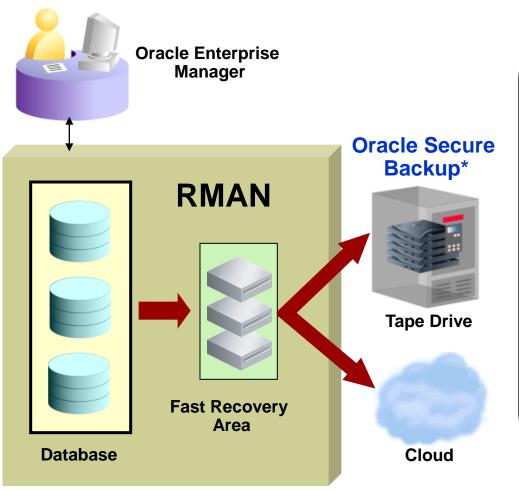

ORACLE

RMAN Configuration and Performance Tuning Best Practices

Timothy Chien Principal Product Manager Oracle Database High Availability Timothy.Chien@oracle.com



- Recovery Manager Overview
- Configuration Best Practices
 - Backup Strategies Comparison
 - Fast Recovery Area (FRA)
- Performance Tuning Methodology
 - Backup Data Flow
 - Tuning Principles
 - Diagnosing Performance Bottlenecks
- Summary/Q&A

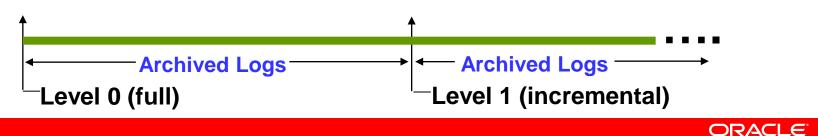
ORACLE

Oracle Recovery Manager (RMAN) Oracle-Integrated Backup & Recovery Engine

- Intrinsic knowledge of database file formats and recovery procedures
 - Block validation
 - Online block-level recovery
 - Tablespace/data file recovery
 - Online, multi-streamed backup
 - Unused block compression
 - Native encryption
- Integrated disk, tape & cloud backup leveraging the Fast Recovery Area (FRA) and Oracle Secure Backup

*RMAN also supports leading 3rd party media managers

ORACLE


Critical Question to Ask

- What are my recovery requirements?
 - Assess tolerance for data loss Recovery Point Objective (RPO)
 - How frequently should backups be taken?
 - Is point-in-time recovery required?
 - Assess tolerance for downtime Recovery Time Objective (RTO)
 - Downtime: Problem identification + recovery planning + systems recovery
 - Tiered RTO: database, tablespace, table, row
 - Determine backup retention policy
 - Onsite, offsite, long-term
- Then..how does my RMAN strategy meet those requirements?

Option 1: Full & Incremental Tape Backups

- Well-suited for:
 - Databases that can tolerate hours/days RTO
 - Environments where disk is premium
 - Low-medium change frequency between backups, e.g. < 20%
- Backup strategy:
 - Weekly level 0 and daily 'differential' incremental backup sets to tape, with optional backup compression
 - Enable block change tracking only changed blocks are read and written during incremental backup
 - Archived logs are backed up and retained on-disk, as needed

RMAN Script Example

- Configure SBT (i.e. tape) channels:
 - CONFIGURE CHANNEL DEVICE TYPE SBT PARMS
 '<channel parameters>';
- Weekly full backup:
 - BACKUP AS BACKUPSET INCREMENTAL LEVEL 0
 DATABASE PLUS ARCHIVELOG;
- Daily incremental backup:
 - BACKUP AS BACKUPSET INCREMENTAL LEVEL 1 DATABASE PLUS ARCHIVELOG;

Option 2: Incrementally Updated Disk Backups

- Well-suited for:
 - Databases that can tolerate no more than a few hours RTO
 - Environments where disk can be allocated for 1X size of database or most critical tablespaces
- Backup strategy:
 - Initial image copy to FRA, followed by daily incremental backups
 - Roll forward copy with incremental, to produce new on-disk copy
 - Full backup archived to tape, as needed
 - Archived logs are backed up and retained on-disk, as needed
 - Fast recovery from disk or SWITCH to use image copies

RMAN Script Example

- Configure SBT channels, if needed:
 - [CONFIGURE CHANNEL DEVICE TYPE SBT PARMS '<channel
 parameters>';]
- Daily roll forward copy and incremental backup:
 - RECOVER COPY OF DATABASE WITH TAG 'OSS';
 - BACKUP DEVICE TYPE DISK INCREMENTAL LEVEL 1 FOR RECOVER OF COPY WITH TAG 'OSS' DATABASE;
 - [BACKUP DEVICE TYPE SBT ARCHIVELOG ALL;]
- What happens?
 - First run: Image copy
 - Second run: Incremental backup
 - Third run+: Roll forward copy & create new incremental backup
- Backup FRA to tape, if needed:
 - [BACKUP RECOVERY AREA;]

Fast Recovery with RMAN SWITCH Demo

Option 3: Use Data Guard Offload Backups to Physical Standby

• Well-suited for:

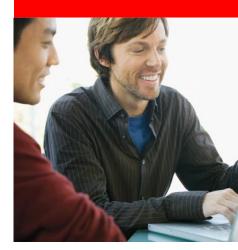
- Databases that require no more than several minutes of recovery time, in event of any failure
- Environments that can preferably allocate symmetric hardware and storage for physical standby database
- Environments whose tape infrastructure can be shared between primary and standby database sites

Backup strategy:

- Full & incremental backups offloaded to physical standby database
- Fast incremental backup on standby with Active Data Guard
- Backups can be restored to primary or standby database
 - Backups can be taken at each database for optimal local protection

Comparison: Backup Strategies

Strategy	Backup Factors	Recovery Factors
Option 1: Full & Incremental Tape Backups	 Fast incrementals Save space with backup compression Cost-effective tape storage 	 Full backup restored first, then incrementals & archived logs Tape backups read sequentially
Option 2: Incrementally Updated Disk Backups	 Incremental + roll forward to create up-to-date copy Requires 1X production storage for copy Optional tape storage 	 Backups read via random access Restore-free recovery with SWITCH command
Option 3: Offload Backups to Physical Standby Database	 Above benefits + primary database free to handle more workloads Requires 1X production hardware and storage for standby database 	 Fast failover to standby database in event of any failure Backups are last resort, in event of double site failure

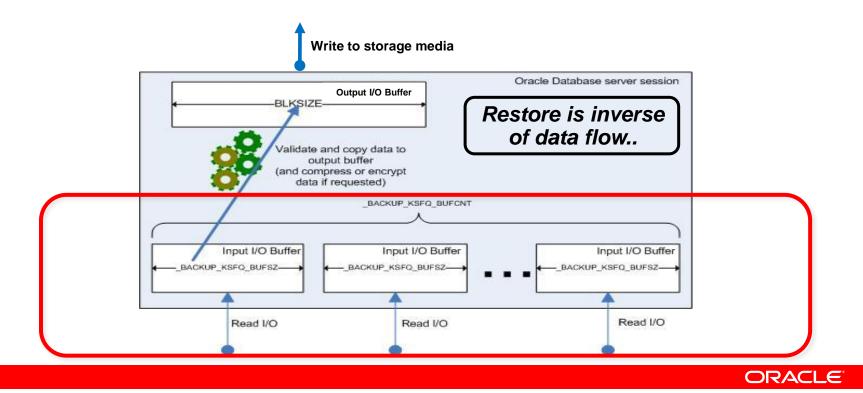

ORACLE

Fast Recovery Area (FRA) Sizing

- If you want to keep:
 - Control file backups and archived logs
 - Estimate total size of all archived logs generated between successive backups on the busiest days x 2 (in case of unexpected redo spikes)
 - Flashback logs
 - Add in {Redo rate x Flashback retention target time x 2}
 - Incremental backups
 - Add in their estimated sizes
 - On-disk image copy
 - Add in size of the database minus size of temporary files
 - Further details:
 - <u>http://download.oracle.com/docs/cd/E11882_01/backup.112/e106</u> <u>42/rcmconfb.htm#i1019211</u>

FRA File Retention / Deletion Policies

- When FRA space needs exceed quota, automatic file deletion occurs in the following order:
 - 1. Flashback logs
 - Oldest Flashback time can be affected (with exception of guaranteed restore points)
 - 2. RMAN backup pieces/copies and archived redo logs that are:
 - Not needed to maintain RMAN retention policy, or
 - Have been backed up to tape (via **DEVICE TYPE SBT**) or secondary disk location (via **BACKUP RECOVERY AREA TO DESTINATION** `..')
- If archived log deletion policy is configured as:
 - APPLIED ON [ALL] STANDBY
 - Archived log must have been applied to mandatory or all standby databases
 - SHIPPED TO [ALL] STANDBY
 - Archived log must have been transferred to mandatory or all standby databases
 - BACKED UP <N> TIMES TO DEVICE TYPE [DISK | SBT]
 - Archived log must have been backed up at least <N> times
 - If [APPLIED or SHIPPED] and BACKED UP policies are configured, <u>both</u> conditions must be satisfied for an archived log to be considered for deletion.


Performance Tuning Methodology

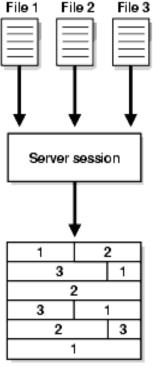
- RMAN Backup Data Flow
- Performance Tuning Principles
- Diagnosing Performance Bottlenecks

RMAN Backup Data Flow

- A. Prepare backup tasks & read blocks into input buffers
- B. Validate blocks & copy them to output buffers
 - Compress and/or encrypt data if requested
- C. Write output buffers to storage media (DISK or SBT)
 - Media manager handles writing of output buffers to SBT

Tuning Principles

- 1. Determine the maximum input disk, output media, and network throughput
 - E.g. Oracle ORION
 - <u>http://download.oracle.com/docs/cd/E11882_01/server.112/e16638/</u> iodesign.htm#CACJEEDI
 - Evaluate network throughput at all touch points, e.g. database server
 -> media management environment -> tape system (ref. TCP/IP performance measurement tools such as qperf)
- 2. Configure disk subsystem for optimal performance
 - Use ASM: typically, separate DATA and FRA disks
 - If not using ASM, stripe data files across all disks with 1 MB stripe size


Tuning Principles ... contd.

- 3. Tune RMAN to fully utilize disk subsystem and tape
 - Verify asynchronous I/O supported by platform, otherwise:
 - Disk backup: set **DBWR_IO_SLAVES**
 - Tape backup: set **BACKUP_TAPE_IO_SLAVES** unless media manager states otherwise
 - Disk backup: allocate as many channels as can be handled by system
 - For image copies, one channel processes one data file at a time
 - Tape backups: allocate one channel per tape drive
 - Note: Restore time will degrade with higher number of channels per tape drive, due to tape-side multiplexing (which leads to interleaving of disjoint backup sets in the same tape)
 - With higher number of channels, if read phase time (determined by **BACKUP** VALIDATE)
 - Decreases (vs. same number of channels), bottleneck is in read phase: ref. next slide
 - Stays the same, bottleneck is most likely in media manager: ref. Slide 27

Read Phase Tuning

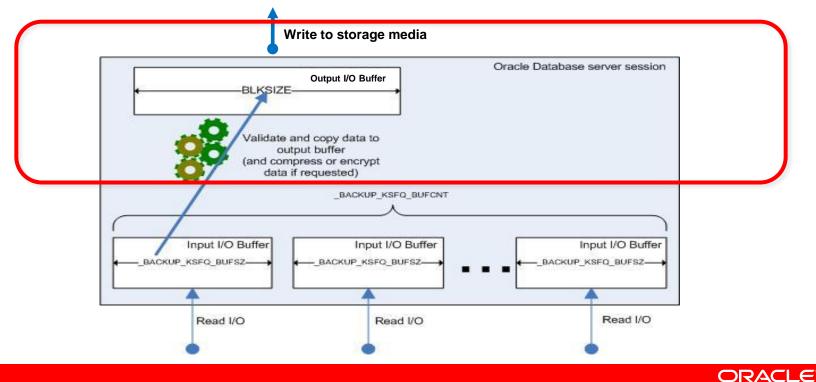
RMAN Multiplexing

Backup set

- Multiplexing level: max number of files read by one channel, during backup - controlled by:
 - FILESPERSET [default: 64] parameter of the BACKUP command: how many datafiles to put in each backup set
 - MAXOPENFILES [default: 8] parameter of ALLOCATE
 CHANNEL or CONFIGURE CHANNEL: how many datafiles
 RMAN can read from simultaneously.
- Multiplexing level: Min (MAXOPENFILES, FILESPERSET)
 - Determines number and size of input buffers in v\$BACKUP_ASYNC_IO/v\$BACKUP_SYNC_IO
 - All buffers allocated from PGA, unless disk or tape I/O slaves are enabled
 - If slaves are enabled, all buffers allocated from SGA or LARGE_POOL (if set)

Read Phase Tuning ... contd. RMAN Input Buffers

- For ASM or striped system:
 - MAXOPENFILES=1 => 16 buffers/file, 1 MB/buffer = 16 MB/file
 - Allows largest number and sized buffers by default
 - Additional multiplexing not needed, since files are striped
- For non-striped system:
 - MAXOPENFILES=8 => 4 buffers/file, 512 KB/buffer = 2 MB/file
 - Reduce the number of input buffers/file to more effectively spread out I/O usage (since each file resides on one disk)

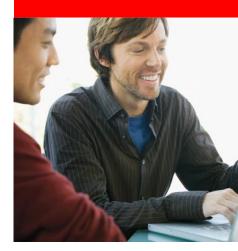

Tuning Principles ... contd.

- 4. If **BACKUP VALIDATE** still does not utilize available disk I/O & there is available CPU and memory:
 - Increase RMAN buffer memory usage
 - With Oracle Database 11g Release 11.1.0.7 or lower versions -
 - Set <u>BACKUP_KSFQ_BUFCNT</u> (default 16) = # of input disks
 - Number of input buffers per file
 - Achieve balance between memory usage and I/O
 - Set **BACKUP KSFQ BUFSZ** (default 1048576) = stripe size (in bytes)
 - With Oracle Database 11g Release 2 -
 - Set _BACKUP_FILE_BUFCNT, _BACKUP_FILE_BUFSZ
 - Restore performance can increase with setting these parameters, as output buffers used during restore will also increase correspondingly
 - Refer to Support Note 1072545.1 for more details
 - Note: With Oracle Database 11g Release 2 & ASM, all buffers are automatically sized for optimal performance

RMAN Backup Data Flow

- A. Prepare backup tasks & read blocks into input buffers
- B. Validate blocks & copy them to output buffers
 - Compress and/or encrypt data if requested
- C. Write output buffers to storage media (DISK or SBT)
 - Media manager handles writing of output buffers to SBT

Tuning Principles ... contd.



- 5. RMAN backup compression & encryption guidelines
 - Both operations depend heavily on CPU resources
 - Increase CPU resources or use LOW/MEDIUM setting
 - Verify that uncompressed backup performance scales properly, as channels are added
 - For encryption:
 - TDE column encryption
 - For encrypted backup, data is double encrypted (i.e. encrypted columns treated as if they were not encrypted)
 - TDE tablespace encryption
 - For compressed & encrypted backup, encrypted tablespaces are decrypted, compressed, then re-encrypted
 - If only encrypted backup, encrypted blocks pass through backup unchanged

Tuning Principles ... contd.

- 6. Tune RMAN output buffer size
 - Output buffers => blocks written to DISK as copies or backup pieces or to SBT as backup pieces
 - Four buffers allocated per channel
 - Default buffer sizes
 - DISK: 1 MB
 - SBT: 256 KB
 - Adjust with **BLKSIZE** channel parameter
 - Set BLKSIZE >= media management client buffer size
 - No changes needed for Oracle Secure Backup
 - Output buffer count & size for disk backup can be manually adjusted
 - Details in Support Note 1072545.1 RMAN Performance Tuning Using Buffer Memory Parameters
 - Note: With Oracle Database 11g Release 2 & ASM, all buffers are automatically sized for optimal performance

Performance Tuning Methodology

- RMAN Backup Data Flow
- Performance Tuning Principles
- Diagnosing Performance Bottlenecks

Diagnosing Performance Bottlenecks Part – 1

- Query V\$BACKUP_ASYNC_IO
 - Check EFFECTIVE_BYTES_PER_SECOND column (EBPS) for row where TYPE = 'AGGREGATE'
 - If EBPS < storage media throughput, run **BACKUP VALIDATE**
 - Case 1: BACKUP VALIDATE time ~= actual backup time, then read phase is the likely bottleneck
 - Refer to RMAN multiplexing and buffer usage guidelines
 - Investigate 'slow' performing files: find data file with highest (LONG_WAITS / IO_COUNT) ratio
 - If ASM, add disk spindles and/or re-balance disks
 - Move file to new disk or multiplex with another 'slow' file

ORACLE

Diagnosing Performance Bottlenecks Part – 2

- Case 2: If **BACKUP VALIDATE** time << actual backup time, then buffer copy or write to storage media phase is the likely bottleneck
 - Refer to backup compression and encryption guidelines
 - If tape backup, check media management (MML) settings
 - TCP/IP buffer size
 - Media management client/server buffer size
 - Client/socket timeout
 - Media server hardware, connectivity to tape
 - Enable tape compression (but not RMAN compression)

ORACLE

Restore & Recovery Performance Best Practices

- Minimize archive log application by using incremental backups
- Use block media recovery for isolated block corruptions
- Keep adequate number of archived logs on disk
- Increase RMAN buffer memory usage
- Tune database for I/O, DBWR performance, CPU utilization
- Refer to MAA Media Recovery Best Practices paper
 - <u>Active Data Guard 11g Best Practices</u> (includes best practices for Redo Apply)

Summary

Effective RMAN Backup & Restore Strategy

- 1. Recovery & business requirements drive the choice
 - Disk?
 - Tape?
 - Data Guard?
- 2. RMAN tuning: find bottleneck at each phase & remove it
 - Read blocks into input buffers (memory, disk I/O)
 - Copy to output buffers (CPU, compression, encryption)
 - Write to storage media (memory, I/O, media management, HW config)
- 3. Know your media management product and tape configuration
 - What matters is the end-to-end throughput!

Hardware and Software Engineered to Work Together

