Under the Hoods of Cache Fusion, GES, GRD and GCS

Arup Nanda
Principal Database Architect
Starwood Hotels
About Me

• Oracle Database Admin for 16 years
• RAC (and OPS) since 1999
• Troubleshoot, tune performance
• Developed and Teach a course: RAC Performance Tuning
Why this Session?

• If I have a 100MB database, I can have a 100 MB buffer cache and I never have to go to the disk, right?
• How does Cache Fusion know where to get the block from?
• How are block locks vary from row locks?
• I’m confused about Global Cache Service (GCS), Global Resource Directory (GRD) and Global Enqueue Service (GES)
• We will understand how all these actually work
Buffer Cache

Select * from EMP
RAC – More than 1 Buffer Cache

Select * from EMP

Cache Fusion

Server Process
System Global Area

Server Process
System Global Area

© Arup Nanda, 2010
To Cache Fusion or Not?

• When a block is requested, the buffer cache is searched
• If not found, there are two options
 – Get from disk
 – Get from the other cache
• If found, there are three options:
 – Send the buffer to the user
 – Examine other caches for the presence of this buffer
 – Get from the disk
• How does it decide which option to take?
Buffer States

• The buffer can be retrieved in two modes
 – Consistent Read (CR)
 – Current
• There can be several CR copies of a buffer
• There can be only one current mode
 – For an instance
• Each current buffer is Shared Current
• Only one buffer in the entire cluster can be Exclusive Current
Block – Row Relationship

Instance 1

Instance 2

Row 1
Row 2
Row 3
Row 4

Block
Update on One Instance

`UPDATE ROW1 ...`

- **Instance 1**: Row 1, Row 2, Row 3, Row 4, Block
- **Instance 2**: Empty
Update a Different Row on Node 2

Instance 1
- Row 1
- Row 2
- Row 3
- Row 4
- Block

Instance 2
- Row 1
- Row 2
- Row 3
- Row 4
- Block

Cache Fusion

UPDATE ROW2 ...

© Arup Nanda, 2010
Buffer Versions

Instance 1
- Row 1
- Row 2
- Row 3
- Row 4
- Block

Instance 2
- Row 1
- Row 2
- Row 3
- Row 4
- Block

SCN=10
SCN=20
SCN=30

© Arup Nanda, 2010
Buffer Versions

UPDATE ROW3 ...

Instance 1

Row 1
Row 2
Row 3
Row 4
Block

Instance 2

Row 1
Row 2
Row 3
Row 4
Block

SCN=10
SCN=20
SCN=30
SCN=40

© Arup Nanda, 2010
Buffer State 1

UPDATE ROW1 ...

Instance 1

- Row 1
- Row 2
- Row 3
- Exclusive
- Current

Instance 2

SCN=20

SCN=10

© Arup Nanda, 2010
Update a Different Row on Node 2

UPDATE ROW2 ...

Instance 1
- Row 1
- Row 2
- Row 3
- Consistent Read

Instance 2
- Row 1
- Row 2
- Row 3
- Exclusive Current

Cache Fusion

DB
- SCN=10

© Arup Nanda, 2010
Buffer Versions

UPDATE ROW3 ...

Instance 1

Row 1
Row 2
Row 3
Consistent Read

Row 1
Row 2
Row 3
Exclusive Current

Instance 2

Row 1
Row 2
Row 3
Consistent Read

SCN=10

SCN=20

SCN=40

SCN=30

© Arup Nanda, 2010
Putting it all together

• When the block comes from the disk to the buffer cache
 – If the intent is to modify, it’s gotten in CURRENT mode
 – If the intent is to read, it’s gotten in CR mode
• There can be only one Shared Current per instance
 – Multiple SCURs in the cluster
• Many CR copies in the instance
Past Image

• Sequence of Events
 – Instance 1 has version 1 of the block
 – Instance 2 has version 2
 – Instance 2 updates the block -> current block changes
 – Instance 1 wants to update the block
 – Instance 2 prepares a copy of the block before sending it

• This “copy” is called a Past Image (PI) of the block
 – Note: the term Past Image is not documented in Oracle Manuals. It’s just widely understood and acceptable.
Cache Fusion in Operation

Time 0

Session 1
Instance 1

Session 2
Instance 2

Session 3
Instance 3

DB
Time 1

```
select * from t1
```
Time 2

Session 1
Instance 1
SCUR

Session 2
Instance 2
CR

Session 3
Instance 3

select * from t1

Buffer State

Cache Fusion

DB
Time 3

Update t1 ...

Session1
Instance 1
CR

Session2
Instance 2
CR

Session3
Instance 3
XCUR

Buffer State

DB
Time 4

update t1 ...

Session1

Instance 1

Instance 2

Instance 3

Buffer State

XCUR

CR

PI

Cache Fusion

DB
Time 5

- **Session 1**
 - Instance 1
 - Buffer State: XCUR

- **Session 2**
 - Instance 2
 - Buffer State: CR
 - Cache Fusion

- **Session 3**
 - Instance 3
 - Buffer State: CR

alter system checkpoint

Past image is gone
Buffer Lock

• When an instance wants to change the state of the buffer from CR to Exclusive Current
 – It must get a lock on that buffer
 – This is called a Buffer Lock
 – Different from a row lock

Buffer Locks:
Instance 1 = *Exclusive*
Instance 2 = *None*

Row Locks:
Session 1 = *Row 1 and Row 3*
Session 2 = *Row 2*
Global Cache Service

• Provides buffer from one instance to the other
 – But does not know who has what type of buffer lock
Global Enqueue Service

• Used to be called Dynamic lock Manager (DLM)
• Holds the information on the locks on the buffers
• Each lock has a name shown in V$LOCK_ELEMENT (or X$LE)
• This is different from row locking, which is on a specific row
• If a buffer is locked, the lock element name is shown in V$BH.LOCK_ELEMENT
Lock Queuing

- Each Buffer in a RAC instance has two queues
 - Grant Queue - the queue where the requesters are queued for the locks to be granted in a certain mode
 - Convert Queue - the queue where the granted requests are queued to be notified to the requesters
- The queues for a specific buffer are placed in a single instance
Master Instance

- The instance that has the Grant and Convert Queues of the Buffer is called the Master Instance of the Buffer.
- A Buffer has only one Master.
- The Master may change:
 - Manually
 - By a process known as Dynamic Resource Mastering.
- When an instance wants to get a lock, it has to check with the master.
Global Resource Directory

• Someone has to keep a list of all buffers and where they are mastered
• This is called Global Resource Directory (GRD)
• GRD is present on all the instances of the cluster
• To find out the master:

```sql
select b.dbablk, r.kjblmaster master_node
from x$le l, x$kjbl r, x$bh b
where b.obj = <DataObjectId>
and b.le_addr = l.le_addr
and l.le_kjbl = r.kjbllockp
```
Demo
In Summary

• Buffers are gotten in 2 modes
 – CURRENT - is need to be modified
 – CR - if selected only for reading
• Every time other node wants the buffer
 – it is copied to a new buffer and sent (CR processing)
• There can be only one current state of the buffer in an instance in Shared Mode
• Only one Exclusive Current in the Cluster
• The Exclusive/Shared Current Locks on the Buffer is handled by GES
• Each buffer has a master node that holds the lock Grant and Convert Queues
• GRD maintains information on the buffers-masters
Thank You!

My Blog: arup.blogspot.com
My Email: arup@proligence.com
Download the Scripts:
proligence.com/cfscripts.zip

© Arup Nanda, 2010