
Looping the Loop:

Different Ways of Working with

Recursive Structures

Dr. Paul Dorsey
Michael Rosenblum

Dulcian, Inc.

www.dulcian.com

NYOUG - June 7, 2011

Overview

Recursion

 Powerful modeling technique

 Can be used for a number of reasons

 Linked lists (contract versions)

 Storage of tree structures (organizational hierarchy)

Makes PL/SQL code more efficient

 Issues

Why is recursion underutilized?

 Is there anything new?

Pre-Requisites

This presentation assumes that:

 1. You know what a basic recursive table looks like.

 2. You have used the CONNECT BY clause.

 3. You can correctly place PRIOR in your code (at

least on the second try ).

Simple Recursion

Not as useful as one might think:

Data values tend to change over time.

Those changes are “of interest” (meaning they

must be kept).

THING

Child of0..1

0..*

Pseudo-Recursion Model

 Alternative models to support “versions” – BAD IDEA

 Add Start Dates and End Dates everywhere.

 Place VERSIONING table off to the side of the THING table.

 Create generic THING/THING ASSOCIATION structure.

THING

THING

ASSOCIATION

1 < Child of 0..*

1 < Parent of 0..*

Hmm…

People are building incomprehensible

models.

Simple recursion is inadequate to model

business needs.

Is there an alternative?

YES!

Using Recursion

Business Case

System Requirements:

Organizational tree structure with 6 levels

 The tree changes over time.

 People are also parts of the tree (not just organizations)

 Scheduling future changes

 Reporting

 Historical reports should use all trees between Start Date

and End Date.

 Events roll up using the tree valid at the time of the event.

Basic Model

Tree TreeNode

Thing1 Thing2

1

0..*

0..*

0..*

0..1 0..1

0..1

0..*

Tree Class

Each object is a tree structure of a particular type

for a period of time.

Attributes:
 Name: Logical name for the tree – rarely used

 Description: Also a cool idea that is rarely ever used.

 StartDate and EndDate: Dates for which the tree is valid.

 Type: VERY important - type of the tree. In this example,

“FUNCTIONAL” or “GEOGRAPHIC”.

 Always include a Type attribute!

 Status: Current, Future, Past, Potential

Tree Node Class

 Each object is a node.

 Primarily a set of pointers to “Thing” classes.

 Can also be a simple Folder node that does not point to any

“thing” object.

 No Start/End Date attribute in this class.

 Time dependency is only at the tree level.

 Attribute:

 FolderName (populated only for a grouping folder)

Thing 1 / Thing 2 Classes

Represent the standard object classes in your

model

 Could be OrgUnit or Person classes

Demonstrate that you can have a tree with more

than one kind of thing in it

Model Pros and Cons

Model Strengths
 Each tree exists as its own recursive

structure.

 Query is a simple recursive query.

 No need to deal with dates in node

elements.

 Model pattern is reusable any time.

 Clear depiction of what is being

modeled

Model Limitations
 This model does not completely

enforce everything.

 Only one tree of a specific type can

be valid for any date range.

 Only specific types of Orgs are

allowed to be children of other

types of Orgs.

Model Extensions

Questions:

How can you manage scheduled changes to the

model (ones that did not yet happen)?

How can you correctly report over the desired period

of time?

Implementing Future Trees

 Create special LOG table

 Include complete description of the required change

 Define moment when the change should be applied

 Create AUDIT table to stores applied changes.

 Keep LOG table consistent

 Mutually exclusive future changes null themselves out.

 Meaningless future changes are automatically detected and removed.

 Apply changes using a database job, fired after midnight.

 Move successfully applied changes LOG  AUDIT

 Unsuccessful changes raise alarms

Maintaining Future Changes

 Create special temporary “future tree” as clone of current

one.

 User must enter requested date (“Tree date”)

 Apply all previously scheduled changes to the “future tree”

 All changes are converted into an event in the LOG table

 Scheduled date = “Tree date”

 When editing the tree, the temporary tree is removed

 Concurrent future modifications:

 “Clone to the future” only part of the tree starting with the selected

node

 This root note (and all dependent nodes) must be locked until the

future tree is removed.

Time machine overview

Reasons to do it:

 Clear visibility of all changes and sequence of their

application

 Resolve all scheduling conflicts directly rather than

using some type of complex analysis.

Handling Data “as of now”

 Problem is purely performance-related.

 TreeDetail eventually grows to millions of rows.

 Requests become expensive.

 Usually there are a lot of requests about current information.

 Solution: “Current snapshot"

 De-normalized MView (each levels = separate column)

 Also include most often called data elements

 Refresh is done either by request or during the midnight

database job.

 A lot of indexes!

Handling Data Between Dates

 Reporting problem:

 There may be many valid hierarchies over a period of time.

 Concept:

 Log a full hierarchical rollup as of the moment of occurrence and exact

timestamp for every critical event.

 Quickly query which hierarchical chains were active.

 Solution to querying:

 Appendable de-normalized table (each level = one column)

 Shows the length of time that the specified hierarchical chain existed

 Appended any time that a scheduled change to the organizational tree is

being applied

Recursion in PL/SQL

Recursion in PL/SQL

Textbook example:

CREATE OR REPLACE FUNCTION f_factorial_nr

(in_nr INTEGER) RETURN NUMBER AS

BEGIN

IF in_nr in (0,1) THEN

RETURN 1;

ELSIF in_nr < 0 then

RETURN NULL;

ELSE

RETURN(in_nr * f_factorial_nr(in_nr-1));

END IF;

END;

Using Recursion

Wrong case!

 PL/SQL is rarely used for heavy mathematical tasks.

Correct case should be:

 Repetitive data-related processes

Always associated with recursive data structure

 Completely different set of issues

 Cursors

 Variables

 Transaction control

 Exception handling

Cursors in Recursion

Recursion in FOR-loops is a VERY BAD idea

All cursors are kept open until the end of the tree.

 Concurrent users create scores of cursors.

Keeping multiple versions of data is very resource

intensive.

Right idea:

 Bulk fetch into to the collection on each level

 Spin through the collection

Bad Idea

function f_LevelDown_tx (i_fk number) return varchar2 is

v_out_tx varchar2(32000);

begin

for c in (select * from emp where mgr = i_fk) loop

dbms_output.put_line(c.ename);

v_out_tx:=f_LevelDown_tx(c.empno);

if v_out_tx!='OK' then

raise_application_error(-20999,v_out_tx);

end if;

end loop;

return 'OK';

exception

when others then

return 'E:FK'||i_fk||'> error:'||sqlerrm;

end;

Good Idea

function f_LevelDown_tx (i_fk number) return varchar2 is

v_out_tx varchar2(32000);

type rec_tt is table of emp%rowtype;

v_tt rec_tt;

begin

select * bulk COLLECT into v_tt

from emp where mgr = i_fk;

if v_tt.count()>0 then

for i in v_tt.first..v_tt.last loop

v_out_tx:=f_LevelDown_tx(v_tt(i).empno);

...

end loop;

end if;

return 'OK';

...

end;

Variables

What is going on?

 All local variables exist only in the current scope.

 Two options to make variables visible:

 1. Passed down to the child call as input parameters

 2. Stored as global PL/SQL variables in a separate package

 Rule of thumb:

 If the value is used directly in the child and nowhere else, it is

a parameter

 if the same value could be used in multiple places, it is a

global variable

 Scalar type if the value can be overridden

 Collection type if multiple copies of the variable should be kept active

Example of Global Variables

...

for i in v_tt.first..v_tt.last loop

if main_pkg.v_process_tt(v_tt(i).deptno)!=

'Processing failed!'

then
v_out_tx:=f_LevelDown_tx(v_tt(i).empno);

end if;

if v_out_tx!='OK' then

main_pkg.v_process_tt(v_tt(i).deptno):=

'Processing failed!';

end if;

end loop;

...

Transaction Control

What is going on?

 If procedure is marked “autonomous transaction”

 each recursive call would also spawn another autonomous

transaction.

 all transaction-level resources would be separate for each

call

Rule of thumb:

 Try to avoid recursive autonomous transactions –

may be too resource intense

Exception Handling

 Two main issues:

 How to know precisely where an error occurred

 What to do after the problem is detected.

 Error logging

 Should be handled manually

 Add used-defined variables (such as chain of input parameters) to

Oracle’s error stack

 Error handling:

 Completely roll back changes to the moment before the recursive call.

 Good: much simpler and significantly less complex than a full cleanup

 Bad: May not be available in the case of explicit commits or autonomous

transactions as part of a recursion.

Exception Handling Example

-- Main caller

declare

v_tx varchar2(32000);

begin

savepoint beforeLoop;

begin

v_tx:=f_LevelDown_tx(7839);

-- business logic failure

if v_tx!='OK' then

rollback to savepoint beforeLoop;

end if;

exception

when others then
-- abnormal failure

rollback to savepoint beforeLoop;

raise;

end;

end;

CONNECT-BY

CONNECT BY

 Oracle’s method of working with recursive data:

select SYS_CONNECT_BY_PATH(empno,'|') path_tx,

CONNECT_BY_ROOT ename root_tx,

CONNECT_BY_ISCYCLE isCycle_yn,

CONNECT_BY_ISLEAF isLeaf_yn,

LEVEL level_nr,

a.*

from emp a

start with mgr is null

connect by nocycle mgr = prior empno

order siblings by ename

 Key elements:

 Clause to link the parent/child structure

 List of Oracle built-in functions

WHERE Clause

Beware of performance trap with WHERE-

clauses in the recursive query!

Business case:

Get all tree nodes belonging to a certain tree

Data volume:1.6 million nodes, 800 trees (2000

nodes per tree) up to 6 levels deep

 Indexes are created on all related columns (TreeNode

PK, TreeNode RFK, TreeNode FK).

Handling WHERE Clause

Simplest Version (bad)
select *

from TreeNode

where Tree_oid = :1

connect by TreeNode_rfk =

prior TreeNode_oid

start with

TreeNode_rfk is null

 Takes 2 minutes to run

 Reason: WHERE clause is applied

only AFTER the whole lookup is

finished  all trees are processed

Better Version
select *

from TreeNode

where Tree_oid = :1

connect by TreeNode_rfk=

prior TreeNode_oid

start with

TreeNode_rfk is null

and Tree_oid=:1

 Much better - 0.08 seconds

 Reason: Only single tree is

processed

 WHERE clause is redundant.

Best Solution

select *

from TreeNode

connect by TreeNode_rfk = prior TreeNode_oid

start with TreeNode_rfk is null and Tree_oid = :1

No extra steps

Simple way of finding the root node

Parent/child link is done via indexed columns

Popular Alternative

select *

from (select *

from TreeNode

where and Tree_oid = :1)

connect by TreeNode_rfk = prior TreeNode_oid

start with TreeNode_rfk is null

 Internally rewritten to:

select *

from TreeNode

connect by TreeNode_rfk = prior TreeNode_oid

and Tree_oid = :1

start with TreeNode_rfk is null

and Tree_oid = :1

Joins (1)

 Seemingly direct approach:

Select nvl(r.fullName_tx,o.UnitName_tx) childName_tx,

d.*

from TreeNode d,

Person r,

OrgUnit o

where d.Person_oid = r.Person_oid (+)

and d.OrgUnit_oid = o.OrgUnit_oid (+)

and (d.Person_oid is null or d.role_cd = 'Primry')

connect by d.TreeNode_rfk = prior d.TreeNode_oid

start with d.TreeNode_rfk is null and d.Tree_oid = :1

Problems:

 Joins are applied BEFORE hierarchical walk-down

 Other parts of WHERE-clause – afterwards  unnecessary calls!

Joins (2)

Select nvl(r.fullName_tx,o.UnitName_tx) childName_tx,

d.*

from

(select *

from TreeNode

connect by TreeNode_rfk = prior TreeNode_oid

start with TreeNode_rfk is null and Tree_oid = :1) d,

Person r,

OrgUnit o

where d.Person_oid = r.Person_oid (+)

and d.OrgUnit_oid = o.OrgUnit_oid (+)

and (d.Person_oid is null or d.role_cd = 'Primary')

Advantage:

 Clear separation of recursive and non-recursive structure

Common Table Expressions

(CTE)

Common Table Expressions

 Oracle’s way of working with recursions

 CONNECT BY

 Not part of standard SQL

 Supported only by small number of other vendors

 Everybody else

 “Common Table Expressions” (CTE)

 Part of standard SQL

 Supported by a number of vendors (SQL Server, MySQL, PostgreSQL)

 Surprise

 Oracle version 11g R2 - same mechanism introduced as “Recursive Sub-

query Factoring”

CTE Example

With employees (empno, name, mgr) as

(

-- anchor

select empno, ename, mgr

from emp

where mgr is null

union all

-- recursive block

select e.empno, e.ename, e.mgr

from emp e,

employees m

where m.empno = e.mgr

) search depth first by name set seq

select empno, name, mgr, seq

from employees

How does it work?

 Concept:

 Run the anchor part of the UNION ALL query to get root

elements.

 Pass a set of root elements to the second part of the query and

get the next set (second level) of records

 Repeat step 2 until no rows are accessed.

 Advantage:

 CTE works by SETs of rows, while CONNECT-BY works

row-by-row

 Practical aspect (in theory):

 Should significantly improve performance

 Higher level of flexibility in your SQL statements.

CTE vs. CONNECT BY

 CTE

 Can do everything that can be done by CONNECT BY, while the reverse

statement is not true.

 Provides “on the fly” calculation of results, while CONNECT-BY needs

everything to be pre-calculated.

 CONNECT-BY

 Very well optimized. CBO can build much more efficient plans for it.

 CONNECT-BY has built-in functions

 Keep in mind:

 In SQL Server, the engine is doing row-level processing “under the hood”!

 the real behavior may still be different.

 Conclusion:

 There is no good reason to use CTE at the current level of implementation.

Conclusions

Developers should not be afraid of hierarchical

data and coding structures!

 It is possible to effectively use them to solve

real-life problems.

The Oracle RDBMS environment is sometimes

too rich to blindly make architectural decisions.

Understanding all of the existing built-ins and

ways of internal query optimization can save you

from reinventing the wheel.

45 of 33

Contact Information

 Dr. Paul Dorsey – paul_dorsey@dulcian.com

 Michael Rosenblum – mrosenblum@dulcian.com

 Dulcian website - www.dulcian.com

Developer Advanced
Forms & Reports Designer

Handbook

Latest book:

Oracle PL/SQL for Dummies

Design Using UML
Object Modeling

