
1

Implementing Connection Pools

for Data-Centric Applications

Michael Rosenblum

Dulcian, Inc.

www.dulcian.com

NYOUG

September 16, 2009

Background

Problem (discovered in mid-1990’s):

Keeping persistent database sessions for every client

connection is technically impossible.

 This is especially true when building scalable web-

based IT solutions.

Solution:

 Separating logical and physical database sessions.

Physical session

 Set of activities in the context of one server connection.

 Two different approaches:

 Full cycle:

 Requestprocessingresponse as a complete set

 Starts from the moment that the request is initiated

 Ends when the last part of the response is interpreted.

 One-way:

 Two completely different queues (request and response), where both

events can occur independently.

 Requests are sent without waiting.

 A special listener retrieves responses as soon as they are ready.

Logical Session

 Set of activities between user logon and logoff that

consists of a number of physical sessions.

 Each physical session is completely independent of the

next/previous one.

 Developers are responsible for capturing enough

information to simulate the persistence of a logical

session.

 This architecture is called stateLESS to differentiate it

from the old stateFUL architecture where one physical

session was always equal to one logical session.

StateFUL Systems

Advantages

 Predictable and reasonable

number of connections.

 Predictable resources required

to keep system running.

 Possibility of using session-

level features to optimize

performance:

 Temporary tables, packaged

variables, etc.

 No need to reload

packages/execution plans to

memory

Disadvantages

 Stateful systems do not scale

well.

StateLESS Systems

Advantages

 The system can be scaled
much easier.
 At any point in time, there are

only a small number of sessions
connected to the database.

 Workload typically follows a
statistical trend.

Disadvantages

 Keeping a persistent layer is
difficult.

 Different schools of thought
about where to place it
(database/middle tier/client)

 Each physical session must be
opened and closed.

 Very expensive if done
thousands of times, especially if
code is PL/SQL-intensive

 Each package must be reloaded
and reinitialized.

 Difficult to manage possible
unpredicted activity spikes

Cost of Building StateLESS

Able to solve the core scalability problem

 Possible to build systems that scale up to thousands
(if not hundreds of thousands) of simultaneous users.

High costs because:

Managing the persistent layer is time-intensive.

 Significant performance impacts of the activities
required to manage a huge number of separate
physical requests

Only a low level of control over how many sessions
are executed at any point in time.

Solution: Connection Pools

Middle tier creates a small set of physical

connections to the database.

 Incoming request serves the next free session

from the pool to the request (instead of opening

a new session for each request).

 If all sessions are busy, the middle tier adds

extra ones to the connection pool.

But…

 Implementation of connection pools is

challenging

 Pool management

 Training issues

 Session resource management

Database resource management

Pool Management

Connections Upper Bound

 Delay option is recommended:

 Request could wait for some time until a free session from the

pool is found.

 Users of web applications are accustomed to network glitches.

 Will not be surprised by an extra few seconds of wait time

 Reason:

 Cost of a failed request could be too high.

 Recovery process may require a lot of manual effort

 Each failed request should be logged.

 If system hits an upper bound, it is either set incorrectly, or something

is very wrong.

Randomization of

Connection Assignments

 No randomization (done in a majority of
implementations)
 the number of sessions at any point of time is very small,

 Workload of these sessions is very high.

 Slightest problem either with Oracle (memory leaks still
happen especially in more OO-oriented modules, like XML)
or your code, and session could consume a huge amount of
resources.

 Randomization:
 Some protection from having a single very resource-intensive

session

 Makes managing total size of connection pool much more
difficult.

Expiration Mechanism (1)

 Applicable only for non-randomized connections

 Problem to solve:
 Size of connection pool will reach high watermark and stay

there.

 Reason:
 Keeping sessions opened for unnecessarily long periods of

time is very expensive, because of locking many database
resources.

 PGA/UNDO/temporary segments, etc. are released only at
the end of the session.

 Thing to consider:
 Faster sessions are closed - less resources used at any one point in time

 Normal rule of thumb: 30-60 minutes of inactivity

 Less time than that should be avoided or it negates the whole reason for
connection pools

Expiration Mechanism (2)

 Expiration of “heavy” connections
 “Heavy” can mean anything – PGA, opened cursors,

allocated temporary tablespace, etc.

 Nice option for long-term projects where you go
through a number of different Oracle
versions/patches/bugfixes

 Nice back-door (if implemented using some kind of
rule repository)

Full Refresh

 Feature:
 More civilized way of completely resetting all database

connections instead of bouncing the application server

 Solution:
 Special type of request to the middle tier to stop it from

serving an existing set of sessions (and eventually retire
them) and get completely new ones.

 Reasons to use:
 Handy if you need to modify some PL/SQL in a production

system.

 Stateless implementations make people less scared of
encountering an “existing-state-of-packages” error

 Connection pools reintroduce this issue in most real
environments.

Resource Management

Session Resource Management

(1)

StateLESS implementation + session-level tricks
for a single request:

 Convenient to use temporary tables of package
variables as buffers while processing.

 Built-in feature (because middle tier would
immediately release these when the session is closed).

#1 cause of problems with connection pool:

 Sessions are not closed anymore unless you do
something about them.

High probability that one request could get data from
the other one leading to data cross-contamination.

Session Resource Management

(2)

Cannot trust ANYTHING defined at the session

level.

Everything should be handled manually

 Built-in in the connection pool mechanism executes a

special cleanup module before serving any request in

the session.

Handling Package Variables

A few lines of code (both procedures take
very little time to fire):

Reset all variables to the initial state

Release all memory freed by previous state

begin

dbms_session.reset_package;

dbms_session.free_unused_user_memory

end;

Temporary Tables
 More difficult to resolve

 No simple way to identify which tables have data, or to clean
that data

procedure p_truncate is

v_exist_yn varchar2(1);

begin

select 'Y' into v_exist_yn

from v$session s, v$tempseg_usage u

where s.audsid = SYS_CONTEXT('USERENV','SESSIONID')

and s.saddr = u.session_addr

and u.segtype = 'DATA'

and rownum = 1;

for c in (select table_name from user_tables

where temporary = 'Y'

and duration = 'SYS$SESSION')

loop

execute immediate 'truncate table '||c.table_name;

end loop;

end;

Caution!

 Since using V$TEMPSEG_USAGE makes it possible

to detect whether or not the current session has

temporary segments allocated, the cycle of cleanups

can be avoided in most cases.

 Oracle DBMS does not release the TEMP tablespace

allocated to temporary CLOBs (all CLOB variables)

until the end of a session.

 Metalink ID 5723140 in 10.2.0.4 and 11.1.0.6,

Oracle introduced event 60025 to get around the

described behavior, but caution is strongly

recommended.

Use a join?

 Join between V$SESSION and V$TEMPSEG_USAGE
 Known to cause very strange errors in some cases (including even ORA-

600).

 Solution is simple - Just split the query in two as shown here:

select saddr

into v_saddr

from v$session s

where s.audsid = SYS_CONTEXT('USERENV','SESSIONID');

select 'Y'

into v_exist_yn

from v$tempseg_usage u

where u.session_addr = v_saddr

and u.segtype = 'DATA'

and rownum = 1;

Database Resource Utilization

(1)

Core assumption underlying any

implementation of connection pools:

 Single request to the database takes a very small

amount of time.

 Total number of active requests at any point in time

is small compared to the total number of logical

users in the system.

 Slightest slow-down in the processing of requests

could very quickly kill the whole system.

Database Resource Utilization

(2)
 Problem:

 System could work fine 99% of the time, but once some kind
of a threshold is reached, the degradation spiral starts to
unwind.

 Reason:
 The more time needed to process an individual request, the

more often it is necessary to add a new session to the pool.

 Mechanism:
 No free sessions more simultaneous sessions

 More sessions  more resources to be used

 More resources used  less resources available per session

 Less resources available  each request is slower

 ...

 After a few cycles, the system has no resources left at all and
collapses

Avoiding Problems

 Difficult to resolve in a production environment

 Should therefore be prevented using the following

strategies during development:

 Most often executed requests should be very carefully tuned

because these requests define the average workload

 Most expensive requests should not enter the system via the

connection pool at all.

 Avoid pooled sessions for any special kinds of requests

 Connection pool should notify administrators when reaching a

defined workload level (e.g. allocated PGA per session or total

allocated PGA) or number of sessions in the pool

Training Issues

Working with Connection Pools

(1)
 Source of problems:

 Developers hear about session-reusability in connection pools
and start using old tips and tricks for client-server solutions.

 Nightmare:

 Everything works with a single user.

 Adding a second user creates complete havoc.

 Reasons:

 With only one user in the system, code will always use the first
connection (unless the pool is randomized) ~ stateFULL!

 Adding a second user means that requests from both logical
sessions will be served by the same physical one.

 Previously perfectly working “client-server-ish” code will
cause very serious data cross-contamination.

Working with Connection Pools

(2)

Do not tell developers about connection pools at

all?

An architectural way of solving resource workload

problems on the system should not have anything to

do with development solutions.

Only applicable in some cases (unfortunately)

 Sometimes, developers should know about alternative

options for handling sessions.

Working with Connection Pools:

Real-world Example
 Actual development environment:

 PL/SQL wrappers on Java classes, loaded into an Oracle
database

 Java code establishes a connection with the external
geocoding server, passes data, and returns results.

 These requests are one of the most critical parts of the system
and executed regularly by all users.

 The cost of the initial request is very high (~ 10 sec) because
of the whole initialization process (both Java and geocoding
APIs)

 Additional requests in the same session < 0.3 sec.

 Solution: Use non-randomized connection pools
 Most costly request is the first request per session

 Goal is to keep the smallest number of sessions

Conclusions

There is no way to build any reasonable web-
based solution without going stateless, but there
are different ways of doing that.

Using or not using connection pools is not a
matter of preference, but a matter of
understanding exactly what you are trying to
build.

Every feature solves some problems and
introduces other ones. It is your responsibility to
balance the pros and cons of using connection
pools.

Contact Information

 Michael Rosenblum – mrosenblum@dulcian.com

 Dulcian website - www.dulcian.com

Latest book:

Oracle PL/SQL for Dummies

