ORACLE

:.{
5 ENGINEERED

FOR INNOVATION

ORACLE

Five things you probably ask
didn’t know about SQL T 5
Thomas Kyte C}RACLE

http://asktom.oracle.com/

Who am |

b [l Yew Hgtoy foonelks [ook fee

T o i i GGl B ez - 05 0

||||||||

Bt

i
In e Imst Loweekes, Tve faben O nesquestions, iead 462 Epwpe, and responded i 336 of

Mibiadi nd Seaii i
vy 150 D

[T bt aekion aw-ack coralodtebdran Wi 1080 [o b e
T Ank Tam Hussn G
5k
:‘!.‘_Jﬁl:'_ﬂ it stions unks Popular H F

 Sotimt 1 e i

CRCK A DA G W T Ll i

Lant Uipiimed Flesd Asind Fww Bialia

ARl W coTRa Tl s 1o b
lecalvd al

g o o1 e i K e
Iy e

=]

Been with Oracle since 1993
User of Oracle since 1987

The “Tom” behind AskTom in
Oracle Magazine

www.oracle.com/oramag

Expert Oracle Database
Architecture

Effective Oracle by Design
Expert One on One Oracle
Beginning Oracle

Five things you probably didn’t know about
SQL

* SQLNet Compression

 NULLS and Indexes and Cardinality
* You are being watched!

 Scalar Subquery Caching

 Calling statement level non-deterministic
functions

ORACLE

SQLNet
Compression

ORACLE

SQLNet Compression

* How you retrieve the data matters
* Not all result sets are the same — even if they have the same data

SQLNet Compression

opsS$Stkyte$ORA11GR2> create table t

2 as
3 select *
4 from all objects;

Table created.

ops$Stkyte$ORA11GR2> begin

2 dbms stats.gather table stats(user, 'T');
3 end;
4 /

PL/SQL procedure successfully completed.

SQLNet Compression

opsS$Stkyte$ORA11GR2> set arraysize 15

ops$tkyte$ORA11GR2> set autotrace traceonly statistics

SQLNet Compression

opsS$Stkyte$ORA11GR2> select * from t;
72228 rows selected.

Statistics

5794 consistent gets
8015033 bytes sent via SQL*Net to client
53385 bytes received via SQL*Net from client
4817 SQL*Net roundtrips to/from client
72228 rows processed

SQLNet Compression

ops$tkyte%ORA11GR2> select * from t order by timestamp;
72228 rows selected.

Statistics

1031 consistent gets
3427630 bytes sent via SQL*Net to client
53385 bytes received via SQL*Net from client
4817 SQL*Net roundtrips to/from client
72228 rows processed

SQLNet Compression

opsS$Stkyte$ORA11GR2> select * from t order by timestamp,
object type, owner;
72228 rows selected.

Statistics

1031 consistent gets
3280011 bytes sent via SQL*Net to client
53385 bytes received via SQL*Net from client
4817 SQL*Net roundtrips to/from client
72228 rows processed

SQLNet Compression

opsS$Stkyte$ORA11GR2> set arraysize 100
ops$tkyte%ORA11GR2> set autotrace traceonly statistics

SQLNet Compression

opsS$Stkyte$ORA11GR2> select * from t;
72228 rows selected.

Statistics

1842 consistent gets
7482943 Dbytes sent via SQL*Net to client
8362 bytes received wvia SQL*Net from client
724 SQL*Net roundtrips to/from client
72228 rows processed

SQLNet Compression

ops$tkyte%ORA11GR2> select * from t order by timestamp;
72228 rows selected.

Statistics

1031 consistent gets
2907819 bytes sent via SQL*Net to client
8362 bytes received wvia SQL*Net from client
724 SQL*Net roundtrips to/from client
72228 rows processed

SQLNet Compression

opsS$Stkyte$ORA11GR2> select * from t order by timestamp,
object type, owner;
72228 rows selected.

Statistics

1031 consistent gets
2760200 bytes sent via SQL*Net to client
8362 Dbytes received via SQL*Net from client
724 SQL*Net roundtrips to/from client
72228 rows processed

SQLNet Compression

Bytes Sent

% of original

Consistent Gets

No Order Some Order

15 15

8.01m 3.42m
100% 43%
5832 1033

ops$tkyte%ORA11GR2> select round(1033*8/1024,2) from dual;

ROUND (1033*8/1024,2)

Very
Ordered

15

3.28m

41%

1033

No Order
100

7.48 m

93%

1741

Some
Order

100

290 m

36%

1033

Very
Ordered

100

276 m

34%

1033

SQLNet Compression

No Order Some Order
1000 1000
Bytes Sent
7.39 m 2.82m

% of original

92% 35%
Consistent Gets

1105 1033

ops$tkyte%ORA11GR2> select round(1033*8/1024,2) from dual;

ROUND (1033*8/1024,2)

Very
Ordered

1000

2.67 m

33%

1033

No Order
100

7.48 m

93%

1741

Some
Order

100

290 m

36%

1033

Very
Ordered

100

276 m

34%

1033

NULLS and
Indexes and
Cardinality

"‘5.‘\'-_%.___

ORACLE

“Wrong cardinality = Wrong Plan”

ORACLE

NULLs and Cardinality

ops$Stkyte$ORA11GR2> create table t
2 pctfree 20
3 as
select a.*,
case when mod (rownum,100) <= 50
then last ddl time
end end date
from all objects a;

4
5
6
~
8

Table created.

NULLs and Cardinality

opsStkyte%ORA11GR2> create index t idx
2 on t(end date);

Index created.

NULLs and Cardinality

ops$Stkyte3ORA11GR2> select count (*)
2 from t

3 where end date

4 between to date('0l-sep-2010', 'dd-mon-yyyy')
5 and to date('30-sep-2010', 'dd-mon-yyyy'):
COUNT (*)

NULLs and Cardinality

opsS$Stkyte$ORA11GR2> begin

2 dbms stats.gather table stats(user, 'T');
3 end;
4 /

PL/SQL procedure successfully completed.

NULLs and Cardinality

opsS$Stkyte3ORA11GR2> select count(¥*),
2 count (distinct end date),
3 count (end date),
4 min (end date),
5 max (end date)
6 from t;

NULLs and Cardinality

ops$tkyte$ORA11GR2> set autotrace traceonly explain
opsS$Stkyte$ORA11GR2> select *

2 from t

3 where end date

4 between to date('0Ol-sep-2010', 'dd-mon-yyyy')
5 and to date('30-sep-2010', 'dd-mon-yyyy')

Execution Plan

Plan hash wvalue: 1601196873

NULLs and Cardinality

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0	SELECT STATEMENT		36024	3588K	339 (1)] 00:00:05	
* 1	TABLE ACCESS FULL	T	36024	3588K	339 (1)] 00:00:05	

1 - filter ("END DATE"<=TO DATE(' 2010-09-30 00:00:00', 'syyyy-mm-dd
hh24:mi:ss') AND "END DATE">=TO DATE(' 2010-09-01 00:00:00"',
'syyyy-mm-dd hh24:mi:ss'))

NULLs and Cardinality

opsS$Stkyte$ORA11GR2> update t
2 set end date =
3 to date('01-3jan-9999', 'dd-mon-yyyy')
4 where end date is null;

35378 rows updated.

opsS$Stkyte$ORA11GR2> commit;

Commit complete.

NULLs and Cardinality

opsS$Stkyte$ORA11GR2> begin
2 dbms stats.gather table stats(user, 'T');
3 end;

4 /

PL/SQL procedure successfully completed.

NULLs and Cardinality

ops$Stkyte$ORA11GR2> select *
2 from t
3 where end date
4 between to date('0l-sep-2010', 'dd-mon-yyyy')
5 and to date('30-sep-2010', 'dd-mon-yyyy'):

Execution Plan

Plan hash value: 470836197

NULLs and Cardinality

Id	Operation	Name	Rows	Bytes	Cost (%CPU)
0	SELECT STATEMENT		175	18375	10 (0)
1	TABLE ACCESS BY INDEX ROWID	T	175	18375	10 (0)
* 2	INDEX RANGE SCAN	T IDX	175		2 (0)

1 - filter ("END DATE"<=TO DATE(' 2010-09-30 00:00:00', 'syyyy-mm-dd
hh24:mi:ss') AND "END DATE">=TO DATE(' 2010-09-01 00:00:00"',
'syyyy-mm-dd hh24:mi:ss'))

“Wrong cardinality = Wrong Plan”

ORACLE

Nulls and Indexes

* There is a pervasive myth that indexes and
NULLs are like matter and anti-matter

* There is the thought that “where column is null”
cannot use an index

* There is a thought that NULLs are not indexed

 None of that is true...

ORACLE

NULLs and Indexes

ops$Stkyte$ORA11GR2> create table t
2 as
select a.*,
case when mod (rownum,100) > 1
then object type
end otype
from all objects a;

SJo Ok W

Table created.

NULLs and Indexes

opsS$Stkyte$ORA11GR2> select count(*) from t where
otype is null;

COUNT (*)

NULLs and Indexes

opsS$Stkyte$ORA11GR2> begin

2 dbms stats.gather table stats(user, 'T');
3 end;
4 /

PL/SQL procedure successfully completed.

NULLs and Indexes

opsStkyte%ORA11GR2> create index t idx
on t(otype,owner);

Index created.

NULLs and Indexes

opsStkyte%ORA11GR2> set autotrace traceonly explain
opsStkyte$ORA11GR2> select * from t where otype is null;

Execution Plan

Plan hash wvalue: 470836197

NULLs and Indexes

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0	SELECT STATEMENT		1445	149K	96 (0)] 00:00:02
1	TABLE ACCESS BY INDEX ROWID	T	1445	149K	96 (0)	00:00:02
* 2	INDEX RANGE SCAN	T IDX	1445		7 (0)] 00:00:01	

2 - access("OTYPE" IS NULL)

NULLs and Indexes

ops$Stkyte3%ORA11GR2> drop index t idx;
Index dropped.

opsStkyte%ORA11GR2> create index t idx
on t(otype,0);

Index created.

NULLs and Indexes

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0	SELECT STATEMENT		1445	149K	96 (0)] 00:00:02
1	TABLE ACCESS BY INDEX ROWID	T	1445	149K	96 (0)	00:00:02
* 2	INDEX RANGE SCAN	T IDX	1445		7 (0)] 00:00:01	

2 - access("OTYPE" IS NULL)

Nulls and Indexes

* What is true is that entirely NULL key entries are
not made in B*Tree indexes

* Therefore, an index on just OTYPE cannot be
used to find NULLs

 But — what about B*Tree cluster indexes and
Bitmap indexes?

1

ORACLE

You are being

WATCHED!

ORACLE

You are being WATCHED!

» 9i and before — V$ tables

* 10g — ASH and AWR are obvious
 But there is more

— We watch what you ask for and change how statistics
are gathered based on that.

ORACLE

You are being WATCHED!

ops$Stkyte$ORA11GR2> create table t
2 as

3 select a.r¥*,

4 case when rownum < 500
5 then 1

6 else 99

7 end some status

8 from all objects a

9 /

Table created.

You are being WATCHED!

opsS$Stkyte$ORA11GR2> begin

2 dbms stats.gather table stats(user,'T');
3 end;
4 /

PL/SQL procedure successfully completed.

You are being WATCHED!

opsStkyte$ORA11GR2> select histogram

2 from use:_tab_cols

3 where table name = 'T'

4 and column_name = 'SOME STATUS';
HISTOGRAM

You are being WATCHED!

opsStkyte%ORA11GR2> create index t idx
on t(some status);

Index created.

You are being WATCHED!

ops$tkyte%ORA11GR2> set autotrace traceonly explain
ops$tkyte$ORA11GR2> select * from t where some status = 1;

Execution Plan

Plan hash value: 1601196873

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0	SELECT STATEMENT		36115	3526K	300 (1)] 00:00:04	
* 1	TABLE ACCESS FULL	T	36115	3526K	300 (1)] 00:00:04	

You are being WATCHED!

ops$tkyte%ORA11GR2> select * from t where some status = 99;

Execution Plan

Plan hash value: 1601196873

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0O	SELECT STATEMENT		36115	3526K	300 (1)] 00:00:04	
* 1	TABLE ACCESS FULL	T	36115	3526K	300 (1)] 00:00:04	

You are being WATCHED!

opsS$Stkyte$ORA11GR2> begin

2 dbms stats.gather table stats(user, 'T');
3 end;
4 /

PL/SQL procedure successfully completed.

You are being WATCHED!

opsStkyte$ORA11GR2> select histogram

2 from use:_tab_cols

3 where table name = 'T'

4 and column_name = 'SOME STATUS';
HISTOGRAM

FREQUENCY

You are being WATCHED!

ops$tkyte$ORA11GR2> select * from t where some status = 1;

Execution Plan

Plan hash value: 470836197

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time

| 0O | SELECT STATEMENT | | 539 | 53900 | 10 (0)] 00:00
| 1 | TABLE ACCESS BY INDEX ROWID| T | 539 | 53900 | 10 (0)| 00:00
|* 2 | INDEX RANGE SCAN | T IDX | 539 | | 2 (0)] 00:00

You are being WATCHED!

ops$tkyte%ORA11GR2> select * from t where some status = 99;

Execution Plan

Plan hash value: 1601196873

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0O	SELECT STATEMENT		71683	T7000K	300 (1)] 00:00:04	
* 1	TABLE ACCESS FULL	T	71683	T7000K	300 (1)] 00:00:04	

You are being WATCHED!

opsS$Stkyte$ORA11GR2> select *
2 from
3
4 select *
5 from sys.col usage$
6 where obj# = (select object id
7 from dba objects
8

where object name = 'T'
9 and owner = 'OPSSTKYTE')
10)
11 unpivot (value for x in
12 (EQUALITY PREDS, EQUIJOIN PREDS, NONEQUIJOIN PREDS,
13 RANGE PREDS, LIKE PREDS, NULL PREDS))

You are being WATCHED!

TIMESTAMP

6 rows selected.

30-SEP-11
30-SEP-11
30-SEP-11
30-SEP-11
30-SEP-11
30-SEP-11

EQUALITY PREDS
EQUIJOIN PREDS
NONEQUIJOIN PREDS
RANGE PREDS

LIKE PREDS

NULL PREDS

You are being WATCHED!

ops$Stkyte$ORA11GR2> select * from t where
some status > 100;

no rows selected

opsS$Stkyte$ORA11GR2> begin

2 dbms stats.gather table stats(user, 'T');
3 end;
4 /

PL/SQL procedure successfully completed.

You are being WATCHED!

OBJ# INTCOL# TIMESTAMP X
98040 16 30-SEP-11
98040 16 30-SEP-11
98040 16 30-SEP-11
98040 16 30-SEP-11
98040 16 30-SEP-11
98040 16 30-SEP-11

6 rows selected.

EQUALITY PREDS
EQUIJOIN PREDS
NONEQUIJOIN PREDS
RANGE PREDS

LIKE PREDS

NULL PREDS

You are being WATCHED!

* You can ‘seed’ column stats pre-emptively

» Adds more “watching”

» Suggests possible extended statistics as well

ORACLE

You are being WATCHED!

opsS$Stkyte$ORA11GR2> begin
2 dbms stats.seed col usage(null, null, 10);
3 end;

4 /

PL/SQL procedure successfully completed.

You are being WATCHED!

ops$Stkyte$ORA11GR2> select *

2 from t
3 where owner = 'SYS'
4 and object type = 'DIMENSION';

no rows selected

You are being WATCHED!

ops$tkyte%ORA11GR2> select dbms_stats.report col usage(user, 'T')
2 from dual;

DBMS_STATS.REPORT_ COL USAGE (USER, 'T')

LEGEND:

EQ : Used in single table EQuality predicate
RANGE : Used in single table RANGE predicate

LIKE : Used in single table LIKE predicate

NULL : Used in single table is (not) NULL predicate
EQ JOIN : Used in EQuality JOIN predicate

NONEQ JOIN : Used in NON EQuality JOIN predicate

FILTER : Used in single table FILTER predicate

JOIN : Used in JOIN predicate

GROUP_BY : Used in GROUP BY expression

You are being WATCHED!

ops$tkyte%ORA11GR2> select dbms_stats.report col usage(user, 'T')
2 from dual;

COLUMN USAGE REPORT FOR OPSS$TKYTE.T

1. OBJECT TYPE : EQ

2. OWNER : EQ

3. SOME_STATUS : EQ RANGE
4. (OWNER, OBJECT TYPE) FILTER

###

Scalar Subquery
Caching

ORACLE

Scalar Subquery Caching

* A scalar subquery is a query that returns zero or
one rows and a single column

1

« Can be used anywhere an expression can be
used

* |Is executed conceptually once for each row it is
processed against

* For example:

ORACLE

Scalar Subquery Caching

Select dname, (select count(¥*)
from emp
where emp.deptno = dept.deptno)
from dept;

IS a lot like....

Scalar Subquery Caching

Begin
for x in (select dname, deptno from dept)
loop
select count(*) into cnt
from emp
where deptno = X.DEPTNO;
dbms output.put line
(x.dname || ' ' || x.cnt) ;
end loop;

End;

Scalar Subquery Caching

« Conceptually it is like that...

* In reality there is caching going on
* Up to 255 entries can be saved

« Only for the duration of the query! Not across
queries

ORACLE

Scalar Subquery Caching

ops$Stkyte$ORA11GR2> create table t

2 as
3 select *
4 from all objects;

Table created.

Scalar Subquery Caching

opsS$Stkyte$ORA11GR2> begin
2 dbms stats.gather table stats(user,'T');
3 end;

4 /

PL/SQL procedure successfully completed.

Scalar Subquery Caching

ops$Stkyte$ORA11GR2> create or replace
function f£(x in varchar2?2)

2 return number

3 as

4 Dbegin

5 dbms application info.set client info

6 (to number (userenv('client info'))+l);
7

8 return length(x) ;

9 end;
10 /

Function created.

Scalar Subquery Caching

opsS$Stkyte$ORA11GR2> variable startcpu number;
opsS$Stkyte$ORA11GR2> begin
2 dbms application info.set client info(0);
:startcpu := dbms utility.get cpu time;
end;

/

o W

PL/SQL procedure successfully completed.

This is run before every subsequent query..

Scalar Subquery Caching

ops$Stkyte$ORA11GR2> select owner, f (owner) from t;

72233 rows selected.

opsStkyte%ORA11GR2> select userenv('client info') ci,
2 dbms utility.get cpu time-:startcpu cpu
3 from dual;

Scalar Subquery Caching

opsStkyte$ORA11GR2> select owner,
(select f (owner) from dual) from t;
72233 rows selected.

opsStkyte%ORA11GR2> select userenv('client info') ci,
2 dbms utility.get cpu time-:startcpu cpu
3 from dual;

Scalar Subquery Caching

ops$Stkyte$ORA11GR2> create or replace
function f£(x in varchar2?2)
2 return number
3 DETERMINISTIC

4 as
10 end;
11 /

Function created.

Scalar Subquery Caching

ops$Stkyte$ORA11GR2> select owner, f(owner) from t;

72233 rows selected.

opsStkyte%ORA11GR2> select userenv('client info') ci,
2 dbms utility.get cpu time-:startcpu cpu
3 from dual;

Scalar Subquery Caching

ops$Stkyte$ORA11GR2> create or replace
function f£(x in varchar2?2)

2 return number
3 RESULT CACHE
4 as

5 Dbegin

10 end;

11 /

Function created.

Scalar Subquery Caching

ops$tkyte3$ORA11GR2> select owner, f (owner) from t;

72233 rows selected.

ops$tkyte%ORA11GR2> select userenv('client info') ci,
2 dbms utility.get cpu time-:startcpu cpu
3 from dual;

Scalar Subquery Caching

ops$Stkyte$ORA11GR2> select owner, f(owner) from t;

72233 rows selected.

opsStkyte%ORA11GR2> select userenv('client info') ci,
2 dbms utility.get cpu time-:startcpu cpu
3 from dual;

Scalar Subquery Caching

ops$tkyte3ORA11GR2> select owner,
(select f (owner) from dual) from t;
72233 rows selected.

ops$tkyte%ORA11GR2> select userenv('client info') ci,
2 dbms utility.get cpu time-:startcpu cpu
3 from dual;

Scalar Subquery Caching

How many times will g(‘scott’) be invoked?

Select * from T where owner = g(‘scott’);

It depends of course...

Scalar Subquery Caching

Now How many times will g(‘scott’) be invoked?

Select * from T where owner =
(select g(‘'scott’) from dual);

It won't depend this time...

Statement Level
non-Determlnlstlc |
Functions =

ORACLE

Statement level non-deterministic functions

 What is a deterministic function?

 What is a statement level deterministic function?

* Why do we care?

ORACLE

Statement level non-deterministic functions

opsS$Stkyte3ORA11GR2> create table t

2 as
3 select *
4 from all_users

5 where rownum <= 5;

Table created.

Statement level non-deterministic functions

ops$Stkyte3ORA11GR2> create or replace function £
2 return number

3 as

4 pragma autonomous_ transaction;

5 1l cnt number;

6 Dbegin

7 select count(*) into 1 cnt from t;
8

9 insert into t (username, user id, created)
10 values ('hello', 123, sysdate);
11 commit;
12
13 return 1 cnt;
14 end;

15 /

Statement level non-deterministic functions

ops$tkyte3ORA11GR2> select count(*) over () cntl,

2 (select count(*) from t) cnt2,
3 f() cnt3,

4 (select £() from dual) cnt4

5 from t;

Statement level non-deterministic functions

ops$tkyte3ORA11GR2> select count(*) over () cntl,

2 (select count(*) from t) cnt2,
3 f() cnt3,

4 (select £() from dual) cnt4

5 from t;

Statement level non-deterministic functions

ops$Stkyte%ORA11GR2> create or replace

o JdJoUn WD

function f(p scn in number)

return number

as
pragma
1l cnt
begin
select
as

insert
values
commit;

return
end;

autonomous_transaction;
number;

count(*) into 1 cnt from t
of scn p scn;

into t (username, user id, created)
('hello', 123, sysdate);

1l cnt;

Statement level non-deterministic functions

ops$tkyte%ORA11GR2> variable scn number
opsS$Stkyte3ORA11GR2> exec :scn :=
dbms flashback.get system change number

PL/SQL procedure successfully completed.

Statement level non-deterministic functions

ops$Stkyte%ORA11GR2> select count(*) over () cntl,
2 (select count(*) from t) cnt2,
f(:scn) cnt3,
(select f£(:scn) from dual) cnt4
from t;

o s Ww

Statement level non-deterministic functions

opsStkyte%ORA11GR2> insert into t
(username, user id, created) values
('x', 1, sysdate);

1l row created.

opsS$Stkyte%ORA11GR2> exec :scn :=
dbms flashback.get system change number

PL/SQL procedure successfully completed.

Statement level non-deterministic functions

ops$tkyte3ORA11GR2> select count(*) over () cntl,

2 (select count(*) from t) cnt2,

3 f(:scn) cnt3,

4 (select f£(:scn) from dual) cntd

5 from t;

CNT1 CNT2 CNT3 CNT4

6 6 5 5
6 6 5 5
6 6 5 5
6 6 5 5
6 6 5 5
6 6 5 5

6 rows selected.

Five things you probably didn’t know about
SQL

* SQLNet Compression

 NULLS and Indexes and Cardinality
* You are being watched!

 Scalar Subquery Caching

 Calling statement level non-deterministic
functions

ORACLE

ORACLE

96] Copyright © 2011, Oracle and/or its affiliates. All rights [Insert Information Protection Policy Classification from Slide 8
reserved.

Hardware and Software

Engineered to Work Together

ORACLE

