
Things You Should Know About 11g CBO

Dave Anderson
Founder and Oracle DBA, SkillBuilders

dave@skillbuilders.com
SkillBuilders.com/SQLTuning



Some Things I Really Hope You Want to Know About 
CBO! 



Agenda

Feedback-Based Optimization
Direct Reads for Full Scans
New Join Techniques
Parallel Query Enhancements  
Null Aware Anti Joins
DBMS_STATS Extended Stats
SQL Plan Management 



Feedback-Based Optimization

The bridge between the SQL 
Engine and the CBO.



What's the Problem?

Two issues have been particularly troublesome

Inaccurate cardinality 
Number of rows passed out of plan step
How to get better estimates ?

Bind variables
Value not known until runtime 
Value can change

Sometimes warrants new plan



Solutions Weren't "Perfect"
Bind Variable Peeking

Plan based on 1st value used
Dynamic Sampling

Cost, not automatic
Hints

Too rigid, Things change
Stored Outlines (deprecated)

Too fixed
SQL Profiles

Provide adjustments for parameters, card, object 
statistics
Need to manually run "Automatic Tuning Advisor"

Plans change - Bad Surprises?



11g Feedback-Based Optimization

Optimizer can automatically get runtime data from SQL 
Engine

Precise cardinalities
Execution statistics

Provides two new features 
1. Cardinality Feedback 
2. Adaptive Cursor Sharing



Several reasons for bad cardinality estimates
Complex and / or multiple predicates

11g Extended Statistics can help (more later)
Functions

11g Extended Stats again...
Data skew

Histograms
Missing / old stats
Non-pushable / merge-able Views 

One wrong estimate can snowball
Wrong access path, wrong join method

Cardinality Mis-Estimates

card_demo1.
sql



Cardinality Feedback

"Suspicious" queries monitored
Cardinalities compared after 1st execution
If different, cursor marked for re-optimization
Injects hint into query to supply correct cardinality

Feeds back just once
Monitoring disabled after 1st execution
Not intended to solve volatile data environments 
Not intended to evolve plan over life of cursor

Single-table cardinality feedback supported
Not join cardinality (yet?)

Card value returned would be for the join order, technique used
Too many variables

Can disable 
alter session set "_optimizer_use_feedback" = false;card_demo2.

sql



To Bind or Not to Bind....

Literals
Prevent cursor reuse
Cause more parsing
Shared pool latch
Decrease scalability
Use more memory

Bind variables
Increase cursor reuse
But can cause sub-optimal plans



 9i / 10g Bind Variable Peeking

CBO “peeks” at bind variable values on hard parse
One-time only

Provides ability to determine selectivity
Better than guessing

But repeated query executions use same plan
What if subsequent values warrant different plans?
Use literals in this case



11g Adaptive Cursor Sharing

Queries with bind variables
Equality predicates on columns with histograms
Range predicates

Marked “bind-sensitive”
Bind Profile created 

Selectivity range stored for each bind variable 
Query monitored with rowsource profiling
Sample rate decreases
Eventually turned off if no changes seen 

 *ACS_demo.
sql*



11g Adaptive Cursor Sharing

Made “bind-aware” if feedback dictates
Only if significant difference in amount of data 

rowsource profiling 
Cursor not shared if new values are outside range
Reoptimizes
Will merge cursors if plan same, save cursor cache space

Oracle now recommending cursor_sharing=force....
See blog by Oracle's Maria Colgan on August 2, 2010
I recommend intensive testing first



Full Table Scans Have 
Changed.

Yes, for better or worse.



Direct Reads for Serial Full Scans
Serial full scan of "large" tables can be done with direct 
reads

Runtime feature, not CBO (but I thought I'd sneak it in here)
Plan will not reveal

Pros 
Reduced latches
Reduce flooding of BC

Cons
"Selfish" reads
Segment level checkpoint required
Delayed block cleanouts
Use of DP can be unpredictable

Undocumented except 
Metalink Note 793845.1

"Adaptive Direct Reads"?



Direct Reads for Serial Full Scans

What's large?
5 * _small_table_threshold

Other factors
BC size
Number of cached blocks  (1/2?)
Number of dirty blocks (1/4?)
ASSM, others?

Dave > select ksppstvl, ksppstvl*5
  2    from x$ksppi x, x$ksppcv y
  3   where (x.indx = y.indx)
  4     and ksppinm='_small_table_threshold';

KSPPSTVL                       KSPPSTVL*5
------------------------------ ----------
674                                  3370

DPR_setup.sql
DPR_demo1.sql
DPR_demo2.sql



Direct Reads for Serial Full Scans

Clumsy to disable
alter session set "_small_table_threshold" = 999999999;
alter session set events '10949 trace name context 
forever, level 1';
Create tables in KEEP cache?

But KEEP meant for small tables ...
Compression 

Can change reads to BC
(11g offers Advanced Compression)



Changes to Nested Loops Joins

Another new technique for nested 
loops joins.



Traditional Nested Loops Join

Common join technique for small-ish sets
Starts returning rows quickly

No pre-processing of data

Driving (outer) 
Table

Nested LoopsCBO will usually 
choose smaller 

table to drive join

Repeated probes 
done via index

Driven (inner) 
Table

Nested Loops cost = access cost of Outer + (access cost of Inner * number of rows 
from Outer) 



Traditional Nested Loops Join

SQL> show parameter optimizer_features_enable

NAME TYPE VALUE
------------------------------------ ----------- --------
optimizer_features_enable string 11.2.0.1

SQL> explain plan for
2 select /*example1*/ small.object_id
3 from small, big
4 where small.object_id=big.object_id
5 and small.object_type='JAVA RESOURCE';

-------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (
-------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 3072 | 58368 | 17
| 1 | NESTED LOOPS | | 3072 | 58368 | 17
|* 2 | TABLE ACCESS FULL| SMALL | 6 | 84 | 5
|* 3 | INDEX RANGE SCAN | BIG_OBJECT_ID | 512 | 2560 | 2
-------------------------------------------------------------------



9i/10g Nested Loop

Pre-Fetch / Batching introduced
SQL> alter session set optimizer_features_enable = '10.2.0.4';

SQL> explain plan for
2 select small.object_id, small.object_type
3 from small, big
4 where small.object_id=big.object_id
5 and small.object_type='JAVA RESOURCE'
6 and big.status = 'VALID' ;

---------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost
---------------------------------------------------------------------------
| 0  | SELECT STATEMENT | | 3072 | 76800 | 106
|* 1 | TABLE ACCESS BY INDEX ROWID| BIG | 512 | 5632 | 18
|  2 | NESTED LOOPS | | 3072 | 76800 | 106
|* 3 | TABLE ACCESS FULL | SMALL | 6 | 84 | 5
|* 4 | INDEX RANGE SCAN | BIG_OBJECT_ID | 512 | | 2
---------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("BIG"."STATUS"='VALID')
3 - filter("SMALL"."OBJECT_TYPE"='JAVA RESOURCE')
4 - access("SMALL"."OBJECT_ID"="BIG"."OBJECT_ID")



11g Nested Loops Join

Driving (outer) 
Table

Inner 
Table

Inner Table Index

Result of 1st loop from 
Inner Table Index

1st Loop to 
get ROWIDs

2nd Loop to 
get Inner 

Table Rowsnested_loops.sql



Parallel Query

 



11g Auto-DOP…

Oracle decides 
When to enable parallel execution

estimated elapsed time > 
parallel_min_time_threshold 

DOP
Set based on current workload

Also enables
In-Memory PX 

Has option to read into buffer cache
Statement queuing

PQ's wait in FIFO queue for enough PX 
servers



…11g Auto-DOP

Enable with 
Parameters parallel_degree_policy=AUTO

Default is MANUAL (disabled)
Hint

Limit with 
Parameter parallel_degree_limit

On another note...
PQ now has auto dynamic sampling

select /*+ parallel(auto) */ order_date, sum(sale_amount)
from order_history
group by order_date



DBMS_STATS

Extended Stats and other 
enhancements.



11g Extended Statistics
Two common issues needed to be addressed
Correlated columns, esp with skew

city / state
country / state 

Functions
LOWER(lastname)

CBO has hard time estimating cardinality

dbms_stats.create_extended_stats(
     ownname=>user, 
     tabname => 'CUSTOMER_HISTORY',
     extension => '(zip, work_zip)' )

ext_stats1.sql
ext_stats2.sql



Other Stuff

New Sampling Algorithm 
Concurrent (parallel) Statistics Job
Incremental Partition Stats
Copy Partition Statistics
Lock Stats at Partition Level
GATHER_PREFERENCES Granularity
Pending Statistics
Compare to Pending Statistics



Null-Aware Anti-Joins

 



Quick Review: NOT IN Subquery: Anti-Joins

Return rows from with no match in NOT IN subquery
3 kinds

Hash anti-join
Nested loops anti-join
Merge anti-join

Can be very fast method of handling NOT IN
Affected by _ALWAYS_ANTI_JOIN parameter



Nested Loops Anti-Join 

select /* example1 */ small.object_id, small.owner
from small
where small.object_id not in
(select big.object_id from big)
and small.object_type='JAVA RESOURCE'

call count cpu elapsed disk query current
------- ------ -------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0
Execute 1 0.00 0.00 0 0 0
Fetch 1 0.00 0.09 21 27 0
------- ------ -------- ---------- ---------- ---------- ----------
total 3 0.00 0.10 21 27 0

Rows Row Source Operation
------- ---------------------------------------------------
0 NESTED LOOPS ANTI (cr=27 pr=21 pw=0 time=0 us cost=17 size=25
6 TABLE ACCESS FULL SMALL (cr=13 pr=11 pw=0 time=45 us cost=5
6 INDEX RANGE SCAN BIG_OBJECT_ID (cr=14 pr=10 pw=0 time=0 us c



Anti-Join Hints

select /* example3 */ small.object_id, small.owner
from small
where small.object_id not in
(select /*+ nl_aj */ big.object_id from big)

call count cpu elapsed disk query
------- ------ -------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0
Execute 1 0.00 0.00 0 0
Fetch 5 0.18 0.17 0 3149
------- ------ -------- ---------- ---------- ----------
total 7 0.18 0.17 0 3149

Rows Row Source Operation
------- ---------------------------------------------------
50 NESTED LOOPS ANTI 
1000 TABLE ACCESS FULL SMALL 
486400 INDEX RANGE SCAN BIG_OBJECT_ID (object id 33423)

Code hint in 
subquery



Problem: NOT IN with Nullable Subquery
SQL> alter session set optimizer_features_enable='10.2.0.4';

SQL> explain plan for
2 select customer.*
3 from customer
4 where id not in (select customer_id from orders);

Plan hash value: 3433771971

-------------------------------------------------------------------------------
| Id | Operation | Name            | Rows | Bytes | Cost (%CPU)| Time      |
-------------------------------------------------------------------------------
|  0  | SELECT STATEMENT |          | 265K | 36M   | 287M (2)   | 546:01:28 |
|* 1  | FILTER                      |      |       |            |
|  2  | TABLE ACCESS FULL| CUSTOMER | 265K | 36M   | 1381 (2)   | 00:00:10  |
|* 3  | TABLE ACCESS FULL| ORDERS   |    2 | 10    | 1128 (2)   | 00:00:08  |
-------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter( NOT EXISTS (SELECT 0 FROM "ORDERS" "ORDERS" WHERE LNNVL("CUSTOMER_ID"<>:B1)))
3 - filter(LNNVL("CUSTOMER_ID"<>:B1))

Nullable column

Ouch!



Solution: 11g Null-Aware Antijoins

alter session set optimizer_features_enable='11.2.0.1';

[cut] 

Plan hash value: 1984967365

--------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes |TempSpc
--------------------------------------------------------------
| 0  | SELECT STATEMENT | | 2658 | 384K|
|* 1 | HASH JOIN ANTI NA | | 2658 | 384K| 39M
| 2  | TABLE ACCESS FULL| CUSTOMER | 265K| 36M|
| 3 | TABLE ACCESS FULL| ORDERS | 2658K| 12M|
--------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - access("ID"="CUSTOMER_ID")

-------------------------
| Cost (%CPU)| Time |
-------------------------
| 16737 (3)| 00:01:55 |
| 16737 (3)| 00:01:55 |
| 1380 (2)| 00:00:10 |
| 11125 (2)| 00:01:17 |
-------------------------



Plan Management

 



Introduction: SQL Plan Managment

"...to guarantee any plan changes that do occur lead to 
better performance..."
Plans change

Updated stats
Parameter changes
Database upgrade
Data changes

Goals
avoid performance regression
enable gains when possible

RMAN issue



SPM Basics
Statement plan(s) managed
SYSAUX holds repository of plans 

Plan baseline - set of accepted plans for a statement
Non-Accepted plans

Need to evolve into accepted plans, if better
Privilege ADMINISTER SQL MANAGEMENT 
OBJECT 

 



How is SPM Used?

When statement runs
CBO does normal hard parse (if not in LC)
Looks for match in plan baseline
Match

Uses matching plan
No Match

Uses lowest cost plan in baseline
Adds new plan as non-accepted
Need to "evolve" the plan

Manually 
Automatic

Weekly Tuning Advisor task
Consider "fixed" baseline



Lastly....

Questions....

One More Thing



All You Need is Love

John Lennon 1940 - 1980



Credits

Jonathan Lewis 
http://jonathanlewis.
wordpress.com/

Christian Antognini 
http://antognini.ch 

Optimizer Developer Team
Allison W Lee and 
Mohamed Zait
http://blogs.oracle.
com/optimizer/

Alex Fatkulin, Pythian
http://afatkulin.blogspot.com/

Charles Hooper
http://hoopercharles.
wordpress.com/

Tanel Poder 
http://blog.tanelpoder.com/

Arup Nanda
 http://arup.blogspot.com/

Richard Foote
http://richardfoote.
wordpress.com 

Dion Cho
http://dioncho.wordpress.
com/

http://jonathanlewis.wordpress.com/
http://jonathanlewis.wordpress.com/
http://blogs.oracle.com/optimizer/
http://blogs.oracle.com/optimizer/
http://afatkulin.blogspot.com/
http://hoopercharles.wordpress.com/
http://hoopercharles.wordpress.com/
http://blog.tanelpoder.com/
http://arup.blogspot.com/
http://richardfoote.wordpress.com/
http://richardfoote.wordpress.com/
http://dioncho.wordpress.com/
http://dioncho.wordpress.com/


Thanks Again for Attending

Dave Anderson
SkillBuilders.com/SQLTuning  (slides posted here)
dave@SkillBuilders.com
1.401.783.6172 


