
Sridhar Doraikannu
Sr. Member Oracle DBA Group

SQL Plan Stability – Post 11g Upgrade

at Verizon Wireless

NYOUG – Dec 13,2011

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW 2

Agenda

 Preupgrade

 Issues faced after Database upgrade

 Lessons learned

 Q & A

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW 3

Who we are

 #1 wireless carrier with largest 3G network in the U.S.

 Most reliable wireless voice and data network in the U.S.

 104 million customers

 87,000 employees

 More than 2,000 retail stores & kiosks

 Joint venture of Verizon Communications

(NYSE: VZ) + Vodafone (NYSE: VOD)

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

Sql plan stability – prior to 11g

Sql Plan stability

• Stored outlines to preserve execution plans

 DBMS_OUTLN.CREATE_OUTLINE

• Locking of statistics

• Using hints

• sql profiles

Issues

• Both stored outline and sql profile depend on the Hints

• Optimizer still can come up with different plan

• Licensing requirement for using sql profiles

• No new plans is used – potential better plans ignored

• Outlines take precedence over SQL Profiles

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

Sql plan Management – SPM

•First execution of any sql’s execution plan is treated as optimal and executed

•SPM keeps track of this first executed sql by adding it to the sql log

•Sql log is compared during the second execution of the same sql

•If it is same, plan is added to the plan history

• Sql is executed and than it is added to the sql plan baseline as accepted plan

• Any future new plans for the same sql statement is added to the plan history as

non-accepted plan

• For sql’s with baseline, only accepted plan get executed

• SPM stores all new plans in the sql management base (SMB)

• It is possible that one of these new plans can become better plan in the future

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

Managing SQL Plan Baselines

http://docs.oracle.com/cd/B28359_01/server.111/b28274/optplanmgmt.htm

SQL Plan Baselines

•Maintains history of plans for individual SQL statements

•Plan history is maintained only for repeatable SQL statements

• Default uses 10% of SYSAUX

 Automatic plan capture

• OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES=TRUE

 Manual plan capture

•Loading of plans from SQL Tuning Sets and AWR Snapshots

•Loading of Plans from the Cursor Cache

Selecting SQL Plan Baselines

•optimizer comes up with a plan

•Checks if the plan is already available and accepted in Baseline

•New non accepted plan is added to plan history if not found in baseline

•change in the system (such as a dropped index) causes all accepted plans to

 become non-reproducible

Evolving SQL Plan Baselines

•Evolving Plans With Manual Plan Loading (STS , Cursor cache)

•Evolving Plans With DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE

• Evaluate an unverified execution plan for a given statement in the plan history to

become either accepted or unaccepted.

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

SQL Plan

Baseline

Statement LOG

SQL Plan

History

SMB – SQL MANAGEMENT BASE

•SMB is part of the data dictionary

• SMB stores the SQL plan

baselines and plan history in the

SYSAUX tablespace.

• The SMB also contains SQL

profiles

SMB

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW 8

SQL Management Base - SMB

•By default SMB uses 10% of sysaux space

•By default SMB stores the plans for 53 weeks

SQL> Select * from dba_sql_management_config;

parameter_name parameter_value last_modified modified_by

space_budget_percent 10

Plan_retention_weeks 53

•Alert log is written when there is a space issue.

•Space % can be modified using

begin

 dbms_spm.configure(‘space_budget_percent’,25);

 end;

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

SQL Plan Baselines with SQL Tuning Advisor

• Identifies the sql candidates from AWR

• Tests the sql profile by executing the sql statement

• if ACCEPT_SQL_PROFILES =TRUE and performance improves three folds than the

profile is accepted

• If SPB exists than a new plan is added

• This enables to use the new plan immediately

AWR

Identify the sql’s

Generate recomendations

Test sql profiles

Implement

Generates report

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

Evolution of New Plans

• Dba invokes the dbms verify plan (exec dbms_spm.evolve_sql_plan_baselines)

• Optimizer verifies if the new plan can perform better than other baseline plans

• If it is, than the new plan is accepted

• If not it remains in the plan history.

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW 11

SPM - Plan Selection Process

The optimizer selects a SQL plan baseline based on:

• A plan must be ENABLED

• A plan must be ACCEPTED

• A plan can be FIXED

• FIXED plans have precedence

SQL_HANDLE PLAN_NAME ORIGIN ENA ACC FIX AUT

--------------- -------------------- --------- --- --- --- ---
SQL_0014cb1fa90d6612 SQL_PLAN_0056b3ynhuthka1376729 AUTO-CAPTURE YES YES NO YES

SQL_006478a4387ff2b0 SQL_PLAN_00t3snhw7zwpha26aeb8a AUTO-CAPTURE YES YES NO YES

 In case of multiple choices:

• A SQL profile will be taken into account when available

• The optimizer environment is taken into account

• The costs are taken into account

 Note: a stored outline takes precedence over a SQL plan baseline

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW 12

Upgrade scenarios and SQL Plan Management

Capture sql plans before upgrade

•Create a SQL Tuning Set on the current release

•Upgrade to the new release

•Load plans from the SQL Tuning Set into the SMB

Capture current plans after upgrade

• Upgrade database to 11g

• Set OPTIMIZER_FEATURES_ENABLE to the old release

• Turn on the capture. optimizer_capture_sql_plan_baselines = TRUE

• All the sql’s will execute as it was in the previous release.

• All the plans captured will be same as previous release

• Set OPTIMIZER_FEATURES_ENABLE to the new release

Migrate existing Stored Outlines to SQL Plan Baselines

•DBMS_SPM.MIGRATE_STORED_OUTLINE

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

Pre Upgrade Tasks

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

How to create SQL tuning set

BEGIN dbms_sqltune.create_sqlset(sqlset_name =>

‘MCS_10G_03052011', description =>'10g STS Before Upgrade',

sqlset_owner =>‘DORAISR'); END;

How to capture SQL plans in Tuning set (capture every 5 minutes for 1

complete day)

Begin DBMS_SCHEDULER.CREATE_JOB(job_name =>

'CREATE_STS_Mcs', job_type => 'PLSQL_BLOCK', job_action =>

'DECLARE bf VARCHAR2(61); BEGIN bf :=

q''#UPPER(PARSING_SCHEMA_NAME) NOT IN (''SYS'', ''SYSTEM'')

#'‘;dbms_sqltune.capture_cursor_cache_sqlset(sqlset_name=>''

MCS_10G_03052011 '', time_limit=>''86400'', repeat_interval=>''300'',

basic_filter=>bf, sqlset_owner=>'‘DORAISR''); END;', enabled =>

TRUE); End;

Create Sql Tuning set - STS

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

• Store Tuning Set data into staging table

exec DBMS_SQLTUNE.create_stgtab_sqlset(table_name =>

'STS_10G',schema_name => ‘DORAISR');

exec DBMS_SQLTUNE.PACK_STGTAB_SQLSET

 (sqlset_name=>' MCS_10G_03052011 ',

sqlset_owner=>‘DORAISR',staging_table_name=>'STS_10G',

 staging_schema_owner=>‘DORAISR');

• Verify data in staging table

SELECT SQL_ID, PARSING_SCHEMA_NAME, ELAPSED_TIME,

CPU_TIME, ROWS_PROCESSED, EXECUTIONS FROM STS_10G

ORDER BY 3;

Create staging table - STS

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

create table SQL_PLANS_BEFORE_11G as

select sysdate, a.*, indi from sys.GV_$SQL_PLAN a ,dual where a.sql_id in(

 SELECT distinct sql_id FROM sys.gv_$sql WHERE executions > 0

 AND (elapsed_time / 1000) / (DECODE (executions, 0, 1, executions)) > 1

AND parsing_schema_name in

 (‘Schema_name'));

Capture 10G SQL Plans

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

CREATE TABLE sql_perf_data_before_11g

(ts, parsing_schema_name, inst_id, executions, bufgets, diskreads,

elapsedtime, cputime,

cluster_wait_time, rows_processed, sql_id, sqltext, INDICATOR)

AS SELECT SYSDATE, parsing_schema_name, inst_id, executions,

 buffer_gets / executions, disk_reads / executions,

 elapsed_time / 1000 / executions,

 cpu_time / 1000 / executions, cluster_wait_time / 1000 / executions,

rows_processed / executions,

 sql_id, DBMS_LOB.SUBSTR (sql_fulltext, 4000, 1), 'Ora_10g‘

 FROM gv$sql

 WHERE executions > 0

 AND parsing_schema_name not IN (‘SYS',‘SYSTEM‘,‘DBSNMP‘)

 AND (elapsed_time / 1000) / (DECODE (executions, 0, 1, executions)) > 0;

Capture SQLs by Elapsed Time before upgrade

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

Post Upgrade Tasks

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

Parameters

• optimizer_capture_sql_plan_baselines

 - To capture SPM (False by Default)

• optimizer_use_sql_plan_baselines

 - To use by SPM (True by Default)

Parameters for SQL Plan Baseline

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

• Do you want to load ALL plans after the upgrade?

If performance is good after the upgrade to 11g don’t load all plans. Load

only the plans for the sql’s that is performing bad.

• Loading all the plans from STS

Execution plans can be bulk loaded from an STS into SPM using the

PL/SQL procedure

DBMS_SPM.LOAD_PLANS_FROM_SQLSET or through Oracle

Enterprise Manager (EM).

 SQL> Variable cnt number

 execute :cnt := DBMS_SPM.LOAD_PLANS_FROM_SQLSET(

sqlset_name => ' MCS_10G_03052011 ');

Loading of plans into Base lines

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

create table SQL_PLANS_AFTER_11G as

select sysdate, a.*, indi from sys.GV_$SQL_PLAN a ,dual where a.sql_id

in(

 SELECT distinct sql_id FROM sys.gv_$sql WHERE executions > 0

 AND (elapsed_time / 1000) / (DECODE (executions, 0, 1, executions)) > 1

AND parsing_schema_name in (‘Schema_name'));

Capture SQL Plans – After upgrade

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

Comparing SQL – pre and post upgrade

SELECT --pre

 pre.PARSING_SCHEMA_NAME who, pre.inst_id Inst_id, pre.SQL_ID sql_id,

pre.EXECUTIONS preexec,

 pre.DISKREADS preDisk,

 pre.BUFGETS preBuff_gets, pre.ROWS_PROCESSED "preROWS", pre.CPUTIME preCPU,

 -- Diff

 round(pre.ELAPSEDTIME/1000,2) Pre_ELA_TIME,

 round((POST.ELAPSEDTIME/1000-pre.ELAPSEDTIME/1000),2) "Elap Time Diff",

 round((((POST.ELAPSEDTIME-pre.ELAPSEDTIME) / (pre.ELAPSEDTIME))/1000) * 100 , 2)

"% Diff",

 round(post.ELAPSEDTIME/1000,2) Post_elapsed_time,

 -- Post

post.EXECUTIONS postexec, post.DISKREADS postdisk, post.BUFGETS postbuff_gets,

post.ROWS_PROCESSED postrows,

 post.CPUTIME postcpu

 FROM sql_perf_data_before_11g pre, sql_perf_data_after_11g post

 WHERE

 pre.sql_id = post.sql_id

 and post.executions > 1

 and pre.inst_id=post.inst_id

and pre.sql_id in ('gn7t6kvt2409g')

 order by 10 desc

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

Identify performance problem by SQL_ID

sql_perf_data_before_11g pre,

sql_perf_data_after_11g post

SQL_ID
PREE
XEC

PR
ED
IS
K

PREB
UFF_G

ETS

preRO
WS

PREC
PU

PRE_E
LA_TI

ME

Elap
Time
Diff

% Diff

POST_
ELAPS
ED_TI

ME

POST
EXEC

POST
DISK

POST
BUFF_
GETS

POST
ROWS

POST
CPU

gn7t6kvt240
9g

3 8
63.333

3333
35.333

3333
6.6666

6667
.07 7.93 10.81 8 3 8

63.333
3333

35.333
3333

6.6666
6667

Sql_id - gn7t6kvt2409g is performing bad after the upgrade

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

• Assume only one particular sql_id ' gn7t6kvt2409g ‘ is having problem

• Load the plan for that particular sql_id into Baseline

begin

:cnt := dbms_spm.load_plans_from_sqlset

(sqlset_name => ' MCS_10G_03052011,

 basic_filter => 'sql_id='' gn7t6kvt2409g ''');

end;

/

Loading Plans for only affected sql’s

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

• Turn on the auto capture create_stored_outline = TRUE

• Run all the sql or execute the work load

• If you manually execute the sql’s , use the exact sql text (with bind variables)

• Turn of the auto capture. create_stored_outline = FALSE

• Outlines are stored in the OUTLN schema, verify with following sql

– select name, sql_text, category from user_outlines;

• Export the schema and import it into 11g (or)

• Use EM or DBMS_SPM.MIGRATE_STORED_OUTLINE

Example

Migrate the Stored Outlines based on category, sql text …

SQL> exec
:report:=DBMS_SPM.MIGRATE_STORED_OUTLINE(attribute_name=>‘OUTLINE_
NAME‘, attribute_value => ‘sql_stmt');

-- Migrate all Stored Outlines

SQL> exec
:report:=DBMS_SPM.MIGRATE_STORED_OUTLINE(attribute_name=>'ALL');

Migrate to SPM from Stored Outlines

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

1) Source database: Non Prod (QA)

 1.1) Find out sql_handle for the stored basline

 SQL> SELECT SQL_HANDLE, sql_text, PLAN_NAME, ORIGIN,created, ENABLED,

ACCEPTED, FIXED, MODULE

 FROM DBA_SQL_PLAN_BASELINES

 where origin like 'STORED%‘

 and sql_text like ‘select * from sales_tmp where %’

 order by created desc;

 1.2) Create the staging table to hold the baseline information to exp.

 SQL> set serveroutput on

 BEGIN

 DBMS_SPM.CREATE_STGTAB_BASELINE(

 table_name => 'spm_sri',

 table_owner => 'doraisr',

 tablespace_name => 'USERS');

 END;

 /

SQL Plan Baselines from Dev/Test to Prod

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

 1.3) Pack the baseline into staging table

 SQL>

 DECLARE

 l_plans_packed PLS_INTEGER;

 BEGIN

 l_plans_packed := DBMS_SPM.pack_stgtab_baseline(

 table_name => 'spm_sri',

 sql_handle => 'SYS_SQL_1835a435979d3240',

 table_owner => 'DORAISR');

 DBMS_OUTPUT.put_line('Plans Packed: ' || l_plans_packed);

 END;

 /

 1.4) Verify data is captured in the table created

 SQL> select SQL_HANDLE,CREATED

 from DORAISR.spm_sri;

Export this table spm_sri and import it into the target database (prod)

SQL Plan Baselines from Dev/Test to Prod

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

2.1) Import the table into prod database

2.2) Check baseline exist or not for the same sql_handle

 SQL> select SQL_HANDLE, PLAN_NAME, ENABLED, ACCEPTED, FIXED,

 substr(CREATED,1,18) created, OPTIMIZER_COST, SQL_TEXT

 from dba_sql_plan_baselines

 where sql_handle='SYS_SQL_1835a435979d3240';

 2.3) if exist, drop it or you can disable it.

 SQL> set serveroutput on

 DECLARE

 l_plans_dropped PLS_INTEGER;

 BEGIN

 l_plans_dropped := DBMS_SPM.drop_sql_plan_baseline (

 sql_handle => 'SYS_SQL_1835a435979d3240',

 plan_name => NULL);

 DBMS_OUTPUT.put_line(l_plans_dropped);

 END;

Migrate the plan to Prod

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

2.4) unpack baseline data

DECLARE

 l_plans_unpacked PLS_INTEGER;

 BEGIN

 l_plans_unpacked := DBMS_SPM.unpack_stgtab_baseline(

 table_name => 'spm_sri',

 table_owner => 'DORAISR',

 creator => 'DORAISR');

 DBMS_OUTPUT.put_line('Plans Unpacked: ' || l_plans_unpacked);

 END;

 /

 2.5) verify baseline created with enabled=yes, accepted=yes

 select SQL_HANDLE, PLAN_NAME, ENABLED, ACCEPTED, FIXED,

 substr(CREATED,1,18) created, OPTIMIZER_COST, SQL_TEXT

 from dba_sql_plan_baselines

 where sql_handle='SYS_SQL_1835a435979d3240';

Migrate the plan to Prod

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

• Keep (OFE) optimizer_features_enable=10.x after the upgrade to 11g

• Set capture_sql_plan_baselines =true

• Set use_sql_plan_baselines =false

• This will enable optimizer to capture all the 10g plans into sql plan baseline

• Set OFE to 11.x after few days

• Set use_sql_plan_baselines=true to start using the 10g plans instead of new 11g

• Set capture_sql_plan_baselines =false (if you don’t want to capture new 11g plans)

Preferred - Upgrade Strategy

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

Lessons Learned

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

1. Optimizer_capture_sql_plan_baseline

Disabled optimizer_catpure_sql_plan_baseline on may 26 but still it is

capturing the sql plans. What is the reason ?

 SQL> show parameter sql_plan_baselines

 NAME TYPE VALUE

-------------------------------- ------------------------------ -------------

optimizer_capture_sql_plan_baselines boolean FALSE

optimizer_use_sql_plan_baselines boolean TRUE

 1 select count(*),trunc(created),accepted,fixed from DBA_SQL_PLAN_BASELINES

 2 group by trunc(created),accepted,fixed

 3* order by 2;

 COUNT(*) TRUNC(CREATED) ACCEPTED FIXED

---------- ------------------ --------- ---------

 191 05-26-2011 00:00:00 NO NO

 50 05-26-2011 00:00:00 YES NO

 23 05-27-2011 00:00:00 NO NO

 2 05-29-2011 00:00:00 NO NO

 10 05-30-2011 00:00:00 NO NO

 387 05-31-2011 00:00:00 NO NO

Once a plan exist in the base line it will continue to capture ,

however they will be marked as not accepted.

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

Use DBMS_SPM.ALTER_SQL_PLAN_BASELINE to disable the bad plan

SQL> variable cnt number;

SQL> exec :cnt :=DBMS_SPM.ALTER_SQL_PLAN_BASELINE(-

SQL_HANDLE => 'SYS_SQL_bf5c9b08f72bde3e', -

PLAN_NAME => 'SQL_PLAN_byr4v13vkrrjy42949306‘ -

ATTRIBUTE_NAME => 'enabled', -

ATTRIBUTE_VALUE => 'NO');

SQL> SELECT sql_handle, sql_text, plan_name, enabled FROM dba_sql_plan_baselines

Where sql_handle = 'SYS_SQL_bf5c9b08f72bde3e‘

And plan_name = 'SQL_PLAN_byr4v13vkrrjy42949306‘;

SQL_HANDLE SQL_TEXT PLAN_NAME ENABLE

---------- ------------------------------ ----------------- ------

SYS_SQL_bf5c9b08f72bde3e SELECTPROD_NAME,SUM SQL_PLAN_byr4v13vkrrjy42949306 N

2. Disabling the BAD plan

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

Solution - Flush the sql_id

• PURGING A SQL FROM SHARED POOL

• select ADDRESS, HASH_VALUE from V$SQLAREA where SQL_ID

='3hs5fvu5mhmw9'

• exec sys.DBMS_SHARED_POOL.PURGE ('00000008739FEBD8, 2335723401', 'C');

• Run the sql again after flushing from the shared pool.

• Check the note of the plan to verify if it used baseline plan.

SQL> select * from table(dbms_xplan.display_cursor('3hs5fvu5mhmw9',0));

PLAN_TABLE_OUTPUT

--

SQL_ID 3hs5fvu5mhmw9,child number 0

Plan hash value: 3401323945 (removed the plan to fit the slide)

Note

 - SQL plan baseline SQL_PLAN_8q2x2hscyvhyad01cf9be used for this

statement

3. Why optimizer not using the new loaded plan

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

4. Selection criteria for multiple Fixed Plans

If Multiple Plans are FIXED with sql plan baseline, what criteria is used by the

optimizer to choose amongst the FIXED plans

If there are multiple FIXED plans, then the Optimizer will cost each of the plans and pick

the one with the lowest cost.

Why it is not using the sql profile generated by tuning advisor

When there is a fixed plan in the baseline , the accepted sql profile is added to the

baseline as non fixed plan. Optimizer will not use the tuned plan when reproducible fixed

plan is present.

•Database does not evolve a fixed SQL plan baseline when you execute

DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE.

•You can evolve a fixed SQL plan baseline by manually loading new plans into it

Note

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

5. Where is sql_id in baseline

SQL_ID is used everywhere else like Vsql, vsql_plan to analyze a specific

SQL . However, SQL PLAN BASELINE table does not have Sql_id column.

Any easier way to locate a specific SQL in SQL PLAN BASELINE table

The dictionary view DBA_SQL_PLAN_BASELINES does not contain sql_id.

Matches need to be made using the SIGNATURE column

 For example

SELECT s.sql_id, s.sql_text

FROM v$sql s, dba_sql_plan_baselines b

WHERE s.exact_matching_signature=b.SIGNATURE;

Or you can use the the PLAN_NAME column in DBA_SQL_PLAN_BASELINES.

SELECT s.sql_id, s.sql_text

FROM v$sql s, dba_sql_plan_baselines b

WHERE s.sql_plan_baseline=b.plan_name;

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

6. Why it is not using the fixed plan

We exported the good plan and imported it into this prd database (11.2.0.1)

1. We made this new plan as fixed.

2. We notice there are multiple accepted for the same sql but only the one we

imported is fixed.

3. Oracle picks up one of these accepted plans stored instead of the fixed plan.

4. We remove all the other accepted plans and keep only the fixed alone .

5. Optimizer now picks up this plan and performs good.

Reason from oracle (probably a bug we believe)

1. Sql baseline contained several accepted and one fixed plan for that sql_id

2. Query issued – Matches with one of the accepted plan but not the fixed plan

3. Goes ahead and execute the accepted plan even though it is not fixed.

4. Marking a plan as fixed did not prevent the optimizer from using other accepted

plans in the SQL plan baseline.

According to oracle document - 11.2.0.2

1. Optimizer gives preference to fixed plans over non-fixed ones

2. Optimizer will pick the fixed plan even though non accepted plan cost is less

3. If the fixed plans are not reproducible than the optimizer picks non-fixed

accepted plans

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW 39

7. Issues faced after Database upgrade

SQL Plans

•The SQL Plans that were captured in the export were SQL Plans from the

AWR for the past 30 days.

•Sql plans that were not part of the captured plans started behaving bad.

• These are the plans that were good in 10g but misbehaved in 11g

Solution :

• STS set should span across months to capture sql’s from month end

processing.

• Capture another set of STS from cursor cache also.

• Keep at least one non prod still in 10g this will help in bringing the affected

 sql_plan alone from 10g to 11g

.

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW 40

8. Our strategy capturing from load test

Issue

• Upgraded our QA box to 11.2

• Load test with Optimizer_features_enable set to 10.2.0.4

• optimizer_capture_sql_plan_baselines = TRUE

• We assumed that we got all the sql

• Many sql’s were missing in baseline since SPM captures only

repeatable sql statement

Solution

• Populate baselines from cursor cache or use a SQL Tuning Set

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW 41

9. Issues faced after Database upgrade

SQL Plans

•Optimizer NOT using SQL PLAN baselines even with FIXED or ACCEPTED

plans

• We had this problem with 11.2.0.1

Solution :

• Due to Oracle cardinality feedback feature it was not using our fixed sql

plans.

• We turned off this by setting *._optimizer_use_feedback=FALSE

• You can also disable this by

select /*+ opt_param(‘_optimizer_use_feedback’ ‘false’) */

• It is suppose to be fixed in 11.2.0.2 but we didn’t try changing it back yet

http://kerryosborne.oracle-guy.com/2011/07/cardinality-feedback/

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

• Note.789888.1 - HOW TO LOAD SQL PLANS INTO SPM FROM AWR

• Note 801033.1 - HOW TO MOVE 10gR2 EXECUTION PLANS AND LOAD INTO
11g SPM

• Note 787692.1 - HOW TO LOAD HINTED EXECUTION PLANS INTO SQL PLAN
BASELINE

• Note.790039.1 - HOW TO DROP PLANS FROM SPM REPOSITRY

• Note.456518.1 - SQL PLAN MANAGEMENT

Useful Metalink Notes

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

Reference

Oracle® Database Performance Tuning Guide 11g Release 2 (11.2)

 http://docs.oracle.com/cd/E11882_01/server.112/e16638.pdf

Upgrading from Oracle Database 10g to 11g: What to expect from the Optimizer –

Maria Colgan

SQL Plan Management in Oracle Database 11g - Maria Colgan

What to expect from the Optimizer when upgrading from Oracle Database 10g to 11g

- Maria Colgan & Mohamed Zait

http://kerryosborne.oracle-guy.com/

http://oracle-randolf.blogspot.com

Czuprynski, J. 2008. Oracle Database 11g: SQL Plan Management, Part 1 & 2

http://www.databasejournal.com/features/oracle/article.php/3723676/Oracle-

Database-11g-SQL-Plan-Management-Part-1.htm

http://www.databasejournal.com/features/oracle/article.php/3730391/Oracle-

Database-11g-SQL-Plan-Management-Part-2.htm

http://kerryosborne.oracle-guy.com/
http://kerryosborne.oracle-guy.com/
http://kerryosborne.oracle-guy.com/
http://oracle-randolf.blogspot.com/
http://oracle-randolf.blogspot.com/
http://oracle-randolf.blogspot.com/

NYOUG – SQL Plan Stability - Post 11g upgrade at VZW

Q U E S T I O N S

A N S W E R S

