
Copyright © 2009 Rolta International, Inc., All Rights Reserved

Michael R. Messina, Management Consultant

Rolta-TUSC, NYOUG 2011 (60 min)

Real Application Testing

Never Get Caught By Change Again

Introduction

• Michael Messina

• Management Consultant with Rolta-TUSC

• Background includes Performance Tuning,
High Availability and Disaster Recovery

• Using Oracle for approximately 17 years

• Oracle ACE

• Oracle OCP 9i/11g

• messinam@tusc.com

• www.tusc.com

mailto:messinam@tusc.com
http://www.tusc.com/

Audience Experience

• How Many Have Used Real Application
Testing
– SQL Performance Analyzer

– Database Replay

• Positive Experience

• Not so Positive Experience

Agenda

• Challenges of Change

• Real Application Testing Overview

• SQL Performance Analyzer

• Database Replay

• SQL Performance Analyzer Case

• Database Replay Case

• Conclusions

CHALLENGES OF CHANGE

Challenges of Change
• Database Upgrades
– Optimizer Changes and Updates

– New Features

• Database Parameter Changes
– Optimizer adjustments

– Using New Features

• Database Change
– Move to RAC

– Move From RAC to Single Instance

Challenges of Change

• Application Changes and Updates
– Schema Changes and Updates

– Application SQL Updates

• Infrastructure Changes
– Storage

– Servers

– Platform Change

– Solid State Disk

REAL APPLICATION TESTING
OVERVIEW

Real Application Testing

• Nick Name RAT

• SQL Performance Analyzer
– Get your SQL

– Run Your SQL

• Database Replay
– Get your actual Production Workload

– Rerun Actual production workload

– Run workloads from 9i and 10g on11g

Real Application Test for Version
prior to 11g
Source
DB

Replay
Target

Patch Requirement

9.2.0.8 > 11.1.0.6 one off patch 6973309

10.2.0.2 > 11.1.0.6 one off patch 6870469

10.2.0.3 > 11.1.0.6 one off patch 6974999

10.2.0.4 > 11.1.0.6 Functionality Exists in
10.2.0.4 patchset

SQL PERFORMANCE ANALYZER

SQL Performance Analyzer

• Nick Name SPA

• Examine affects database and system
changes have on SQL

• Integrated with SQL Tuning Set (STS)

• Integrated with SQL Tuning Advisor

• Integrated with SQL Plan Management

• Great with extremely large SQL workloads

SQL Performance Analyzer

• Impact of changes on SQL execution plans

• Impact of change on SQL execution
statistics

• Compares the SQL execution result, before
and after the change

• Report outlining the net benefit on the
workload due to the changes

• Set of regressed SQL statements along with
executions plan details and any
recommendations

SQL Performance Analyzer

• Great for
– Database Upgrades and Patches

– Database Initialization Parameter Changes

– Schema Changes
• New Indexes

• Remove Indexes

• Partitioning

• Compression

– Cost Based Optimizer Statistic Changes

– Implementation of Tuning Recommendations

– OS Changes and upgrades

– Hardware Changes

SQL Performance Analyzer

• Capture SQL into SQL Tuning Set (STS)
– Cursor C ache

– Automatic Workload Repository (AWR)

– Existing SQL Tuning Set(s)

– User Provided SQL

• Incremental SQL workload capture
– Capture full system SQL workload

– Repeat review cursor cache & update STS

– Can focus on specified criteria such as user,
service, action, module, etc.

– overhead of incremental capture is < 1%.

SQL Performance Analyzer

• Transfer SQL Tuning Set
– Export SQL Tuning Set

– Import SQL Tuning Set

– Utilizes Data Pump

– Use OEM Grid Control or Manually with API

• Allows capture of Production SQL
Workload and then Test various Changes
outside production

• System as Close to Production as Possible
to ensure good impact measure

SQL Performance Analyzer

• Execute Baseline
– After Import of SQL Tuning Set

– Executes SQL Workload Prior to changes

– Only query part of DML executed

– Executes SQL sequentially and not necessarily
in the same order they were captured
• There is some control available to order such as

longest response time first.

– Can just Generate plans to reduce load, but
provides lowest overall value.

– Records information on execution

SQL Performance Analyzer

• Make Changes
– database upgrade,

– New index creation

– initialization parameter changes

– optimizer statistics refresh

– Etc.

• Re-execute STS
– Executes SQL Workload after change(s)

– Only query part of DML executed

– Records Post Change Performance

SQL Performance Analyzer

• Compare
– Produces a report

– Takes into account the number of executions
of SQL statement for weight of each SQL

– Uses elapsed time as the comparison metric by
default

– Alternative Comparison Metrics
• Disk reads

• CPU time

• Buffer gets

• Etc.

SQL Performance Analyzer

SQL Performance Analyzer

SQL Performance Analyzer

• Query SQL Tuning Sets
SELECT name,

 created,

 statement_count

FROM dba_sqlset ;

• Query Active SQL Tuning Set References
SELECT id,

 sqlset_owner,

 sqlset_name,

 description

 FROM DBA_SQLSET_REFERENCES ;

SQL Performance Analyzer

• Remove Active SQL Tuning Set
– ** Must be remove prior to removing STS
DBMS_SQLTUNE.REMOVE_SQLSET_REFERENCE

('STS_SPA_1', 2) ;

• Delete SQL Tuning Set
– DBMS_SQLTUNE.DROP_SQLSET

('STS_SPA_1') ;

DATABASE REPLAY

Database Replay

• Measure Impact of Changes Affecting the
Database
– Database Upgrade

– Operating System Upgrade

– Change Disk Storage

– Change Database Operating System

– Change Database Hardware Platform

– Database Parameter Changes

• Measure Impact on Entire Database Using
a Real Database Workload

Database Replay

• Eliminate Needs to create artificial
workloads can use actual production
workload.

• Can Eliminate long coordinated Testing
projects to measure impact of database
changes.

• Can Greatly Reduce time to measure
impacts of changes.

Database Replay

• Get Copy of database Prior to start of
Capture. This will be used as the start
point for the replay database.
– RMAN Backup is Perfect for this.

– Same Start Point can be used for Multiple
Replays of the Same Workload

– Have used Flashback database to for multiple
replay executes to get to common starting
point.

Database Replay

• Capture
– Processing to captures all database activity

executed against a

– Generate a Report on the Capture Processing.

• Prepare for Capture
– Create OS directory for Capture Files

– Create Database Directory pointing to OS
directory for Capture Files.

– Set any Capture Filters Needed
• User

• Service

• Program

Database Replay

• Start Capture
 DBMS_WORKLOAD_CAPTURE.START_CAPTURE(

 name => 'DB_TO_EXADATA'

 , dir => 'CAPTURE_DIR'

 , duration => NULL

 , default_action => 'INCLUDE'

 , auto_unrestrict => TRUE) ;

• Run Normal Database Activity

• Stop Capture
dbms_workload_capture.finish_capture();

Database Replay

• Processing and initializing of the Captured
Workload
– Done on the server/database where workload

will be replayed

– Remap client connections

– Adjust speed in which workload will replay

– Determine number of workload replay clients
needed.

– Filter any activity from Replay

Database Replay

• Restore database in new location/OS/etc.

• Prepare Workload
– Create location for Replay where Replay

database is located.

– Create Directory in database that points to the
Replay location.

– Copy Capture Files to Directory

• Process Captured Workload

 dbms_workload_replay.process_capture
(replay_dir) ;

Database Replay

• Initialize Replay

 dbms_workload_replay.initialize_replay
(replay_name, replay_dir) ;

• Prepare Workload for Replay
dbms_workload_replay.prepare_replay(

 synchronization=>FALSE) ;

• Determine Replay Clients Needed
– Goto the replay OS directory

• wrc mode=calibrate

Database Replay

• Replays that capture workload on a copy of
the database with various changes.
– Different Database Version

– Different Operating System

– Different Server Architecture

– Different Storage Architecture

• Utilizes workload Replay clients

Database Replay

• Replay Workload
– Start the Number of Replay Clients Indicated

by Calibrate
wrc system/passwrd@db

CONNECTION_OVERRIDE=TRUE SERVER=DB

replaydir=/data1/FS2/rat-dir

– Start the Replay
dbms_workload_replay.start_replay ;

– Generate Replay Report

SQL PERFORMANCE ANALYZER
TEST CASE

INDEX CHANGE

SQL Performance Analyzer Case
• Create SQL Tuning Set
BEGIN

-- Create the sql set

DBMS_SQLTUNE.CREATE_SQLSET(sqlset_name =>

'STS_SPA_1');

-- Limit the sql in the set to Just on the

ORDERS and ORDER_ITEMS

DBMS_SQLTUNE.CAPTURE_CURSOR_CACHE_SQLSET(

sqlset_name => 'STS_SPA_1‘,

basic_filter=> 'UPPER(sql_text) LIKE || '''' ||

'%ORDER%' || '''',

 time_limit => 300,

 repeat_interval => 2);

END;

/

SQL Performance Analyzer Case

• Create Task
dbms.sqlpa.create_analysis_task

 (sqlset_name => ‘STS_SPA_1‘,

 task_name => ‘my_spa_task‘,

 description => ‘test index changes‘);

• Execute Task Prior to Changes
dbms_sqlpa.execute_analysis_task

 (task_name => ‘my_spa_task‘,

 execution_type => ‘test execute‘,

 execution_name => ‘before_index_change‘);

SQL Performance Analyzer Case

• Make our Changes
– Add Indexes

– Gather Statistics on New Indexes

• Re-execute our Task after Changes
dbms_sqlpa.execute_analysis_task

(task_name => ‘my_spa_task‘,

 execution_type =>‘test execute‘,

 execution_name =>‘after_index_change‘);

SQL Performance Analyzer Case

• Compare/Analysis Task
dbms_sqlpa.execute_analysis_task

(task_name =>‘my_spa_task‘,

 execution_type =>‘compare performance‘,

 execution_name =>‘analysis_results‘,

 execution_params => dbms_advisor.arglist

 (‘execution_name1‘, ‘before_index_change’,

 ‘execution_name2‘, ‘after_index_change‘,

 ‘comparison_metric‘,‘buffer_gets‘));

SQL Performance Analyzer Case

• Generate Analysis Report
SPOOL SPA_COMPARE_ANALYSIS_REPORT.out

SELECT DBMS_SQLPA.REPORT_ANALYSIS_TASK

 ('my_spa_task')

from dual;

SPOOL off

SQL Performance Analyzer Case

• Generate Summary Report
SPOOL SPA_COMPARE_SUMMARY_REPORT.out

SELECT DBMS_SQLPA.REPORT_ANALYSIS_TASK

('my_spa_task',

 'TEXT',

 'TYPICAL',

 'SUMMARY')

FROM DUAL;

SPOOL off

SQL Performance Analyzer Case

• Generate Findings Report
SPOOL SPA_COMPARE_FINDINGS_REPORT.out

SELECT DBMS_SQLPA.REPORT_ANALYSIS_TASK

 ('my_spa_task',

 'TEXT',

 'TYPICAL',

 'FINDINGS',

 5)

from dual;

SPOOL off

DATABASE REPLAY TEST CASE

MOVE TO EXADATA FROM 3
NODE WINDOWS RAC CLUSTER

Database Replay Case

• Backup of Windows Database

• Capture Production Windows Database
Workload
– Filtered Out OEM Activity
DBMS_WORKLOAD_CAPTURE.ADD_FILTER(

 fname => 'ORACLE MANAGEMENT AGENT (DEFAULT)'

 ,fattribute => 'PROGRAM'

 ,fvalue => 'emagent%');

 DBMS_WORKLOAD_CAPTURE.ADD_FILTER(

 fname => 'ORACLE MANAGEMENT SERVICE

(DEFAULT)‘

 ,fattribute => 'PROGRAM'

 ,fvalue => 'OMS');

Database Replay Test Case

• Captured Workload
 DBMS_WORKLOAD_CAPTURE.START_CAPTURE(

 name => v_capture_name

 ,dir => v_capture_dir

 ,duration => NULL

 ,default_action => 'INCLUDE'

 ,auto_unrestrict => TRUE

• Copied Workload Capture Files to Exadata
database server

Database Replay Test Case

• Restored Windows RAC Database to
Exadata Linux RAC Database

• Process Captured Workload

 dbms_workload_replay.process_capture
(v_replay_dir) ;

• Initialize replay

 dbms_workload_replay.initialize_replay
(replay_name, replay_dir) ;

Database Replay Test Case

• Prepare replay
dbms_workload_replay.prepare_

replay(THINK_TIME_SCALE=>0,sy

nchronization=> FALSE);

• Calibrate the workload

 wrc mode=calibrate

Database Replay Test Case
Workload Replay Client: Release 11.2.0.1.0 - Production on Tue Nov 9 19:35:48

2010

Copyright (c) 1982, 2009, Oracle and/or its affiliates. All rights reserved.

Report for Workload in: .

Recommendation:

Consider using at least 14 clients divided among 4 CPU(s)

You will need at least 153 MB of memory per client process.

If your machine(s) cannot match that number, consider using more clients.

Workload Characteristics:

- max concurrency: 568 sessions

- total number of sessions: 5762

Assumptions:

- 1 client process per 50 concurrent sessions

- 4 client process per CPU

- 256 KB of memory cache per concurrent session

- think time scale = 100

- connect time scale = 100

- synchronization = TRUE

Database Replay Test Case

• Started 14 workload replay clients
wrc system/password@prdrmed

CONNECTION_OVERRIDE=TRUE SERVER=PRDRMED

replaydir=/data1/FS2/rat-dir

• Started Replay
dbms_workload_replay.start_replay ;

• Monitored Replay
select id, name,

 to_char(start_time,'mm/dd/yyyy hh24:mi:ss'),

 to_char(end_time,'mm/dd/yyyy hh24:mi:ss'),

 num_clients,think_time_scale, ELAPSED_TIME_DIFF

from dba_workload_replays ;

Database Replay Test Case

• Generated Replay Report
Replay Information from Report

Information Replay Capture

Name PRDRMED_REPLAY_1 PRDRMED_CAPTURE_1

Status COMPLETED COMPLETED

Database Name PRDRMED PRDRMED

Database Version 11.2.0.1.0 10.2.0.4.0

Start Time 11-11-10 12:45:03 11-11-10 09:01:53

End Time 11-11-10 13:07:53 11-11-10 09:31:43

Duration 22 minutes 50 seconds 29 minutes 50 seconds

Directory Object RAT_DIR RAT_DIR

Directory Path /data1/FS2/rat-dir /data1/FS2/rat-dir

Questions/Discussion

THANK YOU

