Things You Should Know About 11g CBO

U

D

R

S

В

Dave Anderson Founder and Oracle DBA, SkillBuilders dave@skillbuilders.com

SkillBuilders.com/SQLTuning

SkillBuilders.com/SQLTuning © 2010

K

Some Things I Really Hope You Want to Know About CBO!

Agenda

- Feedback-Based Optimization
- Direct Reads for Full Scans
- New Join Techniques
- Parallel Query Enhancements
- Null Aware Anti Joins
- DBMS_STATS Extended Stats
- SQL Plan Management

Feedback-Based Optimization

U

D

E

R

S

В

The bridge between the SQL Engine and the CBO.

SkillBuilders.com/SQLTuning © 2010

K

What's the Problem?

D

R

S

• Two issues have been particularly troublesome

B

- Inaccurate cardinality
 - \circ Number of rows passed out of plan step
 - o How to get better estimates ?
- Bind variables

S

ĸ

- Value not known until runtime
- \circ Value can change
 - Sometimes warrants new plan

В

U

R

D

S

Solutions Weren't "Perfect"

- Bind Variable Peeking
 - Plan based on 1st value used
- Dynamic Sampling
 - Cost, not automatic
- Hints

S

K

- Too rigid, Things change
- Stored Outlines (deprecated)
 - \circ Too fixed
- SQL Profiles
 - Provide adjustments for parameters, card, object statistics
 - Need to manually run "Automatic Tuning Advisor"
- Plans change Bad Surprises?

11g Feedback-Based Optimization

U

D

В

- Optimizer can automatically get *runtime* data from SQL Engine
 - Precise cardinalities

S

- Execution statistics
- Provides two new features
 - 1. Cardinality Feedback
 - 2. Adaptive Cursor Sharing

S

R

L

U

S

R

Cardinality Mis-Estimates

• Several reasons for bad cardinality estimates

- Complex and / or multiple predicates
 - 11g Extended Statistics can help (more later)

В

• Functions

S

K

- 11g Extended Stats again...
- Data skew
 - Histograms
- Missing / old stats
- Non-pushable / merge-able Views
- One wrong estimate can snowball
 Orong access path, wrong join method

```
card_demo1.
sql
```

SkillBuilders.com/SQLTuning © 2010

Cardinality Feedback

D

R

E.

S

"Suspicious" queries monitored

- Cardinalities compared after 1st execution
- o If different, cursor marked for re-optimization
- o Injects hint into query to supply correct cardinality

В

Feeds back just once

- Monitoring disabled after 1st execution
- $\circ\,$ Not intended to solve volatile data environments
- $\circ\,$ Not intended to evolve plan over life of cursor

Single-table cardinality feedback supported

- Not join cardinality (yet?)
 - Card value returned would be for the join order, technique used
 - Too many variables

Can disable

S

K

alter session set "_optimizer_use_feedback" = false, card_demo2.
 sql

To Bind or Not to Bind....

В

Literals

K

S

- Prevent cursor reuse
- Cause more parsing
- \circ Shared pool latch
- Decrease scalability
- Use more memory
- Bind variables
 - \circ Increase cursor reuse
 - \circ But can cause sub-optimal plans

E

R

9i / 10g Bind Variable Peeking

CBO "peeks" at bind variable values on hard parse
 One-time only

- Provides ability to determine selectivity
 Better than guessing
- But repeated query executions use same plan

 What if subsequent values warrant different plans?
 Use literals in this case

S

11g Adaptive Cursor Sharing

В

- Queries with bind variables
 - \circ Equality predicates on columns with histograms
 - Range predicates
- Marked "bind-sensitive"

S

K

- Bind Profile created
 - Selectivity range stored for each bind variable
- Query monitored with rowsource profiling
- Sample rate decreases
- \circ Eventually turned off if no changes seen

R

11g Adaptive Cursor Sharing

• Made "bind-aware" if feedback dictates

- Only if significant difference in amount of data
 - rowsource profiling
- Cursor not shared if new values are outside range
- Reoptimizes

S

- Will merge cursors if plan same, save cursor cache space
- Oracle now recommending cursor_sharing=force....
 See blog by Oracle's Maria Colgan on August 2, 2010
 I recommend intensive testing first

R

Full Table Scans Have Changed.

U

D

R

E

S

В

Yes, for better or worse.

SkillBuilders.com/SQLTuning © 2010

K

В

D

S

R

Direct Reads for Serial Full Scans

U

- Serial full scan of "large" tables can be done with direct reads
 - Runtime feature, not CBO (but I thought I'd sneak it in here)
 - \circ Plan will not reveal

Pros

S

- Reduced latches
- Reduce flooding of BC

Cons

- "Selfish" reads
- \circ Segment level checkpoint required
- \circ Delayed block cleanouts
- \circ Use of DP can be unpredictable

Undocumented except Metalink Note 793845.1

"Adaptive Direct Reads"?

В

D

Ξ

R

S

Direct Reads for Serial Full Scans

What's large?

 5 * _small_table_threshold

Dave > select ksppstvl, ksppstvl*5

- 2 from x\$ksppi x, x\$ksppcv y
- 3 where (x.indx = y.indx)
- 4 and ksppinm='_small_table_threshold';

Other factors

S

ĸ

- o BC size
- Number of cached blocks (1/2?)
- Number of dirty blocks (1/4?)
- o ASSM, others?

DPR_setup.sql DPR_demo1.sql DPR_demo2.sql

Direct Reads for Serial Full Scans

Clumsy to disable

S

- alter session set "_small_table_threshold" = 999999999;
- alter session set events '10949 trace name context forever, level 1';
- Create tables in KEEP cache?
 - But KEEP meant for small tables ...

В

Compression

- \circ Can change reads to BC
- o (11g offers Advanced Compression)

R

Changes to Nested Loops Joins

U

D

В

Another new technique for nested loops joins.

SkillBuilders.com/SQLTuning © 2010

K

S

S

R

Traditional Nested Loops Join

- Common join technique for small-ish sets
- Starts returning rows quickly

ORACLE' PARTNER

© 2009

SkillBuilders.com

S K I L L B U I L D E R S

Traditional Nested Loops Join

SQL> show parameter optimizer_features_enable
NAME TYPE VALUE
optimizer_features_enable string 11.2.0.1
SQL> explain plan for 2 select /*example1*/ small.object_id 3 from small, big 4 where small.object_id=big.object_id 5 and small.object_type='JAVA RESOURCE';
Id Operation Name Rows Bytes Cost (
0 SELECT STATEMENT 3072 58368 17 1 NESTED LOOPS 3072 58368 17 * 2 TABLE ACCESS FULL SMALL 6 84 5 * 3 INDEX RANGE SCAN BIG_OBJECT_ID 512 2560 2

9i/10g Nested Loop

U

D

E

R

S

В

SQL> alter session set optimizer_features_enable = '10.2.0.4';

SQL> explain plan for 2 select small.object_id, small.object_type 3 from small, big 4 where small.object_id=big.object_id 5 and small.object_type='JAVA RESOURCE' 6 and big.status = 'VALID';

| Id | Operation | Name | Rows | Bytes | Cost

S

ĸ

| 0 | SELECT STATEMENT | | 3072 | 76800 | 106 |* 1 | TABLE ACCESS BY INDEX ROWID| BIG | 512 | 5632 | 18 | 2 | NESTED LOOPS | | 3072 | 76800 | 106 |* 3 | TABLE ACCESS FULL | SMALL | 6 | 84 | 5 |* 4 | INDEX RANGE SCAN | BIG_OBJECT_ID | 512 | | 2

Predicate Information (identified by operation id):

- 1 filter("BIG"."STATUS"='VALID')
- 3 filter("SMALL"."OBJECT_TYPE"='JAVA RESOURCE')
- 4 access("SMALL"."OBJECT_ID"="BIG"."OBJECT_ID")

11g Nested Loops Join

Parallel Query

U

L

D

Е

R

S

S

ĸ

L

L

В

11g Auto-DOP...

- Oracle decides
 - When to enable parallel execution
 - estimated elapsed time >
 parallel_min_time_threshold
 - o DOP
 - Set based on current workload
- Also enables
 - In-Memory PX
 - Has option to read into buffer cache
 - Statement queuing
 - PQ's wait in FIFO queue for enough PX servers

...11g Auto-DOP

U

D

E

R

S

Enable with

ĸ

S

Parameters parallel_degree_policy=AUTO

L B

Default is MANUAL (disabled)

 \circ Hint

```
select /*+ parallel(auto) */ order_date, sum(sale_amount)
from order_history
```

group by order_date

- Limit with
 - Parameter parallel_degree_limit
- On another note...
 - PQ now has auto dynamic sampling

DBMS_STATS

U

D

E

R

S

В

Extended Stats and other enhancements.

ĸ

S K I L L B U I L D E R S

11g Extended Statistics

- Two common issues needed to be addressed
- Correlated columns, esp with skew
 - \circ city / state
 - \circ country / state
- Functions
 - o LOWER(lastname)
- CBO has hard time estimating cardinality

dbms_stats.create_extended_stats(

```
ownname=>user,
```

```
tabname => 'CUSTOMER_HISTORY',
```

```
extension => '(zip, work_zip)' )
```

ext_stats1.sql ext_stats2.sql

Other Stuff

ĸ

S

- New Sampling Algorithm
- Concurrent (parallel) Statistics Job
- Incremental Partition Stats
- Copy Partition Statistics
- Lock Stats at Partition Level
- GATHER_PREFERENCES Granularity

В

U

D

R

- Pending Statistics
- Compare to Pending Statistics

Null-Aware Anti-Joins

U

L

D

E

R

s

S

ĸ

L

L

В

Quick Review: NOT IN Subquery: Anti-Joins

D

E

R

S

U

- Return rows from with no match in NOT IN subquery
- 3 kinds

ĸ

S

- Hash anti-join
- Nested loops anti-join
- Merge anti-join
- Can be very fast method of handling NOT IN

в

Affected by _ALWAYS_ANTI_JOIN parameter

Nested Loops Anti-Join

select /* example1 */ small.object_id, small.owner
from small
where small.object_id not in
(select big.object_id from big)
and small.object_type='JAVA RESOURCE'

call count cpu elapsed disk query current

Parse 1 0.00 0.00 0 0 0 Execute 1 0.00 0.00 0 0 0 Fetch 1 0.00 0.09 21 27 0

total 3 0.00 0.10 21 27 0

Rows Row Source Operation

0 **NESTED LOOPS ANTI** (cr=27 pr=21 pw=0 time=0 us cost=17 size=25 6 TABLE ACCESS FULL SMALL (cr=13 pr=11 pw=0 time=45 us cost=5 6 INDEX RANGE SCAN BIG_OBJECT_ID (cr=14 pr=10 pw=0 time=0 us c

SkillBuilders.com

Anti-Join Hints

U

К

D

R

select /* example3 */ small.object_id, small.owner from small where small.object_id not in (select /*+ nl_aj */ big.object_id from big)
call count cpu elapsed disk query
Parse 1 0.00 0.00 0 0 subquery Execute 1 0.00 0.00 0 0 Fetch 5 0.18 0.17 0 3149
total 7 0.18 0.17 0 3149
Rows Row Source Operation
50 NESTED LOOPS ANTI 1000 TABLE ACCESS FULL SMALL
486400 INDEX RANGE SCAN BIG_OBJECT_ID (object id 33423) SkillBuilders.com

Problem: NOT IN with Nullable Subquery

SQL> alter session set optimizer_features_enable='10.2.0.4';

SQL> explain plan for 2 select customer.* 3 from customer 4 where id not in (select customer_	_id from orders);	Nullable column	
Plan hash value: 3433771971			
Id Operation Name Rows Byte	s Cost (%CPU) Time		
0 SELECT STATEMENT 265K * 1 FILTER 2 TABLE ACCESS FULL CUSTOME * 3 TABLE ACCESS FULL ORDERS	R 265K 36M 1381 (2) 0	0:00:10	
Predicate Information (identified by operati	on id):		Ouch!
1 - filter(NOT EXISTS (SELECT 0 FROM 3 - filter(LNNVL("CUSTOMER_ID"<>:B1		ERE LNNVL("CUSTON	MER_ID"<>:B1)))
SkillBuilders.com		© 2009	

Solution: 11g Null-Aware Antijoins

alter session set optimizer_features_enable='11.2.0.1';

[cut]

Plan hash value: 1984967365

| Id | Operation | Name | Rows | Bytes |TempSpc

| 0 | SELECT STATEMENT | | 2658 | 384K| |* 1 | **HASH JOIN ANTI NA** | | 2658 | 384K| 39M | 2 | TABLE ACCESS FULL| CUSTOMER | 265K| 36M| | 3 | TABLE ACCESS FULL| ORDERS | 2658K| 12M|

Predicate Information (identified by operation id):

1 - access("ID"="CUSTOMER_ID")

| Cost (%CPU)| Time | | 16737 (3)| 00:01:55 | | 16737 (3)| 00:01:55 |

1380 (2)| 00:00:10 | 11125 (2)| 00:01:17 |

SkillBuilders.com

Plan Management

U

L

D

E

R

s

S

ĸ

L

L

В

Introduction: SQL Plan Managment

- "...to guarantee any plan changes that do occur lead to better performance..."
- Plans change
 - \circ Updated stats
 - Parameter changes
 - Database upgrade
 - Data changes
- Goals

- \circ avoid performance regression
- \circ enable gains when possible

S K I L L B U I L D E R S

SPM Basics

- Statement plan(s) managed
- SYSAUX holds repository of plans
 - \circ Plan baseline set of accepted plans for a statement
 - \circ Non-Accepted plans
 - Need to evolve into accepted plans, if better
 - Privilege ADMINISTER SQL MANAGEMENT OBJECT

How is SPM Used?

When statement runs

CBO does normal hard parse (if not in LC)

В

- \circ Looks for match in plan baseline
- o Match

S

ĸ

- Uses matching plan
- No Match
 - Uses lowest cost plan in baseline
 - Adds new plan as non-accepted
 - Need to "evolve" the plan
 - Manually
 - Automatic
 - Weekly Tuning Advisor task
 - Consider "fixed" baseline

E

R

Lastly....

K I L

L

В

U

L

D

Е

R

S

Questions....

One More Thing

All You Need is Love

в

U

1 L

D

E

R

S

John Lennon 1940 - 1980

κ

SkillBuilders.com

Credits

U

В

• Jonathan Lewis

K

S

- <u>http://jonathanlewis.</u>
 <u>wordpress.com/</u>
- Christian Antognini

 http://antognini.ch
- Optimizer Developer Team
 - Allison W Lee and Mohamed Zait
 - <u>http://blogs.oracle.</u>
 <u>com/optimizer/</u>
- Alex Fatkulin, Pythian
 - o http://afatkulin.blogspot.com/
- Charles Hooper
 - <u>http://hoopercharles.</u> wordpress.com/

Tanel Poder

D

o <u>http://blog.tanelpoder.com/</u>

R

- Arup Nanda
 - o <u>http://arup.blogspot.com/</u>
- Richard Foote
 - <u>http://richardfoote.</u>
 <u>wordpress.com</u>
- Dion Cho
 - <u>http://dioncho.wordpress.</u>
 <u>com/</u>

Thanks Again for Attending

Dave Anderson SkillBuilders.com/SQLTuning (slides posted here) dave@SkillBuilders.com 1.401.783.6172