
Holistic

Oracle Tuning

Seeing the forest in the
trees

Mike Ault

Oracle Guru, TMS, Inc

Introduction

Holistic

Holistic:

1 : of or relating to holism

2 : relating to or concerned with wholes or

with complete systems rather than with the

analysis of, treatment of, or dissection into

parts <holistic medicine attempts to treat both

the mind and the body> <holistic ecology

views humans and the environment as a

single system>

Oracle Holism

• Oracle is like an onion

• When you dig into it, it makes you

cry

• Actually, I meant to say it has many

layers…

Oracle’s Many Layers

• Physical – IO subsystems and the user read and
database write processes

• Memory – caches, pools, latches

• Kernel – All those wonderful Oracle processes

• Structure – Tables, indexes, views, LOBs, etc

• Code – SQL, PL/SQL, JAVA, C+, D- (oops),

• Middleware – Oracle’s and third party

• Network – SQLNet

• RAC – (let’s not go there…)

Oracle the Onion

• Each layer rests on the one

underneath

• If any layer is “rotten” then the

entire structure is in danger.

• Likewise, a change to any layer may

propagate effects up, and down

through other layers.

Structure Layer Example

• Given: Statement X is generating excessive
physical IOPS when it executes

• Local Fix: Add indexes

• Immediate local affect: Statement X runs faster
with fewer IOPS

• Holistic effects: Statements Y and Z switch from
proper indexes for them to indexes added for
statement X

• Holistic Result: X runs faster, but Y and Z run
slower, overall result: Slower system even
though the tuning effort on X was a success!

• Act locally, think globally!

However…

• Not all local actions have a negative

affect

• A switch to a new index is because

the optimizer has looked at statistics

• However, we all know this may not

always work as designed!

Memory Example

• Generally caching is a good thing

• The more we cache the faster the application will
run.

• This comes at a cost.

– Latches

– Enqueues

• Now IO has to be handled by the CPU using
logical IO.

• Logical IO is faster than physical IO

• Except if it introduces addition CPU cycles and
the system becomes CPU bound.

Seeing the Forest

• Without enough IO bandwidth,

adding memory or CPU to a system

that is IO bound may not help at all.

• We have to understand the holistic

view to take the proper course of

action.

Local Actions with Negative

Holistic Affects
• Structure Layer

– Bad table design

– Bad indexes

– Insufficient Indexes

• Code Layer:
– No Bind Variables

– Use of Distinct

– Insufficient Joins

– Bad joins

• IO Subsystem
– Low Capacity IO Subsystem

– Improperly configured IO Subsystem

• Memory Layer
– Insufficient Memory Resources

– Improperly configured memory

• CPU Layer
– Insufficient CPU Resources

• Middleware/Application Layer
– Bad code generators

– Improperly Configured Middleware/software

Structure Layer

Structure Layer
• Internal physical structures that make up the

database.

• Was just tables and indexes

• Now several types of tables (IOT, External,
Global Temporary)

• Now several types of indexes (B-tree, bitmap,
concatenated, bitmap join)

• Materialized views (Full, on demand, fast, on
commit)

• LOBs (BLOB, CLOB, NCLOB)

• Objects (types, methods, varrays, etc)

• Many other structures

Tables

Improperly Designed Tables

• Under normalized

• Over normalized

• Improper data types

• Recursive tables

Under Normalized

• Under normalized has repeating

values

– A contact list where the address is

stored with each contact

– In companies with multiple contacts,

the address is stored multiple times

– Exception – denormalized reportign

materialized views, fact tables in DWH

Over Normalized

• Over Normalized
– 4th Normal form

– Boyce-Codd 5th Normal form

– Even 3rd normal in some cases

• Too many joins, if every query requires 4-
5 or more joins, you are over normalized

• Exception – data warehouse with fact and
dimension tables

• Oracle uses
_optimizer_max_permutations of 2000,
limits number of pathways (6-7 tables)

Improper Data Types

• Using one size fits all (VARCHAR2

unnamed columns)

– Forcing self-joins

– Depending on other columns to determine

what type a given column should be

– Used in “flex-field” designs

• CHAR for VARCHAR2

• CHAR or VARCHAR2 for NUMBER

• CHAR or VACHAR2 for DATE

Recursion in Tables

• Bill-of-materials problem

– Assembly is made of other assemblies

that are made of parts

• Typified by “ears” on ERD

diagrams

• Can sometimes be corrected by

proper normalization

• Also caused by “flex-fields”

Improper Table Use

• Using normal tables as temporary

tables (intermediate report tables)

– Use global temporary tables instead

• Using too complex ETL

– Use external tables instead

• Using IOT improperly

– Not good for non-primary key reads

– Not good in high DML use

Indexes

Improperly Implemented Indexes

• Insufficient indexes

• Too many indexes

• Incorrect Index Use

Insufficient Indexes

• Typified by too many full table

scans

– Large numbers of physical reads

– Large numbers of

db_file_scattered_read waits

– Look at v$sqlplan table

– Index columns used in joins

– Use function based indexes on

columns searched by functions

Too Many Indexes

• Typical in third party apps

• They don’t know what to index, so
they index everything

• Drives up cost of DML

• Again use v$sqlplan to see what is
used

• Also look at index monitoring

• Index join columns and searched
columns only

Incorrect Indexes

• Use btree for high DML high cardinality: DATE

• Use bitmap for low DML low cardinality: SEX

• INSERT ok for bitmap, DELETE and UPDATE
bad.

• Same constraints on bitmap-join indexes as are
for bitmap indexes

• Multi-column indexes must be designed properly

– Proper order

– Excessive skip-scan searches on multi-column indexes
indicates order issues.

• Low selectivity indexes (frequent full scans)

Materialized Views

Materialized Views

• Were called snapshots

• Very under-utilized

• Use for reports, summaries, intermediate
result tables

• Gives the impression of instant response

• Can be ON-DEMAND, or ON COMMIT

• Can be built on pre-built tables
(partitions)

• Can be independently indexed

• Automatically recognized by the
optimizer

Other Physical Layer Items

LOBS

• Large Objects

– Table reference

– Actual LOB

– LOB Index

• Avoid in-line storage

– Places index with data

• Properly configure LOB storage

• Do not store with main data

Objects and Methods

• Objects are VARRAYS, TYPES

• METHODS tell Oracle what to do

with them

• Stored as inline/out of line LOBS

• Rarely perform as well as normal

tables

• Use sparingly

Code layer

Code Layer Issues

• Restricted to SQL

• Each other code base have general

problems as well

– JAVA

– C

– C+, C++, C#

– etc

No Bind Variables

• Probably the number one code
related issue in SQL

• Allow a statement to be reused.

• Without them identical statements
(identical except for literals) result
in new version of the statement in
shared pool

• The optimizer has to re-evaluate the
statement causing recursive SQL.

Indications of Bind Variable

Issues

• Large shared pool (sometimes larger

than the db cache area)

• High recursive SQL

• High use of shared pool memory

• Low reuse for statements with

greater than 1 execution

• And of course, literals instead of

bind variables in the code

Bind Variable Issues

Fixing Bind Variables

• quick band aid set the initialization

parameter CURSOR_SHARING to

SIMILAR or FORCE

• Ultimate fix is to correct the bad

coding and teach good bind variable

usage going forward.

Improper Use of DISTINCT

• Usually a quick code fix

• What performs in a 100 row test

environment will fail in a

10,000,000 row real environment

• Causes sorts and CPU cycles

• Affects CPU, Memory, and IO

Subsystem

Improper Use of DISTINCT

Indications of Improper

DISTINCT Usage

• Large numbers of sorts

• Large numbers of sort rows

• WHERE clause evaluation.

• If there X tables in a query then

need X-1 join conditions

IO Subsystem

=

IO Subsystem Layer Issues

• Basically two issues

– Capacity

– Configuration

IO Capacity

• What exactly are we talking about?

• Storage capacity is only one facet

• You have to consider IOPS as well

• If you size for IOPS usually you will

be over specified for storage

capacity with disks

IO IOPS Capacity Issue

• Notice latency is >5ms

• Notice Buffer Waits – usually indicates write time

issue

• Notice these times are for single block reads!

Why?

• Obviously overloaded disks (200 IOPS/disk)

• For maximum IOPS and lowest latency use
striping

• Only utilize a maximum of 30-50% of each disk

• Many say only 20-30% of a disk should be used

• This is called short-stroking the disk

• This means that you must buy at least 3-4 times
the amount of disks than you need for storage
capacity

Disk Issues

• Rotational and Seek latency

• Only one request per disk at a time

• Controllers optimize disk access but
are still limited

• This why, regardless of storage
capacity, disks are limited to 200
IOPS

• Note that with multiple users, the
number disks must go up

What Can be Done?

• Inexpensive SSD technology (when
measured in terms of $/IOPS or storage
density $/IOPS/GB)

• Eliminates rotational and lateral latency
and nearly eliminates the simultaneous
block access limitations

• Buy just the capacity you need and still
get needed IOPS

• Most SSDs provide in excess of 80,000
IOPS with latencies less than 1 ms

Improper Disk Configuration

• Drives IO waits on properly sized IO
subsystem

• The system or storage administrator must
understand the system may have few
write processes, but has many read
processes

• This leads to, in an improperly configured
disk system, that a single process doing a
full index or table scan will block many
other users.

Blocking Read

Non-Blocking Read

IO Subsystem
• Actual disk operations are more complex than shown,

• The general concept is valid

• You want as few a number of disks as possible servicing a
single read for concurrency, while you want as many as
possible for speed of access

• It is a tough balancing act for the IO subsystem due to the
nature of physical disk drives and how the data is actually
retrieved form the drives

• Note that SSD type systems usually eliminate blocking of
this type.

• The storage manager must understand how Oracle accesses
the IO subsystem and how to best optimize that IO
subsystem for Oracle

• One size doesn’t fit all!

Memory Layer

Memory Layer Issues

• The memory layer is the actual area

where the database caches, pools

and other memory structures reside.

• Possible Issues:

– Insufficient Memory Resources

– Improper Memory Configuration

Insufficient Memory

Resources

• Excessive physical reads.

• Excessive db file sequential reads.

• With automatic memory

management may show as numerous

deferred actions

• Excessive swapping of memory

between components

Insufficient Memory Resource

Indications

Insufficient Memory Resource

Indications

Improper Memory

Configuration

• Within Oracle there are multiple caches
and pools.

• The DBA should utilize proper settings
for the shared pool database cache, keep,
recycle and multiple block size caches.

• Additional settings for the large pool, java
pool and streams pool should be used as
needed

• Even when AMM is used, floor values
should be set for these parameters

Improper Memory

Configuration

• When using SGA_TARGET and
SGA_MAX_SIZE or MEMORY_TARGET and
MEMORY_MAX_SIZE, be sure they aren’t set
equal to each other

• This leads to memory thrashing

• I recommend at least 25% gap

• As you gain operational experience for your
system’s needs this gap can be reduced, or
increased

• The dynamic performance view,
v$sga_resize_ops and the AWR resize
operations section can be utilized to rethink the
floor settings for specific parameters

V$SGA_RESIZE_OPS Query

select

COMPONENT, OPER_TYPE, OPER_MODE,

INITIAL_SIZE, TARGET_SIZE,

FINAL_SIZE,

STATUS,

to_char(START_TIME,'mmdd hh24:mi')

start_time,

to_char(END_TIME,'mmdd hh24:mi')

end_time

from V$SGA_RESIZE_OPS

order by start_time

Example Report

Memory Layer

• In data warehouse (DWH) and decision
support (DSS) it may be impossible to
provide enough cache to support all
operations.

• In many cases the developers or the
DBAs or both may not be aware of all the
options Oracle provides.

• For Example: utilizing star joins.

• Star joins will:
– reduce 30 minute queries to 30 seconds

– Reduce FTS

– Reduce Memory usage

Memory Layer
• When you have to have db file scattered reads (full table

or index scans)

• Validate index strategy

• Make sure the IO subsystem is properly sized to handle the
load.

• It may be necessary to over buy the number of disks
needed to the tune of 30-40 or more times the number of
disks needed for storage capacity

• The major cause for the need for all of these drives is
contention and the queuing that results with too-few
spindles.

• By utilizing low latency IO subsystems such as SSD that
don’t block, you don’t need to over-buy on storage
capacity to meet IOPS needs.

CPU Layer

CPU Layer

• Where all of the processing occurs within a
database.

• With the introduction of extremely distribute
processing as in the Exadata systems, this line is
blurring

• Some of the processing is actually being done at
the storage level.

• This may even blur more as CPUs are built into
memory chips (8 CPUs on a single gigabyte
memory chip)

• CPU Issues:

– Insufficient CPU Resources

Insufficient CPU Resources

• Tuning usually pushes the log jam from
one part of the information stream to
another

• Once we tune the code, fix the IO
subsystem, and fix the memory issues we
may have with our system we usually end
up with higher CPU utilization.

• Higher CPU utilization in itself is not a
bad thing, unless it leads to over
utilization or overloading of the system
CPUs.

Insufficient CPU Resources

• Look at the balance between Busy, Idle
and IO Wait on the CPUs

• For example, if the percent busy is 30, the
percent idle 20 and the IO wait percent
50, then even if we reduce the IO wait to
less than 5% we can still only reclaim 20
percent of performance losses.

• In order to get any improvement to the IO
subsystem above 20 percent we would
need to reduce CPU usage, add more
CPUs or replace the CPUs with ones that
can sustain a higher level of operations

Middleware

Middleware or Application

Issues

• The middleware/application server

layer may be were application logic

is processed and may also act as a

caching area for frequently used

data.

• Middleware or Application issues:

– Bad SQL code generators

– Improper configurations

Bad SQL Code Generators
• Middleware and software configurations can be a

real problem.

• The local staff usually have no control over the
code

• The biggest problems usually have to do with
code generators that develop ad-hoc queries
against the database.

• Too often these code generators (actually, their
developers) have no clue how to write optimal
SQL for Oracle, they:
– Don’t use proper joins

– Overuse outside joins

– Use distincts when they aren’t needed

– Fail to use bind variables

Bad Configurations

• Failure to allow for array processing

• SQLNet uses a default array size of
10, JAVA uses 15.

• If your result set is in the hundreds
or thousands of values and you leave
these settings at their default, you
just got hundreds of SQLNet
roundtrips added to your response
time

Example
• A company called me in to examine their application.

• It was taking 30 seconds to get a response and of course
Oracle was getting the blame.

• Using the v$sqltext and v$sqlarea views I was able to
isolate the key SQL for specific forms and reports, then I
used the Quest – Benchmark Factory to model the
application

• In over 90 percent of the scenarios they could describe
accurately the response at the database layer was less and 1
second for all queries.

• The Cognos report layer was not using bind variables and
was using the default SQLPlus arraysize of 10.

• This resulted in excessive recursive SQL, and, hundreds of
SQLNet roundtrips on a network where some areas where
remote (India, South America, Europe) and have anywhere
from 100-500 millisecond network ping times.

Solution:

• Always test assuming data volumes

will be hundreds or thousands of

times your test set, unless you are

lucky enough to test with full data

sets.

• Always monitor the affects of all

layers upon the others.

Summary

• In order to be holistically tuned a transaction
(insert, update, delete or select) utilizes the
minimum number of resources (Physical IO,
logical IO, memory and CPU) possible.

• The database must be properly designed, the IO
subsystem adequate to handle both the storage
capacity and the IOPS needed with the proper
latency, and that the CPU and memory resources
are enough to handle the needed load.

• Once you start thinking holistically about
performance and how the entire system, not a
single statement, is tuned, you are on the way to
better, longer lasting performance.

Questions?

• Mike.a@ramsan.com

• http://www.statspackanalyzer.com

• Http://www.ramsan.com

mailto:Mike.a@ramsan.com
http://www.statspackanalyzer.com/
http://www.ramsan.com/

