much better - 0.08 seconds

 Reason: Only single tree is

processed

 WHERE clause is redundant.

Best Solution

select *

from TreeNode

connect by TreeNode_rfk = prior TreeNode_oid

start with TreeNode_rfk is null and Tree_oid = :1

No extra steps

Simple way of finding the root node

Parent/child link is done via indexed columns

Popular Alternative

select *

from (select *

from TreeNode

where and Tree_oid = :1)

connect by TreeNode_rfk = prior TreeNode_oid

start with TreeNode_rfk is null

 Internally rewritten to:

select *

from TreeNode

connect by TreeNode_rfk = prior TreeNode_oid

and Tree_oid = :1

start with TreeNode_rfk is null

and Tree_oid = :1

Joins (1)

 Seemingly direct approach:

Select nvl(r.fullName_tx,o.UnitName_tx) childName_tx,

d.*

from TreeNode d,

Person r,

OrgUnit o

where d.Person_oid = r.Person_oid (+)

and d.OrgUnit_oid = o.OrgUnit_oid (+)

and (d.Person_oid is null or d.role_cd = 'Primry')

connect by d.TreeNode_rfk = prior d.TreeNode_oid

start with d.TreeNode_rfk is null and d.Tree_oid = :1

Problems:

 Joins are applied BEFORE hierarchical walk-down

 Other parts of WHERE-clause – afterwards unnecessary calls!

Joins (2)

Select nvl(r.fullName_tx,o.UnitName_tx) childName_tx,

d.*

from

(select *

from TreeNode

connect by TreeNode_rfk = prior TreeNode_oid

start with TreeNode_rfk is null and Tree_oid = :1) d,

Person r,

OrgUnit o

where d.Person_oid = r.Person_oid (+)

and d.OrgUnit_oid = o.OrgUnit_oid (+)

and (d.Person_oid is null or d.role_cd = 'Primary')

Advantage:

 Clear separation of recursive and non-recursive structure

Common Table Expressions

(CTE)

Common Table Expressions

 Oracle’s way of working with recursions

 CONNECT BY

 Not part of standard SQL

 Supported only by small number of other vendors

 Everybody else

 “Common Table Expressions” (CTE)

 Part of standard SQL

 Supported by a number of vendors (SQL Server, MySQL, PostgreSQL)

 Surprise

 Oracle version 11g R2 - same mechanism introduced as “Recursive Sub-

query Factoring”

CTE Example

With employees (empno, name, mgr) as

(

-- anchor

select empno, ename, mgr

from emp

where mgr is null

union all

-- recursive block

select e.empno, e.ename, e.mgr

from emp e,

employees m

where m.empno = e.mgr

) search depth first by name set seq

select empno, name, mgr, seq

from employees

How does it work?

 Concept:

 Run the anchor part of the UNION ALL query to get root

elements.

 Pass a set of root elements to the second part of the query and

get the next set (second level) of records

 Repeat step 2 until no rows are accessed.

 Advantage:

 CTE works by SETs of rows, while CONNECT-BY works

row-by-row

 Practical aspect (in theory):

 Should significantly improve performance

 Higher level of flexibility in your SQL statements.

CTE vs. CONNECT BY

 CTE

 Can do everything that can be done by CONNECT BY, while the reverse

statement is not true.

 Provides “on the fly” calculation of results, while CONNECT-BY needs

everything to be pre-calculated.

 CONNECT-BY

 Very well optimized. CBO can build much more efficient plans for it.

 CONNECT-BY has built-in functions

 Keep in mind:

 In SQL Server, the engine is doing row-level processing “under the hood”!

 the real behavior may still be different.

 Conclusion:

 There is no good reason to use CTE at the current level of implementation.

Conclusions

Developers should not be afraid of hierarchical

data and coding structures!

 It is possible to effectively use them to solve

real-life problems.

The Oracle RDBMS environment is sometimes

too rich to blindly make architectural decisions.

Understanding all of the existing built-ins and

ways of internal query optimization can save you

from reinventing the wheel.

45 of 33

Contact Information

 Dr. Paul Dorsey – paul_dorsey@dulcian.com

 Michael Rosenblum – mrosenblum@dulcian.com

 Dulcian website - www.dulcian.com

Developer Advanced
Forms & Reports Designer

Handbook

Latest book:

Oracle PL/SQL for Dummies

Design Using UML
Object Modeling

