Analytical Functions are Cool!

Presented by: Michael Davis CEO OmegaSoft,LLC

Agenda

- What are Analytic Functions
- Analytic Function Syntax
- Analytic Function Examples
 - Simple Example
 - Top N Ranking Functions
 - Lag/Lead Functions
 - Pivot queries
- Question & Answer

What are Analytic Functions

- Extension of ANSI SQL
- Major catagories
 - Grouping Sets
 - With Clause
 - Top n Ranking
 - Aggregate Window

What are Analytic Functions

- Extension of ANSI SQL (Cont)
- Major catagories
 - First and Last
 - Reporting Functions
 - Lag and Lead
 - Case and Width_Bucket Functions

Function Clause

 The function clause begins with a SQL function. A function statement can include any one of the 33 Analytical Functions, such as SUM, COUNT, ETC.

- Over Statement
 - Select MAX() OVER ()
 - The OVER() statement signals a start of an Analytic function. That is what differentiates an Analytical Function from a regular Oracle SQL function.

Partitioning clause

Select MAX() OVER(partition by field1).

The portioning clause is used to setup the group of data that the Analytic function would be applied to. Though, it's akin to a Group by statement in a SQL query, it is applied to the result set of a query, and not a group.

Order by Clause

Select MAX() OVER(Partition by field order by)

Order by specify the order of the window in the group by statement. The Order by clause is a keyword in the Oracle Analytic syntax that is requirement for using some Analytic functions

Window Clause

 species the relative rows to which the Analytic function needs to be applied.

Simple Example

Simple Example result

CUST_NAME	CLM_AMT
XYZ	100,000,000
Lexus Corp	80,000,000
First America	60,000,000
Yelp	78,000,000
ABC	75,000,000
Omega Int.	74,000,000
S Corp	70,000,000
Acme	25,000,000
Sun Enterprise	23,000,000
Film studio	17,000,000

Analytic Version

```
SQL> select cust_name,
    2 SUM(clm_amt) OVER (partition by cust_name) clm_amt
    3 /
```


Analytic Example result

CUST_NAME	CLM_AMT
XYZ	100,000,000
Lexus Corp	80,000,000
First America	60,000,000
Yelp	78,000,000
ABC	75,000,000
Omega Int.	74,000,000
S Corp	70,000,000
Acme	25,000,000
Sun Enterprise	23,000,000
Film studio	17,000,000

LEAD/LAG Functions

```
SQL> select cust_name,
2 LAG(clm_amt,1,0) OVER (partition by cust_name order by clm_amt)
CLM_AMT_PREF

3 LEAD(clm_amt,1,0) OVER (partition by cust_name order by clm_amt)
CLM_AMT_NEXT

4 from member
5 /
```


LEAD/LAG Function result

CUST_NAME	CLM_AMT	CLM_AMT_PREV	CLM_AMT_NEXT
XYZ	100,000,000	0	80,000,000
Lexus Corp	80,000,000	100,000,000	60,000,000
First America	60,000,000	80,000,000	78,000,000
Yelp	78,000,000	60,000,000	75,000,000
ABC	75,000,000		
Omega Int.	74,000,000		
S Corp	70,000,000		
Acme	25,000,000		
Sun Enterprise	23,000,000		
Film studio	17,000,000		0

Top N ranking Function

```
SQL> select cust_name, clm_amt,

dense_rank() OVER (partition by clm_amt)

dr

from (select cust_name,

SUM(clm_amt) OVER (partition by cust_name) clm_amt

but cust_name) clm_amt
```


Top N ranking result

CUST_NAME	CLM_AMT	DR
XYZ	100,000,000	1
Lexus Corp	80,000,000	2
First America	60,000,000	3
Yelp	78,000,000	4
ABC	75,000,000	5
Omega Int.	74,000,000	6
S Corp	70,000,000	7
Acme	25,000,000	8
Sun Enterprise	23,000,000	9
Film studio	17,000,000	10

The end...

- Email Address:
 - mdavis@omegasoftgroup.com

Questions and Answers

Got Questions?

References

- SS64.com. (1999-2010). Analytic Features: <u>http://ss64.com/ora/syntax-analytic.html</u>
- Tom Kyte (2001). Expert One-on-One Oracle: Wrox Press Ltd.

