
1

Implementing Connection Pools

for Data-Centric Applications

Michael Rosenblum

Dulcian, Inc.

www.dulcian.com

NYOUG

September 16, 2009

Background

Problem (discovered in mid-1990’s):

Keeping persistent database sessions for every client

connection is technically impossible.

 This is especially true when building scalable web-

based IT solutions.

Solution:

 Separating logical and physical database sessions.

Physical session

 Set of activities in the context of one server connection.

 Two different approaches:

 Full cycle:

 Requestprocessingresponse as a complete set

 Starts from the moment that the request is initiated

 Ends when the last part of the response is interpreted.

 One-way:

 Two completely different queues (request and response), where both

events can occur independently.

 Requests are sent without waiting.

 A special listener retrieves responses as soon as they are ready.

Logical Session

 Set of activities between user logon and logoff that

consists of a number of physical sessions.

 Each physical session is completely independent of the

next/previous one.

 Developers are responsible for capturing enough

information to simulate the persistence of a logical

session.

 This architecture is called stateLESS to differentiate it

from the old stateFUL architecture where one physical

session was always equal to one logical session.

StateFUL Systems

Advantages

 Predictable and reasonable

number of connections.

 Predictable resources required

to keep system running.

 Possibility of using session-

level features to optimize

performance:

 Temporary tables, packaged

variables, etc.

 No need to reload

packages/execution plans to

memory

Disadvantages

 Stateful systems do not scale

well.

StateLESS Systems

Advantages

 The system can be scaled
much easier.
 At any point in time, there are

only a small number of sessions
connected to the database.

 Workload typically follows a
statistical trend.

Disadvantages

 Keeping a persistent layer is
difficult.

 Different schools of thought
about where to place it
(database/middle tier/client)

 Each physical session must be
opened and closed.

 Very expensive if done
thousands of times, especially if
code is PL/SQL-intensive

 Each package must be reloaded
and reinitialized.

 Difficult to manage possible
unpredicted activity spikes

Cost of Building StateLESS

Able to solve the core scalability problem

 Possible to build systems that scale up to thousands
(if not hundreds of thousands) of simultaneous users.

High costs because:

Managing the persistent layer is time-intensive.

 Significant performance impacts of the activities
required to manage a huge number of separate
physical requests

Only a low level of control over how many sessions
are executed at any point in time.

Solution: Connection Pools

Middle tier creates a small set of physical

connections to the database.

 Incoming request serves the next free session

from the pool to the request (instead of opening

a new session for each request).

 If all sessions are busy, the middle tier adds

extra ones to the connection pool.

But…

 Implementation of connection pools is

challenging

 Pool management

 Training issues

 Session resource management

Database resource management

Pool Management

Connections Upper Bound

 Delay option is recommended:

 Request could wait for some time until a free session from the

pool is found.

 Users of web applications are accustomed to network glitches.

 Will not be surprised by an extra few seconds of wait time

 Reason:

 Cost of a failed request could be too high.

 Recovery process may require a lot of manual effort

 Each failed request should be logged.

 If system hits an upper bound, it is either set incorrectly, or something

is very wrong.

Randomization of

Connection Assignments

 No randomization (done in a majority of
implementations)
 the number of sessions at any point of time is very small,

 Workload of these sessions is very high.

 Slightest problem either with Oracle (memory leaks still
happen especially in more OO-oriented modules, like XML)
or your code, and session could consume a huge amount of
resources.

 Randomization:
 Some protection from having a single very resource-intensive

session

 Makes managing total size of connection pool much more
difficult.

Expiration Mechanism (1)

 Applicable only for non-randomized connections

 Problem to solve:
 Size of connection pool will reach high watermark and stay

there.

 Reason:
 Keeping sessions opened for unnecessarily long periods of

time is very expensive, because of locking many database
resources.

 PGA/UNDO/temporary segments, etc. are released only at
the end of the session.

 Thing to consider:
 Faster sessions are closed - less resources used at any one point in time

 Normal rule of thumb: 30-60 minutes of inactivity

 Less time than that should be avoided or it negates the whole reason for
connection pools

Expiration Mechanism (2)

 Expiration of “heavy” connections
 “Heavy” can mean anything – PGA, opened cursors,

allocated temporary tablespace, etc.

 Nice option for long-term projects where you go
through a number of different Oracle
versions/patches/bugfixes

 Nice back-door (if implemented using some kind of
rule repository)

Full Refresh

 Feature:
 More civilized way of completely resetting all database

connections instead of bouncing the application server

 Solution:
 Special type of request to the middle tier to stop it from

serving an existing set of sessions (and eventually retire
them) and get completely new ones.

 Reasons to use:
 Handy if you need to modify some PL/SQL in a production

system.

 Stateless implementations make people less scared of
encountering an “existing-state-of-packages” error

 Connection pools reintroduce this issue in most real
environments.

Resource Management

Session Resource Management

(1)

StateLESS implementation + session-level tricks
for a single request:

 Convenient to use temporary tables of package
variables as buffers while processing.

 Built-in feature (because middle tier would
immediately release these when the session is closed).

#1 cause of problems with connection pool:

 Sessions are not closed anymore unless you do
something about them.

High probability that one request could get data from
the other one leading to data cross-contamination.

Session Resource Management

(2)

Cannot trust ANYTHING defined at the session

level.

Everything should be handled manually

 Built-in in the connection pool mechanism executes a

special cleanup module before serving any request in

the session.

Handling Package Variables

A few lines of code (both procedures take
very little time to fire):

Reset all variables to the initial state

Release all memory freed by previous state

begin

dbms_session.reset_package;

dbms_session.free_unused_user_memory

end;

Temporary Tables
 More difficult to resolve

 No simple way to identify which tables have data, or to clean
that data

procedure p_truncate is

v_exist_yn varchar2(1);

begin

select 'Y' into v_exist_yn

from v$session s, v$tempseg_usage u

where s.audsid = SYS_CONTEXT('USERENV','SESSIONID')

and s.saddr = u.session_addr

and u.segtype = 'DATA'

and rownum = 1;

for c in (select table_name from user_tables

where temporary = 'Y'

and duration = 'SYS$SESSION')

loop

execute immediate 'truncate table '||c.table_name;

end loop;

end;

Caution!

 Since using V$TEMPSEG_USAGE makes it possible

to detect whether or not the current session has

temporary segments allocated, the cycle of cleanups

can be avoided in most cases.

 Oracle DBMS does not release the TEMP tablespace

allocated to temporary CLOBs (all CLOB variables)

until the end of a session.

 Metalink ID 5723140 in 10.2.0.4 and 11.1.0.6,

Oracle introduced event 60025 to get around the

described behavior, but caution is strongly

recommended.

Use a join?

 Join between V$SESSION and V$TEMPSEG_USAGE
 Known to cause very strange errors in some cases (including even ORA-

600).

 Solution is simple - Just split the query in two as shown here:

select saddr

into v_saddr

from v$session s

where s.audsid = SYS_CONTEXT('USERENV','SESSIONID');

select 'Y'

into v_exist_yn

from v$tempseg_usage u

where u.session_addr = v_saddr

and u.segtype = 'DATA'

and rownum = 1;

Database Resource Utilization

(1)

Core assumption underlying any

implementation of connection pools:

 Single request to the database takes a very small

amount of time.

 Total number of active requests at any point in time

is small compared to the total number of logical

users in the system.

 Slightest slow-down in the processing of requests

could very quickly kill the whole system.

Database Resource Utilization

(2)
 Problem:

 System could work fine 99% of the time, but once some kind
of a threshold is reached, the degradation spiral starts to
unwind.

 Reason:
 The more time needed to process an individual request, the

more often it is necessary to add a new session to the pool.

 Mechanism:
 No free sessions more simultaneous sessions

 More sessions more resources to be used

 More resources used less resources available per session

 Less resources available each request is slower

 ...

 After a few cycles, the system has no resources left at all and
collapses

Avoiding Problems

 Difficult to resolve in a production environment

 Should therefore be prevented using the following

strategies during development:

 Most often executed requests should be very carefully tuned

because these requests define the average workload

 Most expensive requests should not enter the system via the

connection pool at all.

 Avoid pooled sessions for any special kinds of requests

 Connection pool should notify administrators when reaching a

defined workload level (e.g. allocated PGA per session or total

allocated PGA) or number of sessions in the pool

Training Issues

Working with Connection Pools

(1)
 Source of problems:

 Developers hear about session-reusability in connection pools
and start using old tips and tricks for client-server solutions.

 Nightmare:

 Everything works with a single user.

 Adding a second user creates complete havoc.

 Reasons:

 With only one user in the system, code will always use the first
connection (unless the pool is randomized) ~ stateFULL!

 Adding a second user means that requests from both logical
sessions will be served by the same physical one.

 Previously perfectly working “client-server-ish” code will
cause very serious data cross-contamination.

Working with Connection Pools

(2)

Do not tell developers about connection pools at

all?

An architectural way of solving resource workload

problems on the system should not have anything to

do with development solutions.

Only applicable in some cases (unfortunately)

 Sometimes, developers should know about alternative

options for handling sessions.

Working with Connection Pools:

Real-world Example
 Actual development environment:

 PL/SQL wrappers on Java classes, loaded into an Oracle
database

 Java code establishes a connection with the external
geocoding server, passes data, and returns results.

 These requests are one of the most critical parts of the system
and executed regularly by all users.

 The cost of the initial request is very high (~ 10 sec) because
of the whole initialization process (both Java and geocoding
APIs)

 Additional requests in the same session < 0.3 sec.

 Solution: Use non-randomized connection pools
 Most costly request is the first request per session

 Goal is to keep the smallest number of sessions

Conclusions

There is no way to build any reasonable web-
based solution without going stateless, but there
are different ways of doing that.

Using or not using connection pools is not a
matter of preference, but a matter of
understanding exactly what you are trying to
build.

Every feature solves some problems and
introduces other ones. It is your responsibility to
balance the pros and cons of using connection
pools.

Contact Information

 Michael Rosenblum – mrosenblum@dulcian.com

 Dulcian website - www.dulcian.com

Latest book:

Oracle PL/SQL for Dummies

