
1 of 33

Achieving Great Web Performance
Using ONLY SQL and PL/SQL

Dr. Paul Dorsey & Michael Rosenblum
Dulcian, Inc.

www.dulcian.com
Sept 28, 2010

2 of 33

The Task

Budget and Finance System for the government
of Ethiopia
 1000 sites, 5000 users
 20 languages
 Replace a legacy system

 SQL Server => Oracle
 Complex => simple architecture
 No change in user functionality

3 of 33

The Challenges

Limited connectivity
Large area (2 times the size of Texas)
Limited IT skills of government employees
No senior IT skills available in country
Dirty data in source system
Cultural differences

4 of 33

The Problem

Everyone assumes infinite bandwidth.

3. Application
Server

2. Send data from
Client to app server

5. Database

6. Return data from
database to app server

1. Client

4. Send data from
app server to database

7. Data in
Application Server

8. Return data from
app server to client

9. Process
data in
client

5 of 33

Why is my web application
slow?

10%
Too much

data to
app server

40%
Many round

trips to
database20%

Big pages to
client

10%
Too many

trips to client

10%
Other

10%
Bad

queries

6 of 33

Many round trips from
application server to database

Getters and Setters are problematic
 Fannie Mae

 26.5 years to execute month-end routine
 DOD

 60,000 round trips to populate 1 screen
 USAF Reserve Recruiting

 Batch routine
 20 minutes in Java
 .2 seconds in PL/SQL

Send data from
application server to

database

7 of 33

Big Pages

Web Center
 “Some of our pages are less than 1MB.”

“Mr. Page Bloat”

Images JavaScript

Images JavaScript

8 of 33

The Solution

One round trip from database to
application server per UI operation

Minimize page size

1

2

9 of 33

One round trip from
application server to database

(Implications)
Thick database or no SQL

 No context switch
ALL user interface information in one place

 Only way to reduce round trips to zero
Ultra-thick database

 Everything in the database

10 of 33

Minimize page size

How small is small enough?
 High bandwidth (>1MB/second)

 1 MB page is OK
 Low bandwidth (5k/second)

 10K is the maximum

 Industry standard
 Modern, cool, Web 2.0

 >1MB
 Basic HTML

 40K

11 of 33

What is possible?
Logical description of page

<Page height = “200” ...>
<Field height = “20” .../>
<Field height = “20” .../>
<Button label = “Save” .../>

</Page>
UI Layout 4K
Data 1K
First time load = 5K
Subsequent load = ≤1K

12 of 33

Implications for desired
architecture

1) It doesn’t currently exist.
2) Forget industry standard.
3) Must keep complete copy of UI state in the

database.
4) Super smart “browser” required
5) Application Server has minimal role.
6) Ultra-thick database
7) Minimal runtime logic sent to client

13 of 33

Other Constraints

1) Simple to learn/use
2) Productive
3) Functionally complete cool Web 2.0 pages
4) Rule-based

 “The articulation of the rules is independent of the
implementation of the rules.”

5) UI tech stack-independent

14 of 33

The Solution:
Event/Action Framework (EAF)

Engine

2. Send data to engine

Client

6. Update screen
3. Determine action
4. Process

1. Detect event 5. Send Update screen info

15 of 33

What do we need?

1) Client
 Event Detector
 Action Interpreter

2) Server
 Magic Engine

3) Interface Architecture
 How to communicate between client and engine

16 of 33

Interface Architecture

XML for communication
<Screen>

<Field . . ./>
<Button . . ./>

<Screen>

17 of 33

Repository Data Model

WINDOW

TREE MENU

COMPONENT

0..1

EVENT
1*

ACTION

FIELD PANEL

1

*

*

*

DATA
SOURCE0..1*

*

18 of 33

Client

Big JavaScript library
 ExtJS foundation for components

Java

19 of 33

1) Repository
2) Scripting Language
3) Runtime Engine
4) IDE

Server

20 of 33

Advantages
Easy to learn (easier than APEX)
Client/Server quality on the web

 100% of Forms functionality implemented
Rapid development (a little faster than Forms)
Only SQL & PL/SQL required
Fastest web applications ever

 10x -100x reduction in network traffic
Deploy client/server or web (NO conversion

cost)

21 of 33

But how???

22 of 33

Thick database techniques

UI screens NEVER touch tables.
 De-normalized views
 Function-based views

 All complex data transformations in PL/SQL only!
 Effective utilization of:

 BULK operations
 CLOBs
 XML types

23 of 33

The idea:
 Convert relational data into something that will make

user interface development easier.
 Easiest way to separate data representation in the

front-end from the real model.
The solution:

 Use a view with a set of INSTEAD-OF triggers.

De-Normalized Views

24 of 33

create or replace view v_customer
as
select c.cust_id,
 c.name_tx,
 a.addr_id,
 a.street_tx,
 a.state_cd,
 a.postal_cd
from customer c
left outer join address a
 on c.cust_id = a.cust_id

De-Normalized view

25 of 33

create or replace trigger v_customer_ii
instead of insert on v_customer
declare
 v_cust_id customer.cust_id%rowtype;
begin
 if :new.name_tx is not null then
 insert into customer

(cust_id,name_tx,phone_tx)
 values
 (object_seq.nextval,:new.name_tx,:new.phone_tx)
 returning cust_id into v_cust_id;
 if :new.street_tx is not null then
 insert into address

(addr_id,street_tx,state_cd, postal_cd, cust_id)
 values (object_seq.nextval,:new.street_tx,
 :new.state_cd,:new.postal_cd, v_cust_id);
 end if;
end;

INSTEAD-OF Insert

26 of 33

Case:
 Complex search engine

 About 20 different filtering criteria
 Applicable to different tables
 Large data volume

Problem:
 Unpredictable performance results in a single SQL

query.
Solution

 Function-based view with dynamic SQL under the
hood.

Function-Based Views (1)

27 of 33

Function-Based Views (2)
 A. Create an output object with corresponding collection.
CREATE type search_ot as object
(Name_TX Varchar2(50),Phone_TX varchar2(20)…)
CREATE type search_nt as table of search_ot;

 B. Create a function to return collection all search criteria
become input variables

CREATE OR REPLACE FUNCTION f_search_tt
(i_name_tx varchar2, i_phone_tx varchar2, …)

RETURN search_nt
IS
v_tt search_nt:= search_nt();

BEGIN
 RETURN v_tt;
END;

28 of 33

Function-Based Views (3)
 Use Dynamic SQL build the query

FUNCTION f_search_tt IS
 v_sql_tx varchar2(32000);
BEGIN
 v_sql_tx:='select search_ot(...) '||chr(10)

'from ... '||chr(10)
'where ...';

 if i_name_tx is not null then
 v_sql_tx:=v_sql_tx||

' and cust.name_tx like ''%'||i_name_tx||'%'' '
 end if;
 ...

 execute immediate v_sql_tx bulk collect into v_tt;
 ...
END;

29 of 33

Function-Based Views (4)

 Give code to developers

select name_tx, address_tx, phone_tx, …
from table(
 cast(f_search_nt
 (:1, -- name
 :2, -- phone
 …

)
 as search_nt)
)

30 of 33

Conclusions

We CAN do better
We do not need…

 Complex architectures
 FAT pages
 Lots of big servers

The keys…
 Rules approach
 Ultra thick database
 All UI logic and processing in the server

31 of 33

Share your Knowledge:
Call for Articles/Presentations

 Submit articles, questions, … to

IOUG – The SELECT Journal ODTUG – Technical Journal
 select@ioug.org pubs@odtug.com
 Reviewers wanted

32 of 33

Dulcian’s BRIM® Environment

Full business rules-based development
environment

For Demo
 Write “BRIM” on business card

33 of 33

Contact Information
 Dr. Paul Dorsey – paul_dorsey@dulcian.com
 Michael Rosenblum – mrosenblum@dulcian.com
 Dulcian website - www.dulcian.com

Developer Advanced
Forms & Reports Designer

Handbook

Latest book:
Oracle PL/SQL for Dummies

Design Using UML
Object Modeling

	Achieving Great Web Performance Using ONLY SQL and PL/SQL
	The Task
	The Challenges
	The Problem
	Why is my web application slow?
	Many round trips from application server to database
	Big Pages
	The Solution
	One round trip from application server to database (Implications)
	Minimize page size
	What is possible?
	Implications for desired architecture
	Other Constraints
	The Solution: Event/Action Framework (EAF)
	What do we need?
	Interface Architecture
	Slide 17
	Client
	Server
	Advantages
	But how???
	Slide 22
	De-Normalized Views
	De-Normalized view
	INSTEAD-OF Insert
	Function-Based Views (1)
	Function-Based Views (2)
	Function-Based Views (3)
	Function-Based Views (4)
	Conclusions
	Share your Knowledge: Call for Articles/Presentations
	Dulcian’s BRIM® Environment
	Contact Information

