A COMPREHENSIVE GUIDE
TO
ORA TITIONING

PLES

SUCCESSFUL ORACLE DATAWAREHOUSING AND BUSINESS INTELLIGENCE

ANTHONY D NORIEGA
anthony.noriega@adnmis.com ORACLE ‘ IEHEUl:ETEls::E:HE.AE
ADN R &D www.adnmis.com

SPEAKER QUALIFICATIONS

I

Independent Consultant, ADN

Speaker at NYOUG meetings, IOUG LIVE and Collaborate
24 years of IT experience

18 years of Oracle experience, 13 as a DBA (v6 thru 119)

RMAN experience with Oracle81,91, 10g, and 119, since
1999.

BS Systems Engineering, Universidad del Norte, 1987.
MS Computer Science, NJIT, 1993

PhD CIS candidate, NJIT, 1997

MBA MIS, Montclair State University, 2006

College Math Professor and former HS Math Teacher
Principal.

OBJECTIVES
sy
Present the various types of object
partitioning options with sample code.

Derive a series of guidelines to existing
and newly defined best practices.

Provide a consolidated framework to
partition-based performance tuning.

Analyze and synthesize Oracle
recommendations to object partitioning.

Discuss various partitioning scenario-
driven cases.

WHY AND WHEN TO PARTITION

e —

Table Size
Table Access requires specific control
Improve Index Performance

Combining Technologies
(Multiple block size caches)

OBJECT PARTITIONING

sy

Table (Includes Materialized Views)
Index
Index-Organized Table (10T)

PARTITIONING STRATEGIES

TABLE PARTITIONING

S

Basic Partitions
Composite Partitions
Partition Extensions

TABLE PARTITIONING

BASIC (Single Level)

o Range (Includes Interval Partitioning)
o List
o Hash

TABLE PARTITIONING

COMPOSITE

o Range-Range
o Range-Hash
o Range-List

o List-Range

o List-Hash

o List-List

INTERVAL PARTITIONING

I

INTERVAL PARTITIONING
o Interval-Range

PARTITION EXTENSIONS

I .

PARTITIONING KEY EXTENSION

o Reference Partitioning
o Virtual Column-Based Partition

INDEX PARTITIONING

I .

GLOBAL

o Global Range Partitioned Indexes
o Global Hash Partitioned Indexes

LOCAL

o Default
o Customized (Tablespace and Block Size)

INDEX PARTITION MAINTENANCE

I .

Operations on heap-organized tables

marking all global indexes as unusable.
o ADD (HASH)

o COALESCE (HASH)

o DROP

o EXCHANGE

o MERGE

o MOVE

o SPLIT

o TRUNCATE

IOT PARTITIONING

a4 ...

INDEX-ORGANIZED TABLE (10T)
PARTITIONING

~ollows nearly the same options as table
partitioning with some constraints.

CREATING PARTITIONS

I .

Creating a partitioned table or index is similar to creating a
non-partitioned table or index, by adding a partitioning clause
(and its subclauses, if any) to the CREATE TABLE statement.

Partitioning is possible on both regular, i.e., heap organized
tables, and index-organized tables (IOT), except for those
containing LONG or LONG RAW columns. It is possible to
create non-partitioned global indexes, range or hash-
partitioned global indexes, and local indexes on partitioned
tables.

Specifying either ENABLE ROW MOVEMENT or DISABLE ROW
MOVEMENT may be done when creating or altering a
partitioned table.

CREATING PARTITIONS

A partitioned table can have both partitioned and non-
partitioned indexes.

Likewise, a non-partitioned table can have both
partitioned and non-partitioned indexes.

I N I
Non-partitioned table artitioned table

AAA AAA

Partitioned Index Partitioned Index

Non-Partitioned Index

Non-Partitioned Inde

PARTITIONING COMBINATION

%

Creating Range- Index-Organized Tables
Partitioned Tables and Using
Global Indexes .

] o Subpartition Templates to
Creating Interval- Describe Composite
Partitioned Tables Partitioned Tables
Creating Hash- o Using Multicolumn
Partitioned Tables and Partitioning Keys
Global Indexes o Using Virtual Column-
Creating List-Partitioned Based Partitioning
Tables o Using Table Compression
Creating Reference- with Partitioned Tables
Partitioned Tables o Using Key Compression

. . with Partitioned Indexes
Creating Composite . .
Partitioned Tables Partitioning Restrictions

Creating Partitioned for Multiple Block Sizes

CREATING A RANGE PARTITIONED

$

This sample code creates a table with four partitions and enables row movement:

CREATE TABLE credential_evaluations | ep—
(eval_idVARCHAR2(16) primary key (el
, grad_id VARCHAR2(12) :

, grad_date DATE

, degree_granted VARCHAR2(12)

, degree_major VARCHAR2(64)

, school_id VARCHAR2(32)

, final_gpa NUMBER(4,2))
PARTITION BY RANGE (grad_date)

(PARTITION grad_date_70s
VALUES LESS THAN (TO_DATE('01-JAN-1980','DD- MON -YYYY')) TABLESPACE T1
, PARTITION grad_date_80s

VALUES LESS THAN (TO_DATE('01-JAN-1990','DD-MON-YYYY')) TABLESPACE T2
, PARTITION grad_date_90s

VALUES LESS THAN (TO_DATE('01-JAN-2000','DD-MON-YYYY')) TABLESPACE T3
, PARTITION grad_date_00s

VALUES LESS THAN (TO_DATE('01-JAN-2010','DD-MON-YYYY')) TABLESPACE T4)
ENABLE ROW MOVEMENT;

RANGE-PARTITIONED GLOBAL
e —

Creating a range-partitioned global index is similar to
creating range-partitioned table. This example creates a
range-partitioned global index on final_gpa for
credential_evaluations. Each index partition is named but
is stored in the default tablespace for the index.

CREATE INDEX ndx_final_gpa ON credential_evaluations
(final_gpa)
GLOBAL PARTITION BY RANGE(final_gpa)
(PARTITION cl1 VALUES LESS THAN (2.5)
, PARTITION c2 VALUES LESS THAN (3.0)
, PARTITION b1 VALUES LESS THAN (3.4)
, PARTITION b2 VALUES LESS THAN (3.7)
, PARTITION al VALUES LESS THAN (3.9)
, PARTITION a2 VALUES LESS THAN (MAXVALUE));

QUERYING DICIITONARY

1* §e1ect * from dba_tab_partitions where table_cwner="'ANTHONY'
SOL>

TAELE_OWMER TAELE_MAME oM PARTITIOM_MAME SUEPARTITION_COUMT

TAELE_MNAME COM PARTITION_NAME SUBPART LT LOM_COUNT

HIGH_VALUE_LENGTH PARTITION_POSTTIOW

PCT_FREE PCT_USED INI_TRANS MAX_TRANS INITIAL_EXTENT NEXT_EXTENT WMIN_EXTEWT
Max_SIZE PCT_INCREASE FREELISTS FREELIST_GROUPS LOGGING COMPRESS COMPRESS_FOR UM _ROWS BLOCKS

AVG_SPACE CHAIN_CNT AVG_ROW_LEN SAMPLE_SIZE LAST_AMNAL BUFFER_ GLO USE
CREDENTIAL_EVALUATIONS NO GRAD_DATE_00S
TO_DATEC' 2010-01-01 00:00:00"', 'SYYYY-MM-DD HHZ4:MI:SS', 'NLS_CALENDAR=GREGORIA
10 1 255 85536
2147483645 == DISABLED
DEFAULT MO NO

y CREDENTIAL_EVALUATIONS MO GRAD_DATE_70S
O_DATE(' 1980-01-01 00:00:00"', 'SY¥YYY-MM-DD HHZ4:MI:S5', "NLS_CALENDAR=GREGORIA
1 10 1 255 65536
2147483645 2147483645 YES DISABLED
DEFAULT MO NO

CREDENTIAL_EVALUATIONS NO GRAD_DATE_BOS
O_DATE(' 1990-01-01 00:00:00", 'SYYYY-MM-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIA
2 10 il 255 65536
2147483645 2147483645 YES DISABLED
DEFAULT NO NO

NTHONY

CREDENTIAL _EVALUATIONS NO GRAD_DATE_90S
"SYYYY-MM-DD HHZ4:MI:SS', 'NLS_CALENDAR=GREGORIA
10 1 255 65536
(7483645 2147483645 YES DISAELED
DEFAULT NO NO

THONY
y DATE(' 2000-01-01 00:00:00",

QUERYING DICIITONARY

* SELECT * FROM dba_ind_partitions where index_owner='ANTHONY'

FOL > /
INDEX_OWNER

ANTHONY

2.5

USABLE USERS
2147483645 2147483645

NO
ANTHONY
3.0
USAELE USERS
2147483645 2147453645
NO
ANTHONY
3.4
USAELE USERS
2147483645 2147453645
NO
ANTHONY
Slo
USAELE USERS
2147483645 2147453645

NO

INDEX_NAME

NDX_FINAL_GPA

MD>_FIMAL_GPA

MDX_FIMAL_GPA

MOX_FIMAL_GPA

NDX_FINAL_GPA

COM PARTITION_NAME

DISAELED
0

255
DISAELED
0

255
DISAELED
0

255
DISAELED
1

85536

SUBPARTITION_COUNT

0 0
28-MAY-09 DEFAULT NO

2
1
0 0
28-MAY-09 DEFAULT NO

0
3
1
0
28-MAY-09 DEFAULT NO

0
4
1
0 1
1 28-MAY-09 DEFAULT NO

RANGE-PARTITIONED GLOBAL
LA ——

- Creating a range-partitioned global index is similar to
creating range-partitioned table. This example creates a
range-partitioned global index on final_gpa for
credential_evaluations. Each index partition is named but is
stored in the default tablespace for the index.

RANGE-PARTITIONED GLOBAL
e ——

- Creating a range-partitioned global index is similar to creating
range-partitioned table. This example creates a range-partitioned
global index on final_gpa for credential_evaluations. Each index

partition is named but is stored in the default tablespace for the
index.

INIERVAL-FPARITTITONED

%

The INTERVAL clause of the CREATE TABLE statement
sets interval partitioning for the table. At least one range
partition must be specified using the PARTITION clause.

The range partitioning key value determines the high
value of the range partitions (transition point) and the
database automatically creates interval partitions for data
beyond that transition point.

For each interval partition, the lower boundary is the non-
inclusive upper boundary of the previous range or interval
partition.

The partitioning key can only be a single column name
from the table and it must be of NUMBER or DATE type.

The optional STORE IN clause lets you specify one or
more tablespaces.

INIERVAL-FPARITTITONED

%

This example sets four partitions with varying widths. It also
specifies that above the transition point of January 1, 2009,
partitions are created with a width of one month.

’ CREATE TABLE rental_costs (
item_id NUMBER(6),
time_intv DATE,
unit_cost NUMBER(12,2),
unit_price NUMBER(12,2))
PARTITION BY RANGE (time_intv)

INTERVAL(NUMTOYMINTERVAL(1, 'MONTH"))

(PARTITION pca VALUES LESS THAN (TO_DATE('1-1-2006', 'DD-MM-YYYY")) tablespace t2,
PARTITION pcb VALUES LESS THAN (TO_DATE('1-1-2007', 'DD-MM-YYYY")) tablespace t4,
PARTITION pcc VALUES LESS THAN (TO_DATE('1-1-2008', 'DD-MM-YYYY")) tablespace t8,
PARTITION pcd VALUES LESS THAN (TO_DATE('1-1-2009', 'DD-MM-YYYY")) tablespace t12

Q

The high bound of partition pcd establishes the transition point. pcd and all
partitions below it, namely, (pca, pcb, and pcc) are in the range section while
all partitions above it fall into the interval section.

HASH-PARTITIONED TABLES

I |

- The PARTITION BY HASH clause of the CREATE TABLE statement
identifies that the table is to be hash-partitioned.

o The PARTITIONS clause can then be used to specify the number of
partitions to create, and optionally, the tablespaces to store them in.
Otherwise, PARTITION clauses can be used to name the individual
partitions and their tablespaces .

- The only attribute TO specify for hash partitions is TABLESPACE. All of
the hash partitions of a table must share the same segment attributes
(except TABLESPACE), which are inherited from the table level.

CREATING LIST-PARTITIONED

%

CREATE TABLE regional_rentals

(divno NUMBER,
divname VARCHARZ2(40),
rentals_quarterly NUMBER(12, 2),
state VARCHAR2(2))

PARTITION BY LIST (state)
(PARTITION pnw VALUES ('OR', 'WA', 'WY') TABLESPACE T1,
PARTITION psw VALUES (‘AZ','CA','UT') TABLESPACE T3,
PARTITION pne VALUES ('CT', 'NY', 'NJ) TABLESPACE T5,
PARTITION pse VALUES ('FL', 'GA','SC") TABLESPACE T7);

A PARTITION BY LIST clause is used in the CREATE TABLE statement to
create a table partitioned by list, by specifying lists of literal values,(the
discrete values of the partitioning columns qualifying rows matchlng the
partition’s single column partitioning key.) There is no sense of order among
partitions.

The DEFAULT keyword is used to describe the value list for a partition that
will accommodate rows that do not map into any of the other partitions.

Optional subclauses of a PARTITION clause can specify physical and other
attributes specific to a partition segment. If not overridden at the partition
level, partitions inherit the attributes of their parent table.

REFERENCE-FARITITI TONED

%

The PARTITION BY REFERENCE clause is used with the CREATE TABLE
statement, specifying the name of a referential constraint, which becomes the
partitioning referential constraint used as the basis for reference partitioning in
the table. The referential integrity constraint must be enabled and enforced.

It Is possible to set object-level default attributes, and optionally specify
partition descriptors that override the object- level defaults on a per-partition
basis.

When providing partition descriptors, the number of partitions described
should match the number of partitions or subpartitions in the referenced table,
l.e., the table will have one partition for each subpartition of its parent when
the parent table is composite; otherwise the table will have one partition for
each partition of its parent.

No partition bounds can be set for the partitions of a reference-partitioned
table.

The partitions of a reference-partitioned table can be named, inheriting their
name from the respective partition in the parent table, unless this inherited
name conflicts with one of the explicit names given. In this scenario, the
partition will have a system-generated name.

Partitions of a reference-partitioned table will collocate with the corresponding
partition of the parent table, if no explicit tablespace is set accordingly.

REFERENCE-PARTITIONED
O —————————

Master Table Details Table

CREATE TABLE order_details
(ord_id NUMBER(16) NOT NULL,
line_item_id NUMBER(3) NOT NULL,
prod_id NUMBER(8) NOT NULL,
unit_price NUMBER(12,2),
gty NUMBER(8),
CONSTRAINT ord_det_fk
FOREIGN KEY(ord_id)
REFERENCES order_hist(ord_id)
)
PARTITION BY
REFERENCE(ord_det_fk);

REFERENCE-FPARITTI TONED

SOL>
S0L> CREATE TAELE order_hist

{ ord_id MUMEER (16,
X ord_date TIMESTAMP WITH LOCAL TIME ZOME,
‘ ord_mode VARCHARZ (8],
n

cust_id MUMEER (S,

ord_status VARCHARZ (47,

ord_total MUMEER{1Z ,27,

act_mgr_id MUMEER (S,

promo_id MUMEERCE D,

COMNSTRAIMT Ord_pk PRIMARY KEY(ord_id) USIMG INDEX TAELESEACE IMDX

)

PARTITION BY RANGE{ord_date)

(PARTITION pgl VALUES LESS THAN (TO_TIMESTAMP_TZ('01-APR-2008 07:00:00 -5:00' , 'DD-MON-YY¥Y HH:MI:SS TZH:TzZM')),
PARTITION pg? WALUES LESS THAN (TO_TIMESTAMP_TZ('01-JUL-2008 07:00:00 -5:00' , 'DD-MON-YYYY HH:MI:SS TZH:TzM')),
PARTITION pg3 WALUES LESS THAN (TO_TIMESTAMP_TZ('01-0CT-2008 07:00:00 -5:00' , 'DD-MON-YYYY HH:MI:SS TZH:TzM')),
PARTITION po4 VALUES LESS THAN (TO_TIMESTAMP_TZ('01-14N-2000 07:00:00 -5:00' , 'DD-MON-YYY HH:MI:SS TZH:Tz2M'3)

Tahle created.

SOl
S0OL> CREATE TAELE order_details
{ ord_id MUMEER{ 167 WOT MULL,
1ine_item_id MUMEERC3) NOT MULL,
prod_id MUMEERCES WOT MULL,
unit_price MUMEERC1Z ,27,
oty NUMEER(ED,
COMSTRAINT ord_det_flk
) FOREIGHW KEY(ord_id) REFERENCES order_histiord_id}
10 PARTITION BY REFERENCE(ord_det_fk);

Tahle created.

SOL=

ol -

LOCAL PARTITIONED INDEXES

I .

When creating a local index for a table, the database constructs the index
so that it is equipartitioned (1-to-1 correspondence) with the underlying
table.

The database also ensures that the index is maintained automatically
when maintenance operations are performed on the underlying table. This
sample code creates a local index on the table dept:

CREATE INDEX ndx_gd ON school_directory (email) LOCAL
PARTITIONS 4 STORE IN (t1, t2, t3, t4);

It is possible to optionally name the hash partitions and tablespaces
into which the local index partitions are to be stored, otherwise, the
database uses the name of the corresponding base partition as the
index partition name, and stores the index partition in the same
tablespace as the table partition.

HASH-FARITITITONED GLOBAL

%

- Hash-partitioned global indexes can improve the performance of
indexes where a small number of leaf blocks in the index have
high contention in multiuser OLTP environments.

- Hash-partitioned global indexes can also limit the impact of index
skew on monotonously increasing column values. Queries
involving the equality and IN predicates on the index partitioning
key can efficiently use hash-partitioned global indexes.

The syntax is similar to that used for a hash partitioned table.

RANGE-HASH PARTITIONED

*

In general, to create a composite partitioned table, use the PARTITION BY [RANGE | LIST]
clause of a CREATE TABLE statement. Next, you specify a SUBPARTITION BY [RANGE |
LIST | HASH] clause that follows similar syntax and rules as the PARTITION BY [RANGE |
LIST | HASH] clause. The PARTITION and SUBPARTITION or SUBPARTITIONS clauses,
and optionally a SUBPARTITION TEMPLATE clause.

RANGE-HASH FPARITTITONED

%

The partitions of a range-hash partitioned table are logical structures only, as their data is stored in the
segments of their subpartitions.

As with partitions, these subpartitions share the same logical attributes.

Unlike range partitions in a range-partitioned table, the subpartitions cannot have different physical
attributes from the owning partition, but they can reside another tablespace.

Attributes specified for a range partition apply to all subpartitions of that partition.

Specify different attributes for each range partition
Specify a STORE IN clause at the partition level if the list of tablespaces across which the
subpartitions of that partition should be spread is different from those of other partitions.

CREATE TABLE emp (deptno NUMBER , Iname VARCHAR(32),
fname VARCHAR2(32) , grade NUMBER)
PARTITION BY RANGE(deptno) SUBPARTITION BY HASH(empname)
SUBPARTITIONS 8 STORE IN (ts1, ts3, ts5, ts7)

(PARTITION p1 VALUES LESS THAN (20000),

PARTITION p2 VALUES LESS THAN (40000)
STORE IN (12, t4, t6, t8), PARTITION p3 VALUES LESS THAN (MAXVALUE)
(SUBPARTITION p1_sl1 TABLESPACE ts4,
SUBPARTITION p3_s2 TABLESPACE ts5)):

RANGE-LIS|

FARITITITONED

%

CREATE TABLE q_territory _sales

(divno VARCHAR2(12), depno NUMBER,
itemno VARCHARZ2(16), accrual _date DATE,
sales_amount NUMBER, state VARCHAR2(2),
constraint pk_q_dvdno primary key(divno,depno)

) TABLESPACE t8 PARTITION BY RANGE
(accrual _date) SUBPARTITION BY LIST (state)

(PARTITION g1_2000 VALUES LESS THAN
(TO_DATE('1-APR-2000', DD-MON-YYYY")
(SUBPARTITION g1_2000_nw VALUES (OR', 'WY),
SUBPARTITION g1 2000 sw VALUES (‘CA', 'NM)
SUBPARTITION gL_2000_ne VALUES (NY', 'CT),
SUBPARTITION gL 2000 _se VALUES (FL', 'GA),
SUBPARTITION gL_2000_nc VALUES ('SD', "W,
SUBPARTITION g1 2000 sc VALUES (TX', 'LA)),
PARTITION g2_2000 VALUES LESS THAN
(TO_DATE('1-JUL-2000','DD-MON-YYYY"))
(SUBPARTITION g2_2000_nw VALUES (OR', 'WY'),
SUBPARTITION g2 2000 sw VALUES (‘CA', 'NM),
SUBPARTITION a2 2000 ne VALUES (NY'.'CT".

SUBPARTITION g2_2000_se VALUES ('FL', 'GA"),
SUBPARTITION g2_2000_nc VALUES ('SD', 'WI"),
SUBPARTITION g2_2000_sc VALUES ('TX', 'LA)

), PARTITION g3_2000 VALUES LESS THAN
(TO_DATE('1-OCT-2000',DD-MON-YYYY?))
(SUBPARTITION g3_2000_nw VALUES (OR', 'WY),
SUBPARTITION g3_2000_sw VALUES (‘CA', 'NM),
SUBPARTITION g3_2000_ne VALUES (NY', 'CT),
SUBPARTITION g3_2000_se VALUES (FL', 'GA),
SUBPARTITION g3_2000_nc VALUES ('SD', 'WI"),
SUBPARTITION g3_2000_sc VALUES (TX', 'LA)
), PARTITION g4_2000 VALUES LESS THAN (
TO_DATE('1-JAN-2001', DD-MON-YYYY"))
(SUBPARTITION g4_2000_nw VALUES (OR', 'WY'),
SUBPARTITION g4_2000_sw VALUES (‘CA', 'NM),
SUBPARTITION g4_2000_ne VALUES (NY', 'CT),
SUBPARTITION g4 2000 _se VALUES (FL', 'GA),
(SD', 'Wr),
(TX, 'LA)

SUBPARTITION g4_2000_nc VALUES
SUBPARTITION g4_2000_sc VALUES

));

This example illustrates the creation of a range-list partitioned table.

RANGE-LIS| FPARITITITONED

AN @

CREATE TAELE g_territory_sales
C oo waARCHARZ (120,
depro NUMEER .
a1 temno waRZHARZ (1670,
accrual_date DATE,
zales_amount MUMEER,
state wARCHARZ (27,
constrainmt pk_g_dwdno praimary keyldivno,depncd

TAELESPACE ©E
FPARTITION BY RAMGE (accrual_datel
SUEPARTITION EY LIST (statel
CRARTITIORN ol 2000 wal IIES LESS THAR (TO_DATEC'1-APR-—Z2000"' | 'DO—PIOR =" 22
CSUBPARTITION gl ZO00_rmw Wal UES "OR' S]
SUEFPARTITION gl _Z2000__sw WALUES !
SUEFPARTITION gl _Z2000_ne WALUES
SUEPARTITION gl Z2000_se wWALUES
SUEFPARTITION gl _Z2000_nc WALUES
SUEFPARTITION gl_Z2000_sc WALUES

INMI

s
. otGat
. TwWI'D

W T T
NME
or I

g
S

Lat

PARTITION gZ_2000 wal UES LESS THaAM ¢ To DATEC'1-JUL—2000" | 'DD—MOM—"" " 20
CSUEPARTITION g2 2000 mw wWal LIES "oR', 'wr'ld,
SUERPARTITION g2 2000 sw Wal LIES 'Calt, !
SUEPARTITION Q2 _Z000_ne wWal LUES L
SUERPARTITION gZ_2Z000_s& wWal LIES L

e
P

SUEFARTITION gl_2000_nc wWal UES ! !
SUERPARTITION gl _2000_sc WALLES

H
=H

IT}:I

T T T T T

L]
FARTITIORN g3_2000 waALILES LESS THAR (TO_DATEC ' 1-0OCT-—
CSUERPARTITIOR _ _ wal UES C'OR' ., e
SUEFPARTITIORN _ _ WAl LUES 'Cat M
SUEFRARTITIOR WAl LUES "R, ' CT
. EA

; Qo' DD MO =y 0

SUEFRARTITIOR _ _ WAl LES "FL'
SUEFPARTITIORN _ WAl LIES =y
SUEFRARTITIORN _ _ WAl LUES o

IWII
II_AI

LA A T S s

PARTITION g4 2000 wal UES LESS THaM ¢ To _DATEC ' 1-J1am—2001" | 'DD—MOM—%"" " 22
CSUERPARTITIORN gd Z000_rmw YALUES "oR', 'wre'l,
SUERPARTITION gf_2Z000_sw wWal LIES 'Cal, "M,
SUERPARTITION gf_ 2000 _ne wWal LES "M, ‘T D
SUEPARTITION gf Z000_sa wWal LIES "FL', 'GA'D
SUERPARTITION gf_2Z000_nc Wal LIES 'so' . 'wWI'D
SUERPARTITION gf_2000_sc wWal LIES T, L&t

2
i

Table created.

CREAITING LIS|T-HASH PARITTITONED

TABLES
e

This example shows a car_rentals table that is list partitioned by territory and
subpartitioned using hash by customer identifier.

CREATE TABLE car_rentals

(car_id VARCHAR2(16)

, account_number NUMBER

, customer _id NUMBER

, amount_paid NUMBER

, branch_id NUMBER

, territory VARCHAR(2)

, Status VARCHAR2(1)

)

PARTITION BY LIST (territory)

SUBPARTITION BY HASH (customer_id) SUBPARTITIONS 8
(PARTITION p_nw VALUES ('OR', '"WY") TABLESPACE T1
, PARTITION p_sw VALUES (‘AZ", 'CA") TABLESPACE T2
, PARTITION p_ne VALUES ('NY*, 'CT") TABLESPACE T3

, PARTITION p_se VALUES ('FL', 'GA") TABLESPACE T4

, PARTITION p_nc VALUES ('SD', ‘WI') TABLESPACE T5

, PARTITION p_sc VALUES (‘OK', 'TX") TABLESPACE T6

%

CREATING LIST-RANGE PARTITIONED

TABLES

This sample code shows a car_rentals table that is list by territory and subpartitioned by range
using the rental paid amount. Note that row movement is enabled.

CREATE TABLE car_rentals

(car_id VARCHAR2(16)

, account_number NUMBER

, customer_id NUMBER

, amount_paid NUMBER

,branch_id NUMBER

, territory VARCHAR(2)

, Status VARCHAR2(1))

PARTITION BY LIST (territory)

SUBPARTITION BY RANGE (amount_paid)

(PARTITION p_nw VALUES ('WA', 'WY")
(SUBPARTITION snwlow VALUES LESS THAN (1000)
, SUBPARTITION snwmid VALUES LESS THAN (10000)

- SUBPARTITION snwhigh VALUES LESS THAN
(MAXVALUE))

, PARTITION p_ne VALUES ('NY', 'CT)
(SUBPARTITION snelow VALUES LESS THAN (1000)
, SUBPARTITION snemid VALUES LESS THAN (10000)

- SUBPARTITION snehigh VALUES LESS THAN
(MAXVALUE)

)

, PARTITION p_sw VALUES ('CA', 'AZ)

(SUBPARTITION sswlow VALUES LESS THAN
(1000)

. SUBPARTITION sswmid VALUES LESS THAN
(10000)

, SUBPARTITION sswhigh VALUES LESS THAN
(MAXVALUE)

)
, PARTITION p_se VALUES (FL', 'GA)

(SUBPARTITION sselow VALUES LESS THAN
(1000)

. SUBPARTITION ssemid VALUES LESS THAN
(10000)

, SUBPARTITION ssehigh VALUES LESS THAN
(MAXVALUE)

)
)

LISI-LISI PARITTITONED

%

CREATE TABLE car_rentals_acct
(car_id VARCHAR2(16)

, account_number NUMBER

, customer_id NUMBER

, amount_paid NUMBER

PARTITION p_ne VALUES (NY', 'CT)
(SUBPARTITION sne_low VALUES ('C)
SUBPARTITION sne_avg VALUES (B)
. SUBPARTITION sne_high VALUES (‘A)

branch id NUMBER)
, territory VARCHAR(2) , PARTITION p_sw VALUES ('CA', 'AZ")
EELS HARCHARAL (SUBPARTITION ssw_low VALUES ('C')

, rental_date TIMESTAMP WITH LOCAL TIME ZONE

, constraint pk_car_rhist primary , SUBPARTITION ssw_avg VALUES ('B)

key(car_id,account_number,branch_id,rental_date) , SUBPARTITION ssw_high VALUES ('A")
)
PARTITION BY LIST (teritory)) o
SUBPARTITION BY LIST (status) , PARTITION p_se VALUES ('FL, 'GA)
(PARTITION p_nw VALUES (WA', 'WY’) (SUBPARTITION sse_low VALUES ('C')

(SUBPARTITION snw_low VALUES ('C)

" SUBPARTITION snw_avg VALUES (B) SUBPARTITION sse_avg VALUES (.B.)
, SUBPARTITION snw_high VALUES (‘A") ; SUBPARTITION sse_high VALUES (‘A)
))

This sample code shows an car_rentals_acct table that is list-partitioned by territory and subpartitioned
by list using account status column.

LISI-LISI PARITTITONED

SOl ;

CREATE TAELE car_rentals_acct
car_qd WARCHARZ (167
account_number MNUMEER
customer_id HUMEER
amourt_paid MUMEER
bhranch_ad NUMEER
territory WARCHARCZ
status YARCHARZ (10
rental_date TIMESTAMFE WITH LOCZAlL TIME ZOME
constraint pk_car_rhist primary key(car_id,account_number ,branch_id,rental_date)

PARTITICON BY LIST (territory)
SUBPARTITION BY LIST (status)
i PARTITION p_nw WALUES 'wa',

C SUEPARTITION =rmw_ |ow

» SUEPARTITION =rmw_awg

. SUEPARTITIOM shw_high WwALUES

. PARTITIONM p_ne WaLUES 'MWy’
¢ SUEPARTITION sne_low
» SUEFARTITIOMN sHie_awg
. SUBPARTITIOM sne_high walLUE

. PARTITIONM p_sw WaLUES 'Ca',
C SUEPARTITION ssw|ow ValLIES
» SUEFARTITIOMN ssw awg
. SUBPARTITIOM ssw_high WALUES

PARTITION p_se VaALUES ('FL',
SUEFARTITION sse_low
SUEFARTITION sse_awn
SUEPARTITION sse_high WwALUES

enable row mowement

!TabWE created.

RANGE-HASH PARTITIONED TABLE

USING A SUBPARTITION TEMPLATE
-]

CREATE TABLE credential _evaluations (PARTITION grad_date 70s

(eval_id VARCHAR2(16) primary key VALUES LESS THAN (
,grad_id VARCHAR2(12) TO_DATE('01-JAN-1980','DD-MON-YYYY"))

grad_date DATE , PARTITION grad_date 80s

VALUES LESS THAN (
 degree_granted VARCHAR2(12) TO_DATE(01-JAN-1990", DD-MON-YYYY))

, degree_major VARCHAR2(64) PARTITION grad_date_90s

: SChOO|_id VARCHAR?Z2 32) VALUES LESS THAN (
, final_gpa NUMBER(4,2) TO_DATE('01-JAN-2000','DD-MON-YYYY"))
) , PARTITION grad_date_00s
PARTITION BY RANGE (grad_date) VALUES LESS THAN (
SUBPARTITION BY HASH (grad_id) TO_DATE('01-JAN-2010"DD-MON-YYYY'))
SUBPARTITION TEMPLATE)
(SUBPARTITION S_a TABLESPACE t1,
SUBPARTITION S_b TABLESPACE t2,
SUBPARTITION S_c TABLESPACE 13,
SUBPARTITION S_d TABLESPACE t4

MULTICOLUMN RANGE-PARTITIONED

TABLE
-

This example shows a multicolumn range-partitioned table, storing the actual DATE |
information in three separate columns: year, month, and day with partition quarterly granularity

CREATE TABLE bi_auto_rentals_summary
(acctno NUMBER,
rental_date TIMESTAMP WITH LOCAL TIME ZONE,
year NUMBER,
month NUMBER,
day NUMBER,
total_ amount ~ NUMBER,
CONSTRAINT pk_actdate PRIMARY KEY (acctno, rental_date))
PARTITION BY RANGE (year,month)
(PARTITION prior2008 ~ VALUES LESS THAN (2008,1),
PARTITION pgl_2008 VALUES LESS THAN (2008,4),
PARTITION pg2_2008 VALUES LESS THAN (2008,7),
PARTITION pg3_2008 VALUES LESS THAN (2008,10),
PARTITION pg4 2008 VALUES LESS THAN (2009,1),
PARTITION p_current VALUES LESS THAN (MAXVALUE,1));

MULTICOLUMN RANGE-PARTITIONED
TABLE

44

This sample code illustrates the use of a multicolumn partitioned
approach for table supplier_parts, storing the relevant data including

price. Partition the table on (supid, partno) to enforce equally sized
partitions.

CREATE TABLE sp_price (
supid NUMBER,
partno NUMBER,
unitprice NUMBER,

status VARCHARZ2(1))
PARTITION BY RANGE (supid, partno)
(PARTITION p1 VALUES LESS THAN (10000,1000),
PARTITION p2 VALUES LESS THAN (50000,2000),
PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE));

USING VIRTUAL COLUMN-BASED

%

In the context of partitioning, a virtual
column can be used as any regular
column.

All partition methods are supported when
using virtual columns, including interval
partitioning and all different combinations
of composite partitioning.

There 1s no support for calls to a PL/SQL
function on the virtual column used as the
partitioning column.

VIR IUAL CULUMN-BASED
PARTITIONING

This sample code shows the sales table
partitioned by range-range using a virtual
column for the subpartitioning key. The
virtual column calculates the difference
between the historic average sales and the
forecasted potential sales. As a rule, at
least one partition must be specified.

USING COMPRESSION AND
PARTITIONING

For heap-organized partitioned tables, compress
some or all partitions using table compression.

The compression attribute can be declared for a
tablespace, a table, or a partition of a table.

Whenever the compress attribute is not specified,
it is inherited like any other storage attribute.

USING COMPRESSION AND
PARTITIONING

CREATE TABLE credential_evaluations
(eval_id VARCHARZ2(16) primary key
, grad_id VARCHAR2(12)
, grad_date DATE
, degree_granted VARCHAR2(12)
, degree_major VARCHAR2(64)
, school_id VARCHARZ2(32)
final_gpaNUMBER(4.2)) Q
PARTITION BY RANGE (grad_date)
SUBPARTITION BY HASH (grad _id) SUBPARTITIONS 8 STORE IN (T1,T2,T3,T4)
(PARTITION grad_e _70s
VALUES LESS THAN (TO_DATE('01-JAN-1980','DD-MON-YYYY")) TABLESPACE T1 COMPRESS
, PARTITION grad_date 80s
VALUES LESS THAN (TO_DATE('01-JAN-1990','DD-MON-YYYY")) TABLESPACE T2 COMPRESS
, PARTITION grad_date 90s
VALUES LESS THAN (TO_DATE('01-JAN-2000', DD-MON-YYYY")) TABLESPACE T3 NOCOMPRESS
, PARTITION grad_date 00s
VALUES LESS THAN (TO_DATE('01-JAN-2010',DD-MON-YYYY")) TABLESPACE T4 NOCOMPRESS)
ENABLE ROW MOVEMENT;

USING PARTITIONED

- INDEX KEY COMPRESSION
I

Compress some or all partitions of a B-tree index using key compression.
Key compression is applicable only to B-tree indexes.
Bitmap indexes are stored in a compressed manner by default.

An index using key compression eliminates repeated occurrences of key column prefix
values, thus saving space and 1/0.

This sample code creates a local partitioned index with all partitions except the most
recent one compressed:

CREATE INDEX ndx_grad_date ON credential _evaluations (grad_date)
COMPRESS LOCAL

(

PARTITION grad_date_ 70s,

PARTITION grad_date_ 80s,

PARTITION grad_date_ 90s,
PARTITION grad_date 00s NOCOMPRESS

);

It is NOT possible to specify COMPRESS (or NOCOMPRESS) explicitly for an index
subpartition. The compression setting in a partition is inherited for a child
subpartition. Attribute. Each index subpartition of a parent partition inherits its key
compression setting .

CREATING RANGE-PARTITIONED

INDEX-ORGANIZED TABLES

It is possible to partition index-organized tables, and their secondary indexes, by the range method.
This sample code creates the range-partitioned index-organized table new_mktg _campaings. The
INCLUDING clause specifies that all columns after period_code are to be stored in an overflow
segment. There is one overflow segment for each partition, all stored in the same tablespace (T11).
Optionally, OVERFLOW TABLESPACE is specified at the individual partition level, in which case
some or all of the overflow segments could have separate TABLESPACE attributes.

HASH-PARTITIONED INDEX-ORGANIZED
TABLES

s 4

Another option for partitioning index-organized tables is to use the hash method. In the

following example, the future_mktg_campaings index-organized table is partitioned by the
hash method.

CREATE TABLE future_mktg_campaigns
(campaign_id NUMBER(8)
, period_code INTEGER

CONSTRAINT fnock CHECK (period_code BETWEEN 1 AND 26)
, campaign_name VARCHARZ2(20)

, projected_sales NUMBER(12,2)
, campaign_desc VARCHARZ2(2000),
PRIMARY KEY (campaign_id, period _code)
)
ORGANIZATION INDEX
INCLUDING period_code OVERFLOW TABLESPACE T11
PARTITION BY HASH (period_code)
PARTITIONS 8
STORE IN (T1,T2,T3,T4,T5,T6,T7,T8)
OVERFLOW STORE IN (T9,T10,T11);

LIST-PARTITIONED INDEX-ORGANIZED

TABLES
.4

The other option for partitioning index-organized tables is to use the list
method.

CREATE TABLE current_mktg_campaigns

(campaign_id NUMBER(8)

, period_code INTEGER CONSTRAINT fpclst_ck
CHECK (period _code BETWEEN 1 AND 26)

, campaign_name VARCHARZ2(20)

, projected _sales NUMBER(12,2)

, campaign_desc VARCHARZ2(4000),

PRIMARY KEY (campaign_id, period _code))

ORGANIZATION INDEX
INCLUDING period _code OVERFLOW TABLESPACE T11
PARTITION BY LIST (period_code)
(PARTITION A VALUES (2, 4, 8, 10,12,14,16) TABLESPACE t12,
PARTITION B VALUES (1,3,5,7,9,11,13,15,17) TABLESPACE t14
OVERFLOW TABLESPACE t15,
PARTITION C VALUES (DEFAULT) TABLESPACE t10);

COMPOSITE INTERVAL-* PARTITIONED
TABLES

TAELE_OWMER TAELE_MAME

PRO_MARKETIMNG_CAMPATGNS ¥ES EEFORE_Z009
4 TO_DATEC' 2009-01-01 00:00:00', 'SYYrr-MM-DD HH2Z4:MI:SS', 'MNLS_CALENDAR=GREGORIA
1 USERS 0 1
MOME EMAELED DIRECT LOAD OMLY
DEFAULT KO HO

SaLs> dnsert inte pro_marketing_campaigns waluwes (100, 'ADN Campaign' ,sysdate-100,2,10000000, 'Composite Interwal-* sample')

1 row created.
S0OL> commit;
Commit complete.

SOLs select * from dha tab_partitions where table_name ='FRO_MARKETIMNG_CAMPAIGHNS' ;

TAELE_OWHER TAELE_MAME

PRO_MARKETIMG_CAMPATIGMS YES BEFORE_Z2009
4 TO_DATEC' 2009-01-01 00:00:00", 'SY¥yy—MM-DDO HHZ4:MI:55', 'HLS_CALEMDAR=GREGORIA
0 1

1 USERS

MOME EMAELED DIRECT LOAD ORLY
DEFAULT MO MO

PRO_MARKETIMG_CAMPATGMS YES SYS_FZE9
4 TO_DATEC' 2009-03-01 00:00:00" , 'S¥yY¥yy'—MM-DDO HHZ24:MI:55', 'HLS_CALENDAR=GREGORIA

53 2 USERS 0 1

COMPOSITE INTERVAL-* PARTITIONED

TABLES
sy
* Include the INTERVAL definition.
» Specify at least one range partition using the PARTITION clause.
* Note that:

* The range partitioning key value determines the high value of the
range partitions, which is called the transition point, and the database
automatically creates interval partitions for data beyond that transition
point.

» The subpartitions for intervals in an interval-* partitioned table will be
created when the database creates the interval. You can specify the
definition of future subpartitions only through the use of a subpartition
template.

e Create an interval-hash partitioned table with multiple hash
partitions using one of the following methods:

 Either specify a number of hash partitions in the PARTITIONS
clause or Use a subpartition template: Future interval partitions will
only get a single hash subpartition.

COMPOSITE INTERVAL-* PARTITIONED

TABLES
e

This sample code shows the pro_marketing_campaigns table as
interval-partitioned using monthly intervals on campaign_date, with
hash subpartitions by period_code.

CREATE TABLE pro_marketing_campaigns
(campaign_id NUMBER(8)
, campaign_name VARCHAR2(20)
, campaign_date DATE
, period_code INTEGER CONSTRAINT fcopck CHECK (period_code BETWEEN 1 AND 26)
, projected_sales NUMBER(12,2)
, campaign_desc VARCHAR2(4000),
PRIMARY KEY (campaign_id, period code))
PARTITION BY RANGE (campaign_date) INTERVAL (NUMTOYMINTERVAL(1,'MONTH")
SUBPARTITION BY HASH (period_code) SUBPARTITIONS 4
(PARTITION p_prior_2009 VALUES LESS THAN (TO_DATE('01-JAN-2009','dd-mon-yyyy")))
PARALLEL COMPRESS FOR ALL OPERATIONS;

FARITTITONING AND

There iIs no encryption support for a column
used a partitioning key

L7

]
L [o I '!_.

R

HHMEEEIPI NOT MULL
MULL
YPT USING 'AES192'
NULL

e
]

300 =

L1, 'MONTH'

j JUEP ETITIHH p W

» SUERPARTITION p_awg

» SUEPARTITION p_ h'||'1||
15 » SUERPARTITION p_max
16 (PARTITION npai gn_pris
17 Eii"ELE ROW MOWEMEMT COMPRESS
18
CREATE TABLE direct_marketing

E 1ine 1:
G: an encrypted column cannct serwve as a partiticning column

OMBSDB: Multiple Block Size Caches

C:“APP~0RACLEMORADATASADNISYSTEADL . DEF
C:“APP~0RACLEMORADATASADNZSYSAUROL . DEF
C:“APP~0RACLEMORADATASADNSUNDOTESOL . DBF
C:“APP~0OEACLEMOERADATASADONIUSERSOL . DBF
C:“APP~0RACLEORADATAAONIT1. DBF
C:“APP~0EACLEOEADATAAONIN T . DBF
C:“APP~0EACLEOEAODATAAONIN TS . OBF
C:“APP~0EACLEOEADATAAONIN T4 . DBF
C:“APP~0EACLEOEADATAAONIN TS .. OBF
C:“APP~0OEACLEOEADATAAONINTE . DBF
C:“APP“0EACLEOEAOATAAONINT. . OBF
C:“APP~0EACLEOEAOATAAONIN TS . DBF
C:“APP“0EACLEOEAOATAAONIN T . OBF
C:“APP“0ORACLEOEADATAAONINTI0. DBF
C:“APP“0ORACLEOEADATAAONINT11. DBF
C:“APP“0ORACLEOEADATAAONINT12 . DBF
C:“APP“0ORACLEOEADATAAONINT12. DBF
C:“APP“0ORACLEOEADATAAONINT14. DBF
C:“APP“0RACLEOEADATAAONI TG . OBF
C:“APP“0ORACLEORADATAADONINT16. DBF

20 vous zelected.

S0L> alter =zusten =zet db_16k_cache_=zize = lan:
Systen altered.

SL> zhou paraneter db_

db_l16k_cache_=size ig integer
db_2k_cache_=zize ig integer
db_32k_rache_size iqg integer
db_4dk_rache_=zize iqg integer
db_8k_rcache_zize iqg integer
db_block_buffers integear
db_block_checking z=tring
db_block_check=zun string
db_block_=zize integear
dh rarbhe adwire =t in

USING MUTIPLE BLOCK SIZE
e ———

Creating indexes on a tablespace with a larger block size will increasing performance in
DSS and in most OLTP scenarios.

This sample code creates the credential _tables in the 8k block size T1,T2,T3,and T4
tablespaces, and local indexes on the 16k T18,T20,T22,T24 tablespaces, as cached
respectively.

-

T s

300 =

15
-5
18
19

Takhle

Inddex

1L

> CREATE TA

> CREATE INDEX
- 0

PARTITION
PARTITION
PARTITION

ELE
T ewal_ad
grad_-+id
gr ad_date
degree_granted
=_major
sC _id
tinal_gpa
P ETITIHH E™” EHHuE Cgra
. : ﬂjt
C
]r"zui li:rl:
i
1Pad_dat
S5 THAM
gr ad_dat

created.
'PEdPHT1d1
gr ad

gr ad
qrac

dat
date

created.

csaluatior
P imarys

'O
'O
'O

'O

evaluations

—MON =¥

—MOMN =

—MON =¥

—MON—¥ ' 30

Cgrad_datel

TAELESPACE

TAELESPACE

TAELESPACE

TAELESPACE

Lo A

USING MUTIPLE BLOCK SIZE

5L > SET AUTOTRACE OR
SOL> SELECT * FROM CREDEMTIAL_EVALUATIONS WHERE grad_date > sysdate-150;

no rows selected

Executicon Plan

Flan hash walue: 3993119364

| Cperaticn
CSCPUD | TAime Pstart| Pstop

SELECT STATEMERT
Qo000 | |

FARTITION RAMGE ITERATOR |
OQ o001 | KEY | 4|

TAELE ACCESS FLLL CREDERMTIAL _EWALUATIOMNS
Q00001 | S |

Analyzing
Performance from
Optimizer access path
as explained.

recursiwve calls
db block gets
consistent gets
phy=1cal reads
redo size
bvtes sent wia SaL¥ket to —lient
bytes receiwed wia SaL*ket from <lbient
SOl ket roundtrips toffTrom olient
sorts Cmemory
-

RELEVANT DATA DICTIONARY
A —— e ——

Dictionary Views with Partitioned Tables and
Indexes Information

The following views display information specific to partitioned tables and

indexes:

View Description

DBA_PART_TABLES
ALL_PART_TABLES

USER_PART_TABLES

DBA_TAB_PARTITIONS
ALL_TAB_PARTITIONS

USER_TAB_PARTITIONS

DBA view lists partitioning
information for all partitioned
tables in the database. ALL
view displays partitioning
information for all partitioned
tables accessible to the user.
USER view is restricted to
partitioning information for
partitioned tables owned by
the user.

Exhibits partition-level
partitioning information,
partition storage parameters,
and partition statistics
generated by the
DBMS_STATS package or the
ANALYZE statement.

DBA_TAB_SUBPARTITIONS
ALL_TAB_SUBPARTITIONS

USER_TAB_SUBPARTITIONS

DBA_PART_KEY_COLUMNS
ALL_PART_KEY_COLUMNS

USER_PART_KEY_COLUMNS

DBA_SUBPART_KEY_COLUMNS

ALL_SUBPART_KEY_COLUMNS

USER_SUBPART_KEY_COLUMNS

DBA_PART_COL_STATISTICS
ALL_PART_COL_STATISTICS

USER_PART_COL_STATISTICS

DBA_SUBPART_COL_STATISTICS
ALL_SUBPART_COL_STATISTICS

USER_SUBPART_COL_STATISTICS

Display subpartition-level
partitioning information,
subpartition storage
parameters, and subpartition
statistics generated by the
DBMS_STATS package or the

ANALYZE statement.

Display the partitioning key
columns for partitioned
tables.

Display the subpartitioning
key columns for composite-
partitioned tables (and local
indexes on composite-
partitioned tables).

Display column statistics and
histogram information for the
partitions of tables.

Display column statistics and
histogram information for
subpartitions of tables.

FARXITTI TONED

ALTER TABLE Maintenance Operations for Table
Subpartitions

Maintenance Composite *-

Operation

Range

MODIFY
PARTITION ...
ADD
SUBPARTITION

N/A

DROP
SUBPARTITION

EXCHANGE
SUBPARTITION

MERGE
SUBPARTITIONS

MODIFY
DEFAULT
ATTRIBUTES
FOR PARTITION

Composite *-
Hash

MODIFY
PARTITION ...
ADD
SUBPARTITION

MODIFY
PARTITION ...
COALESCE
SUBPARTITION

N/A

N/A

N/A

MODIFY
DEFAULT
ATTRIBUTES
FOR PARTITION

Composite *-
List

MODIFY
PARTITION ...

ADD
SUBPARTITION

N/A

DROP
SUBPARTITION

EXCHANGE
SUBPARTITION

MERGE
SUBPARTITIONS

MODIFY DEFAULT
ATTRIBUTES FOR

PARTITION

| ADLLE

MODIFY
SUBPARTITION

N/A

N/A

SET
SUBPARTITION
TEMPLATE

MOVE
SUBPARTITION

RENAME
SUBPARTITION

SPLIT
SUBPARTITION

TRUNCATE
SUBPARTITION

MODIFY
SUBPARTITION

N/A

N/A

SET
SUBPARTITION
TEMPLATE

MOVE
SUBPARTITION

RENAME
SUBPARTITION

N/A

TRUNCATE
SUBPARTITION

MODIFY
SUBPARTITION

MODIFY

SUBPARTITION ...

ADD VALUES

MODIFY

SUBPARTITION ...

DROP VALUES

SET
SUBPARTITION
TEMPLATE

MOVE
SUBPARTITION

RENAME
SUBPARTITION

SPLIT
SUBPARTITION

TRUNCATE
SUBPARTITION

PARTTITONED INDEX

ALTER INDEX Maintenance Operations for Index Partitions

Maintenance Type

Operation

of
Index

Global

Local
Global

Local
Global

Type of Index Partitioning
Hashand Composite
List
ADD
PARTITION
(hash only)
N/A N/A
DROP
PARTITION

N/A N/A
MODIFY

DEFAULT
ATTRIBUTES

MODIFY MODIFY MODIFY
DEFAULT DEFAULT DEFAULT
ATTRIBUTES ATTRIBUTES ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES
FOR
PARTITION

Global

Global

Local

Global

Local

MODIFY
PARTITION

MODIFY
PARTITION

REBUILD
PARTITION

REBUILD
PARTITION

RENAME
PARTITION

RENAME
PARTITION

SPLIT
PARTITION

N/A

MODIFY
PARTITION

REBUILD
PARTITION

RENAME
PARTITION

MODIFY
PARTITION

MODIFY
SUBPARTITION

REBUILD
SUBPARTITION

RENAME
PARTITION

RENAME
SUBPARTITION

N/A

MAINTENANCE OPERATIONS

2

The following operations support the UPDATE INDEXES clause:

As of Oraclel0g, SKIP_UNUSABLE INDEXES is an initialization parameter with a
default value of TRUE. This setting disables error reporting of indexes and index

partitions marked UNUSABLE. To avoid choosing an alternative execution plan to
evading the unusable elements, set this parameter to FALSE.

MAINTENANCE OPERATIONS

ALTER TABLE credential_evaluatons ADD PARTITION grad_date_10s
VALUES LESS THAN (TO_DATE('01-JAN-2020','DD-MON-YYYY")) TABLESPACE T10;

SQL»
SQL> ALTER TABLE credential_evaluations ADD PARTITION grad_date_lOs VALUES LESS THAN (TO_DATE('UI-JAN-2020','DD-MON-YYYY')) TABLESPACE T10;
Table altered.

SOL> ALTER TAELE =ml-ioct ADD PARTITION =mlict_p5 TAELESPACZE T5;

. : =
Al TER TAELE =mlict ADD PARTITION xmlict_pSs TAELESPACE TG

ERROR at Tline 1:

SOL=
SOLx» ALTER TAELE rental_costs ADD PARTITION pce TAELESPACE TG
ALTER TAELE ﬁEﬂt&W_cﬁsts ADD PARTITION pce TAELESPACZE TS

ERROR at Tine 1:)) o)
ORA-14760: ADD PARTITION s not permitted on Interwal partitioned cbjects

MAINTENANCE OPERATIONS
-

ALTER TABLE school_directory COALESCE PARTITION PARALLEL;

SQL> ALTER TABLE regional_rentals COALESCE PARTITION PARALLEL;
ALTER TABLE regional_rentals COALESCE PARTITION PARALLEL
"

ERROR at line 1:
ORA-14259: table is not partitioned by Hash method

SQL> ALTER TABLE xmliot COALESCE PARTITION PARALLEL;
ALTER TABLE xmliot COALESCE PARTITION PARALLEL
¥

ERROR at Tline 1:
ORA-25182: feature not currently available for index-organized tables

SQL> ALTER TABLE X_adnxml_tab COALESCE PARTITION PARALLEL;

SQL> ALTER TABLE SChOO]_directory COALESCE PARTITION PARALLEL;
Table altered.

SQL>

MAINTENANCE OPERATIONS

ALTER TABLE order_hist DROP PARTITION pg4 UPDATE INDEXES;

SQL>
SQL> ?LTER TABLE order_hist DROP PARTITION pg4 UPDATE INDEXES
2

Table altered.

SQL>

MAINTENANCE OPERATIONS

ALTER TABLE bi_auto_rentals_summary EXCHANGE PARTITION pgl 2008
WITH TABLE bi_auto_rentals_ summary 1 UPDATE INDEXES;

SQL>
SQL> ALTER TABLE BI_AUTO_RENTALS_SUMMARY TRUNCATE PARTITION pgl_2008 DROP STORAGE;

Table truncated.

SOL>

SQL> ALTER TABLE BI_AUTO_RENTALS_SUMMARY EXCHANGE PARTITION pgl_2008 WITH TABLE BI_AUTO_RENTALS_SUMMARY_1;

Table altered.

SQL>
Nl ~

SQL>
SQL> ALTER TABLE BI_AUTO_RENTALS_SUMMARY EXCHANGE PARTITION pgl_2008 WITH TABLE BI_AUTO_RENTALS_SUMMARY_1 UPDATE INDEXES;

able altered.

sQL> o

MAINTENANCE OPERATIONS

ALTER TABLE bi_auto_rentals_summary MOVE PARTITION pgl 2008
TABLESPACE T9 UPDATE INDEXES;

SQL>
SQL> ALTER TABLE crgdentia]_evg]uations MOVE PARTITION grad_date_90s TABLESPACE T9 UPDATE INDEXES;
LTER TABLE credential_evaluations MOVE PARTITION grad_date_90s TABLESPACE T9 UPDATE INDEXES

1

ERROR at 1ine 1: .)
RA-14257: cannot move partition other than a Range, List, System, or Hash
partition

SQL> ALTER TAEBLE bi_auto_renta]s_summary MOVE PARTITION pq1_2008 TABLESPACE T9 UPDATE INDEXES;
Tahle altered.

SQL>
SQL>

MAINTENANCE OPERATIONS

SQL> ALTER TABLE rental_costS merge partitionS pca, pch;

Table altered.

SQL >
SQL>

%]
L
vV

SELECT table_name,partition_name,tabespace_name

%]
L

LW N
A4

SELECT table_name,partition_name,tablespace_name
FROM user_tab_partitions

WHERE table_name ='RENTAL_COSTS'

?RDER By 1,2,3

TAELE_NAME PARTITION_NAME TAELESPACE
RENTAL_COSTS

RENTAL_COSTS PCD
RENTAL_COSTS SYS_P423

MAINTENANCE OPERATIONS

SQL> ALTER TABLE REGIONAL_RENTALS MERGE PARTITIONS PSW,PSE INTO PARTITION PSS;

Table altered.
[abiab Ol d Cans ool

SELECT table_name,partition_name
FROM user_tab_partitions

WHERE table_name = 'REGIONAL_RENTALS'
ORDER BY 1,2
5 /

TABLE_NAME PARTITION_NAME
REGIONAL_RENTALS
REGIONAL_RENTALS
REGIONAL_RENTALS

1S0L> _

MAINTENANCE OPERATIONS

ALTER TABLE g_territory_sales SPLIT PARTITION g4 2000 AT
(TO_DATE('15-MOV-2000", DD-MON-YYYY?)):

AT (TO_DATE(' 15-NOV-2000", 'DD-MON-YYYY'))

FPARTITION_R

MAINTENANCE OPERATIONS

ALTER TABLE credential_evaluations TRUNCATE PARTITION grad_date 10s
DROP STORAGE UPDATE INDEXES;

50L> ALTER TAELE DIRECT_MARKETING TRUMCATE SUERARTITION P_CAMPATIGH_PRIOR_ZO0S_P_AVG;

Table truncated.

1 SELECT takle_name,partiticn_name,composite
2 from user_tab_Partitions
3 WHERE table_name='CREDENTIAL_EwALUATIONS'
4% (ORDER BY 1,2, 3
S0l [/
TAELE_MAME FARTITION_MAME
CREDEMTIAL_EvaAlLUATIONS GRAD_DATE_105
CREDEMTIAL_EvalLUATIONS GRAD_DATE_FOS
CREDEMTIAL_EWvalLUATIONS GRAD_DATE_B0S
_REDEMTIAL_EvaAlLUATIONS GRAD_DATE_S905
NCREDEMTIAL_Ewal UATIONS Sys_ P41
CREDEMTIAL_EvalLUATIONS SYS_P422

6 rows selected.

SOL» ALTER TAELE credential_ewvaluations TRUNCATE RPARTITION grad_date_10s UFDATE IWDEXES;

Tahle truncated.

S0L> ALTER TAELE credential_sewvaluaticons TRUWNCATE PARTITION grad_date_lDS DROF STORAGE UPDATE IKDEXES;
Tahle truncated.

S0l -

MAINTENANCE OPERATIONS

ALTER INDEX ndx_final_gpa REBUILD PARTITION C1;
ALTER INDEX ndx_final_gpa REBUILD PARTITION C2;
ALTER INDEX ndx_final_gpa REBUILD PARTITION B1,
ALTER INDEX ndx_final_gpa REBUILD PARTITION B2;
ALTER INDEX ndx_final_gpa REBUILD PARTITION A1;
ALTER INDEX ndx_final_gpa REBUILD PARTITION AZ2;

SOLs ALTER IMDEx ndx_final_gpa REEUILD PARTITIOM
Index altered.

SOL> ALTER IMWDEX ndx_T1n: gpa REEUILD PARTITION C2;
Index altered.

SOLs ALTER IMNDEx ndx_final_gpa REEUILD PARTITION E1;

Index altered.

SQL> ALTER INMDEx ndx_final_gpa REEBUILD PARTITIOM EZ;

Index altered.
SOL> ALTER IMWDEX ndx_T1n: gpa REEUILD PARTITIOMN Al;
Index altered.
S50 ALTER IMDEX REEUILD PARTITIOM A2 ;

Index altered.

MAINTENANCE OPERATIONS

:p': Practice Test for Oracle Press OCP 10g Exam - Question 7of15 = e

File Format Fant Options Help

“ QUEST
7.3 What does the TPDATE INDEXES clause in the following statement help you do in Oracle 7

Diatabase 10g7 (Choose two answers.)

SQL= alter table my patts

2 move partition my_part] tablespace new_thsp
3 update indexes

4 (my_parts_idx

5 {partition my_part] tablespace my_thep),

¥ A Allow you to specifiy storage attributes of the corresponding local index segments
V¥ B. Automatically rebuild the corresponding local index segments
7 C. Create an index for the new partition my_part1

[7 D. Move the ndex partition for the new partition my_part1

’@; The Answer

Correct.
The answer(s): A B

What does the TPDATE INDEXES clause in the following statement help you do m Oracle
Database 1027 (Choose two answers.)

201> alter table my_parts

2 move partiion my_part] tablespace new_thsp

3 update indexes

4 (my_parts_idz

3 (partition my_part] tablespace my_thsp);

A Allow you to specify storage attributes of the corresponding local index segments
By Automatically rebuild the corresponding local index segments

C.) Create an index for the new partition my_part]

D) Move the index partition for the new partition my_part]

Select the 2 Best Answers.

& and B. The TPDATE INDEXES clause will automatically rebuild the correspondmng local
index segments. The clavse will also allow you to specify storage attributes of the local index
segrments associated with the partition that 12 part of the MOVE PARTITION staternent. In
previous versions of Oracle, the local index partitions were placed either in the default
tablespace or in the same tablespace as the table segments.

C and D are mcorrect since the TPDATE INDEXES command doesn’t create or affect an
mdex just for the partition my_part]. The command affects the index for the entire table
following the WMOVE PARTTTION command.

MANAGEABILITY
2

| l - | > I [+ |e https:iffadnmis1158/emconsole/database/schermastable frarget=adn3&type = oracle_databasedicancelURL=/em/consale/d: & | [Q' Google] B' #' .* |

ORACLE Enterprise Manager 11g Setup Preferences Help Logout
Database Control

Database Instance: adn3 > Tables = Logged in As 5¥S

Create Table
(_Bhow SGL J |_Cancel) [OK

General Constraints Storage Options Partitions J I0T Properties l

Mumber of Primary Key Columns ko Compress [<Manex
Use Mapping Table ﬁ

Overflow Options
Use Overflow Data Segment
Threshold (3%} |50
Specify a value bebween 1 and 50. All columns which are not part of the primary key and which are large enough ko use more than this percentage of the index block will be stared in the overflow segment.
Inchuding Column [%10
All columns sfter the one specified will be stored in the overflow segment.,
Tablespace [75p | :,,j?l Overflaw Starage |

Use <Default= ko use the defadlt kablespace.,
Click here to select tablesp e]
General Constrainks Storage options Partitions ‘ IOT Properties |

(_Show SGL) (_Cancel J (_OK)

[4 ‘ 2 J [+ |ehttps:f[adnmis:1158;'em;'cnnsole,’databaselschema,’table?target:adnB&type=0racIe_database&canceIURL:IechonsoIe{d: G] [Q' Google] B' ﬁ' &J

ORACLE Enterprise Manager 11g Setup Preferences Help Logout
Database Control

Database Instance: adn3 > Tables > Create Table = Logged in &s 55

Show SOL
| Return]

CREATE TABLE "ANTHONY"."XMLICT" { "XID" VARCHARZ(1Z) HOT HULL , "EMGMT" "ANTHONY"."XMLID MGMT", CONSTRAIHT "T18" PRIMARY KEY ("XID")
VALIDATE)} ORGANIZATION INDEX TABLESPACE "T16" PCTFREE 40 INITRANS 2 MAXTRANS 255 MAPPING TABLE INCTLUDING "ZID" OVERFLOW TABLESPACE "TZ0"
PARTITION BY HASH ("XID") (PARTITION "XIMLIOT P1" TABLESPACE "Tle", PARTITION "EMLIOT PZ" TABLESPACE "Tle", PARTITION "XMLIOT P3"
TABLESPACE "T1&", PARTITION "XMLIOT P4" TABLESPACE "T16") PARATLEL EHWABLE ROW MOVEMENT

Return

Database | Setup | Preferences | Help | Logook

Copyright 1) 1996, 2007, Oracle, All rights reserved,
Cracle, 10 Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation andfor its affiliates. Other names may be trademarks of their respective owners,

PARTITIONING FOR AVAILABILITY,

MANAGEABILITY, AND PERFORMANCE
54

Partition Pruning

Partition-Wise Joins

ndex Partitioning

Partitioning and Table Compression

Tuning and Mixing objects in Multiple Block
Size Database Models

PARTITION PRUNING

I
Partition pruning is a foundational performance feature to both

DSS and OLTP, enabling the Oracle Database to perform
operations only on those partitions that are relevant to the SQL.

The optimizer analyzes FROM and WHERE clauses in SQL
statements to eliminate unneeded partitions.

Partition pruning greatly optimizes time and resources when
retrieving data from disk, thus improving query performance.

When partitioning an index and a table on different columns
(with a global partitioned index), then partition pruning also
eliminates index partitions even when the partitions of the
underlying table cannot be eliminated.

Either static or dynamic pruning could be used, depending on
SQL statement.

Static pruning occurs at compile-time, with the information
about the partitions accessed beforehand while dynamic
pruning occurs at run-time.

PARTITION PRUNING

I

Partition pruning affects the statistics of the
objects involved and therefore also the
execution plan of the statement.

Oracle Database prunes partitions when using
range, LIKE, equality, and IN-list predicates on
the range or list partitioning columns, and when
using equality and IN-list predicates on the hash
partitioning columns.

When using composite partitioned objects,
Oracle can prune at both levels using the
relevant predicates.

PARTITION-WISE JOINS
I

Partition-wise joins minimize guery response
time by reducing the amount of data exchanged
among parallel execution servers when joins
execute in parallel, thus reducing response time
and improving the use of both CPU and memory
resources.

In Oracle Real Application Clusters (RAC)
environments, partition-wise joins also avoid or
at least limit the data traffic over the
Interconnect, which is the key to achieving good
scalablility for massive join operations.

PARTITION-WISE JOINS
I

Partition-wise joins can be full or partial. Oracle decides which one to use.

Full Partition-Wise Joins

A full partition-wise join divides a large join into smaller joins between a pair of
partitions from the two joined tables. To use this feature, you must equipartition
both tables on their join keys, or use reference partitioning. For example,
consider a large join between a sales table and a customer table on cust _id.

The query "find the records of all customers who were part of the campaign more
than 200 potential sales items in the 34 Quarter of 2008" is a typical example of
a SQL statement performing such a join. This example shows a partition-wise
join:
SELECT c.cust_Iname COUNT(*)
FROM direct_marketing dm, customers c
WHERE dm.cust_id = c.cust_id
AND dm.campaign_init_date = c.campaign_date
AND dm.campaign_date BETWEEN TO_DATE('01-JUL-2008', 'DD-MON-YYYY") AND
(TO_DATE('01-OCT-2008', 'DD-MON-YYYY"))
GROUP BY c.cust_Iname HAVING COUNT(*) > 200;

PARTITION-WISE JOINS

Partition-wise joins reduce query response time and
optimizing CPU and memory resources by minimizing the
amount of data exchanged among parallel execution
servers when joins execute in parallel.

In RAC environments, partition-wise joins also avoid or at
least limit the data traffic over the interconnect, which is
the key to achieving good scalability for massive joins.

To avoid remote 1/O, both matching partitions should have
affinity to the same node.

Partition pairs should be spread over all nodes to use all
CPU resources available and avoid bottlenecks .

Nodes can host multiple pairs when there are more pairs
than nodes, e.g., for an 8-node system and 16 partition
pairs, each node receives two pairs.

PARTITION-WISE JOINS
O

Full Partition-Wise Joins: Composite - Single-Level

This method is a variation of the single-level - single-level
method. In this scenario, one table (typically the larger
table) is composite partitioned on two dimensions, using
the join columns as the subpartition key.

Partial Partition-Wise Joins: Single-Level Partitioning

The simplest method to enable a partial partition-wise join
IS to partition sales by hash on cust_id.

The number of partitions determines the maximum
degree of parallelism, because the partition is the
smallest granule of parallelism for partial partition-wise
join operations.

PARTITION-WISE JOINS

2

Full Partition-Wise Joins: Composite -
Composite

When necessary, it is possible to also partition a
table by a composite method.

It Is possible to get full partition-wise joins on all
combinations of partition and subpartition
partitions: partition - partition, partition -
subpartition, subpartition - partition, and
subpartition - subpartition.

PARTITION-WISE JOINS
N

Partial Partition-Wise Joins

Oracle Database can perform partial partition-wise joins
only in parallel.

Unlike full partition-wise joins, partial partition-wise joins
require partitioning only one table on the join key.

The partitioned table is referred to as the reference table.
The other table may or may not be partitioned. Partial
partition-wise joins are more common than full partition-wise
joins.

To execute a partial partition-wise join, the database
dynamically repartitions the other table based on the

partitioning of the reference table. Then, the execution
becomes similar to a full partition-wise join.

PARTITION-WISE JOINS
I

The performance advantage that partial partition-wise
joins have over joins in non-partitioned tables is that the
reference table is not moved during the join operation.

The parallel joins between non-partitioned tables require
both input tables to be redistributed on the join key. This
redistribution operation involves exchanging rows
between parallel execution servers.

This is a CPU-intensive operation that can lead to
excessive interconnect traffic in RAC environments.

RULES 1O INDEX

%

The rules for partitioning indexes are similar to those for
tables:

An index can be partitioned unless:
o The index is a cluster index.
o The index is defined on a clustered table.

It is possible to mix partitioned and nonpartitioned indexes
with partitioned and nonpartitioned tables:

A partitioned table can have partitioned or nonpartitioned
Indexes.

A nonpartitioned table can have partitioned or
nonpartitioned indexes.

Bitmap indexes on nonpartitioned tables cannot be
partitioned.

A bitmap index on a partitioned table must be a local index.

Nonprefixed indexes are particularly useful in historical
databases.

RULES 10O LOCAL INDEX

m%

The three Oracle-supported Local Index partitioning types are:
Local Partitioned Indexes

In a local index, all keys in a particular index partition refer only to rows
stored in a single underlying table partition. A local index is created by
specifying the LOCAL attribute.

Oracle constructs the local index so that it is equi-partitioned with the
underlying table.

Oracle also maintains the index partitioning automatically when
partitions in the underlying table are added, dropped, merged, or split,
or when hash partitions or subpartitions are added or coalesced,
ensuring that the index remains equipartitioned with the table.

A local index can be created UNIQUE if the partitioning columns form a
subset of the index columns. This restriction guarantees that rows with
Identical index keys always map into the same partition, where
unigueness violations can be detected.

LOCAL INDEXES ADVANTAGES

ey
Only one index partition needs to be rebuilt when a maintenance

operation other than SPLIT PARTITION or ADD PARTITION is
performed on an underlying table partition.

The duration of a partition maintenance operation is proportional to
partition size.

Local indexes support partition independence.

Local indexes support smooth roll-out of old data and roll-in of new data
In historical tables.

Oracle can take advantage of the fact that a local index is equi-
partitioned with the underlying table to generate improved query access
plans.

Local indexes simplify the task of tablespace incomplete recovery. In
order to recover a partition or subpartition of a table to a point in time,
the corresponding index entries must be recovered to the same point in
time.

Oracle Database PL/SQL Packages and Types Reference for a
description of the DBMS_PCLXUTIL package

INDEX PARTITIONING TYPES
e 4
Local Prefixed Indexes

A local index is prefixed if it is partitioned on a left prefix of the index
columns.

Local Nonprefixed Indexes

A local index is nonprefixed if it is not partitioned on a left prefix of the
Index columns. Therefore, it is not possible to have a unique local
nonprefixed index unless the partitioning key is a subset of the index key.

Global Partitioned Indexes

In a global partitioned index, the keys in a particular index partition may
refer to rows stored in more than one underlying table partition or
subpartition.

A global index can be range or hash partitioned, though it can be defined
on any type of partitioned table.

A global index is created by specifying the GLOBAL attribute.
Index partitions can be merged or split as necessary.

GUIDELINES TO INDEX

m%

Global Partitioned Indexes (continued)

Normally, a global index is not equipartitioned with the underlying table
and usualy nothing could prevent this. An index that must be equi-
partitioned with the underlying table should be created as LOCAL.

A global partitioned index contains a single B-tree with entries for all
rows in all partitions. Each index partition may contain keys that refer to
many different partitions or subpartitions in the table.

The highest partition of a global index must have a partition bound all of
whose values are MAXVALUE.

Prefixed and Non-Prefixed Global Partitioned Indexes

A global partitioned index is prefixed if it is partitioned on a left prefix of
the index columns.

Global prefixed partitioned indexes can be unique or nonunique.

Nonpartitioned indexes are treated as global prefixed nonpartitioned
indexes.

GUIDELINES TO INDEX

m%

Management of Global Partitioned Indexes
Global partitioned indexes are harder to manage than local indexes.

When the data in an underlying table partition is moved or removed
(SPLIT, MOVE, DROP, or TRUNCATE), all partitions of a global index
are affected. So, global indexes do not support partition independence.

When an underlying table partition or subpartition is recovered to a point
In time, all corresponding entries in a global index must be recovered to
the same point in time. Because these entries may be scattered across
all partitions or subpartitions of the index, mixed in with entries for other
partitions or subpartitions that are not being recovered, there is no way
to accomplish this except by re-creating the entire global index.

When deciding how to partition indexes on a table, consider the mix of
applications that need to access the table.

There Is a trade-off between performance and availability, and
manageabillity.

GUIDELINES 10O INDEX

%

For OLTP applications

Global indexes and local prefixed indexes provide improved performance
over local non-prefixed indexes because they minimize the number of index
partition probes.

Local indexes support more availability when there are partition or
subpartition maintenance operations on the table.

Local non-prefixed indexes are very useful for historical databases.

For DSS applications

Local non-prefixed indexes can improve performance because many index
partitions can be scanned in parallel by range queries on the index key.

For historical tables, indexes should be local if possible. This limits the
impact of reqularly scheduled drop partition operations.

Unique indexes on columns other than the partitioning columns must be
global because unigque local non-prefixed indexes whose key does not
contain the partitioning key are not supported.

TYPES OF INDEX PARTITIONING:

Index
Index Partitioned on UNIQUE
Type of Index Equipartitioned Left Prefix of Attribute
VO RELE Index Allowed
Columns

Local Prefixed
(any
partitioning
method)
Local
Nonprefixed
(any YesFoot L
partitioning
method)

Global Prefixed
(range
partitioning
only)

Footnote 1 For a unique local nonprefixed index, the partitioning key must be a subset of the index key.

Footnote 2 Although a global partitioned index may be equipartitioned with the underlying table, Oracle does not take
advantage of the partitioning or maintain equipartitioning after partition maintenance operations such as DROP or SPLIT
PARTITION.

TABLE COMPRESSION AND BITMAP
INDEXES

S |

When using table compression on partitioned tables with
bitmap indexes, you need to do the following before
iIntroducing the compression attribute for the first time:

1. Mark bitmap indexes unusable.
2. Set the compression attribute.
3. Rebuild the indexes.

PARTITION STRATEGY CHOICE:
RECOMMENDATIONS

When to Use Range or Interval Partitioning
Range partitioning is a convenient method for partitioning historical data.

The boundaries of range partitions define the ordering of the partitions in
the tables or indexes.

Interval partitioning is an extension to range partitioning in which, beyond
a point in time, partitions are defined by an interval. Interval partitions are
automatically created when the data is inserted into the partition.

Range or interval partitioning is often used to organize data by time
intervals on a column of type DATE.

For instance, keeping the past 48 months’ worth of data online, Range
partitioning simplifies this process. To add data from a new month, the
DBA will load it into a separate table, clean it, index it, and then add it to
the range-partitioned table using the EXCHANGE PARTITION statement,
all while the original table remains online.

After adding the new partition, the DBA can drop the trailing month with
the DROP PARTITION statement.

PARITITION STRATEGY CHOICE!:
RECOMMENDATIONS

s 4

When to Use Hash Partitioning

There are scenarios when it is not trivial into which partition data should
reside, although the partitioning key can be identified. With hash partitioning, a
row is placed into a partition based on the result of passing the partitioning key
into a hashing algorithm.

When using this approach, data is randomly distributed across the partitions
rather than grouped together.

Hence, this is a great approach for some data, but may not be an effective
way to manage historical data.

Partition pruning is limited to equality predicates.

Hash partitioning also supports partition-wise joins, parallel DML and parallel
index access.

Excellent when the DBA needs to enable partial or full parallel partition-wise
joins with very likely equi-sized partitions or distribute data evenly among the
nodes of an MPP platform using RAC, thus minimizing interconnect traffic
when processing internode parallel statements.

PARITITION STRATEGY CHOICE!:

RECOMMENDATIONS
] - - - - -

When to Use List Partitioning

It is recommended to use list partitioning when you want to specifically map
rows to partitions based on discrete values.

When to Use Composite Partitioning

Composite partitioning offers the benefits of partitioning on two dimensions.
From a performance perspective, it benefits from partition pruning on one or
two dimensions depending on the SQL statement, taking advantage of both
full or partial partition-wise joins on either dimension, as needed.

It can benefit from parallel backup and recovery of a single table
(manageability perspective).

The DBA can split up backups of your tables and you can decide to store
data differently based on identification by a partitioning key.

The database stores every subpartition in a composite partitioned table as a
separate segment.

Thus, the subpartitions may have properties that differ from the properties of
the table or from the partition to which the subpartitions belong.

PARITITION STRATEGY CHOICE!:
RECOMMENDATIONS

2

When to Use Composite Range-Hash Partitioning

Composite range-hash partitioning is particularly common for tables
that store history, are very large as a result, and are frequently joined
with other large tables,

o Then, composite range-hash partitioning provides the benefit of partition
pruning at the range level

o Opportunity to perform parallel full or partial partition-wise joins at the
hash level. Specific cases can benefit from partition pruning on both
dimensions for specific SQL statements.

Composite range-hash partitioning can also be utilized for tables that
traditionally use hash partitioning, but also use a rolling window
approach.

PARITITION STRATEGY CHOICE!:

RECOMMENDATIONS
e] - - - - -

When to Use Composite Range-List Partitioning

Composite range-list partitioning is mostly used for large tables that store
historical data and are usually accessed on more than one dimension.

When to Use Composite Range-Range Partitioning

Composite range-range partitioning is helpful for applications that store time-
dependent data on more than one time dimension.

Business cases for composite range-range partitioning could include ILM
scenarios, and applications that store historical data and need to categorize its
data by range on another dimension.

When to Use Composite List-Hash Partitioning

Composite list-hash partitioning is utilized for large tables that are usually
accessed on one dimension, but because of their size need yet to take
advantage of parallel full or partial partition-wise joins.

When to Use Composite List-List Partitioning

Composite list-list partitioning is helpful for large tables that are often accessed
on different dimensions. The DBA can explicitly map rows to partitions on those
dimensions on the basis of discrete values.

PARITITION STRATEGY CHOICE!:
RECOMMENDATIONS

When to Use Composite List-Range Partitioning

Composite list-range partitioning is advantageous for large tables that are
accessed on different dimensions. For the most commonly used dimension,
the DBA can explicitly map rows to partitions on discrete values.

List-range partitioning is likely to be used for tables that use range values
within a list partition; in contrast range-list partitioning is mostly used for
discrete list values within a range partition.

List-range partitioning is less likely to be used to store historical data,
although equivalent scenarios all work. Range-list partitioning can be
implemented using interval-list partitioning, while list-range partitioning does
not support interval partitioning.

PARITITION STRATEGY CHOICE!:
RECOMMENDATIONS

oo g

When to Use Interval Partitioning

Interval partitioning can be used for every table that is range partitioned and
uses fixed intervals for new partitions. The database automatically creates
interval partitions as data for that partition is loaded. Until this happens, the
interval partition exists but no segment is created for the partition.

The benefit of interval partitioning is that there is no need to create your
range partitions explicitly. Therefore, a DBA could consider using interval
partitioning unless there is a need to create range partitions with different
intervals, or a need to specific partition attributes when creating range
partitions.

When upgrading an application it is recommended to use range partitioning
or composite range-* partitioning, accordingly.

PARITITION STRATEGY CHOICE!:

RECOMMENDATIONS

When to Use Reference Partitioning
Reference partitioning is effective in the following scenarios:

When denormalizing or planning to denormalize, a column from a master table
into a child table in order to get partition pruning benefits on both tables.

If two large tables are joined often, then the tables are not partitioned on the join
key, but you want to take advantage of partition-wise joins.

Indeed, reference partitioning implicitly enables full partition-wise joins.

If data in multiple tables has a related life cycle, then reference partitioning can
provide significant manageability benefits.

Partition management operations against the master table are automatically
cascaded to its descendents. For example, when adding a partition to the master
table, that creation is automatically propagated to all its descendents.

In order to use reference partitioning, the DBA has to enable and enforce the
foreign key relationship between the master table and the reference table in
place.

It is also possible to cascade reference-partitioned tables based on the data
model used.

PARITITION STRATEGY CHOICE!:

RECOMMENDATIONS

When to Partition on Virtual Columns

Virtual column partitioning enables you to partition on an expression, which
may use data from other columns, and perform calculations with these
columns.

There is no support for PL/SQL function calls on a virtual column definitions
as a partitioning key.

Virtual column partitioning supports all partitioning methods as well as
performance and manageability features.

Virtual columns could be used when tables are frequently accessed using a
predicate that is not directly captured in a column, but can be derived, in
order to get partition pruning benefits.

The virtual column does not require any storage.

ORACLE PARTITIONING FOR ILM
_ PPOR]

Oracle Database for ILM
The Oracle Database Partitioning option provides an uniquely ideal platform
for implementing an ILM solution offering:
oApplication Transparency
There is no need to customize applications
Data can easily be moved and accessed at the different stages of its lifecycle.
Flexibility required to quickly adapt to any new regulatory compliance.
nFine-grained

View data at a very fine-grained level as well as group related data together,
whereas storage devices only see bytes and blocks.

oLow-Cost

Low cost storage is a key factor in implementing ILM.
nEnforceable Compliance Policies

It is imperative to show to regulatory bodies that data is being retained and

managed in accordance with the regulations defining security and audit policies,
which enforce and log all access to data.

ORACLE PARTITIONING FOR ILM

- PPOR]

In general, Enforceable Compliance Policies where
Oracle Partitioning is valuable involve:

o Data Retention
o Immutability

o Privacy

o Auditing

o Expiration

ORACLE PARTITIONING FOR ILM

Historical | Archive

High

Low Cost Online Archive Offline
Performance

Storage Tier Storage Tier Archive

¥ ¥

!

=)
r

ILI\/I PARTITIONING STRATEGY

ORACLE PARTITIONING FOR

DATAWAREHOUSING

Datawarehouses often require techniques
both for managing large tables and
providing good query optimization.

Oracle Partitioning is beneficial in attaining
the following Datawarehousing goals,
namely:

o Scalability

o Performance

o Manageability

ORACLE PARTITIONING FOR

DATAWAREHOUSING
I

Scalability

Partitioning is effective scaling a data warehouse by
dividing database objects into smaller pieces,
enabling access to smaller, more manageable
objects. Providing direct access to smaller objects
addresses the scalability requirements of data
warehouses:

o Bigger Database

o Bigger Individual tables: More Rows in Tables
o More Users Querying the System

o More Complex Queries

ORACLE PARTITIONING FOR
DATAWAREHOUSING

o0
More Users Querying the System

With partitioning, users are more likely to hit isolated and
smaller data sets and the database returns results faster
with less data contention.

More Complex Queries

Smaller data sets help perform complex queries faster (in
memory processing and less I/O overhead.)

Performance

Optimal performance is a key to success for a data
warehouse. Analyses run against the database should
return within a reasonable amount of time even on terabyte-
Size tables.

ORACLE PARTITIONING FOR

DATAWAREHOUSING
oy

Partition Pruning

o Partition pruning is an essential performance feature since the
optimizer analyzes FROM and WHERE clauses in SQL statements
to eliminate unneeded partitions when building the partition access
list.

o Partition pruning greatly reduces the amount of data retrieved from
disk and shortens processing time, thus improving query
performance and optimizing resource utilization.

Basic Partition Pruning Techniques

o The optimizer utilizes a wide variety of predicates for pruning. The
three predicate types, equality, range, and IN-list, are the most
commonly used cases of partition pruning.

Advanced Partition Pruning Techniques

o Oracle also prunes in the presence of more complex predicates or
SQL statements involving partitioned tables. For instance, when a
partitioned table is joined to the subset of another table, constrained
by a WHERE clause condition.

ORACLE PARTITIONING FOR
DATAWAREHOUSING

Partial Partition-Wise Joins

o Oracle Database can perform partial partition-wise
joins only in parallel.

o To execute a partial partition-wise join, the database
dynamically repartitions the other table based and
the execution is similar to a full partition-wise join.

Benefits of Partition-Wise Joins

o Reduction of Communications Overhead
o Reduction of Memory Requirements

ORACLE PARTITIONING FOR

DATAWAREHOUSING

Partitioning Materialized Views

The underlying storage for a materialized view is a table
structure,and therefore partitioning materialized views is quite
similar.

When the database rewrites a query to run against
materialized views, the query can take advantage of the same
performance features as those queries running against tables
MV’s directly benefit from.

A rewritten query may eliminate materialized view partitions
and it can take advantage of partition-wise joins, when joins
back to tables or with other materialized views are necessary.

ORACLE PARTITIONING FOR

DATAWAREHOUSING
sy

Partitioning Materialized Views (continued)

o This sample code illustrates how to effectively create a compressed
materialized view partitioned by hash, which using an aggregation on
period_code.

> CREATE MATERIALIZED WIEW AMTHONY .mv_pro_marketing_campaign
PARTITION EY HASH(Cperiod_ uudHl
FPARTITIONS 26 COMPRESS FOR ALL OPERATIONS PARALLEL MOLOGEIRG
ENAELE CQUERY REWRITE
A5 SELECT campaign_id,
campalgn_name,
campaign_date,
pericd_code,
:Jmlprﬁ1ucted_55195} camp_proi_pericd_sales
FRCOM pr&_mar&etiﬂg_campaigﬂz
GROUP BY campaign_id,
1. Campalgn_name,
13 campaign_date,
14 period_code;

LA s g e "|—

L e

3

10
11

Materialized wview created.

ORACLE PARTITIONING FOR
DATAWAREHOUSING

wy ...

Partitioning Materialized Views (continued)

o Partition Exchange Load (PEL)

o Partitions can be added using Partition Exchange Load (PEL).
When using PEL, a separate identical table to a single partition is
created, including the same indexes and constraints, if any.

o Partitioning and Materialized View Refresh Strategies
Full refresh

Fast (incremental) refresh based on materialized view logs
against the base tables

Manually using DML, followed by ALTER MATERIALIZED VIEW
CONSIDER FRESH

o To enable query rewrites, set the QUERY_REWRITE_INTEGRITY
initialization parameter.
To manually keep materialized views up to date, the init.ora parameter

QUERY_REWRITE_INTEGRITY must be set to either TRUSTED or
STALE_TOLERATED.

ORACLE PARTITIONING FOR

DATAWAREHOUSING
pws y

Partitioning Materialized Views (continued)

When using materialized views and base tables with
comparable partitioning strategies, then PEL can be an
extremely powerful way to keep materialized views up-
to-date manually.

Here is how PEL can work:

o Create tables to enable PEL against the tables and materialized
views

o Load data into the tables, build the indexes, and implement any
constraints

o Update the base tables using PEL
o Update the materialized views using PEL

o Execute ALTER MATERIALIZED VIEW CONSIDER FRESH for
every materialized view you updated using this strategy

ORACLE PARITTITONING FOR

L16 *

Partitioning is often used for Online Transaction Processing (OLTP)
systems to reduce contention in order to support a very large user
population since (OLTP) systems are one of the most common data
processing systems in today's enterprises, including, for instance,
financial and retail systems. Partitioning also helps in addressing
regulatory requirements facing OLTP systems, including storing
larger amounts of data in a cost-effective manner.

Oracle partitioning effectively optimizes OLTP focus on:
o Performance

o Manageability

o Availability

ORACLE PARITITITONING FOR

Partitioning also effectively addresses OLTP features such as,
namely:

Short response time

Small transactions

Data maintenance operations
Large user populations

High concurrency

Large data volumes

High availability

Lifecycle related data usage

STORAGE MANAGEMENT

ey

High Availability: Implementing storage redundancy.
o Hardware-based mirroring

o Using ASM for mirroring

o Software-based mirroring not using ASM

Performance: optimum throughput from storage devices,
multiple disks must work in parallel.

o Hardware-based striping
o Software-based striping using ASM
o Software-based striping not using ASM

STORAGE MANAGEMENT

o

ILM

In an Information Lifecycle Management environment, it is not possible
to use striping across all devices, because all data would then be
distributed across all storage pools, in contrast with different storage
pools typically involving different performance characteristics.

Partition Placement
o Using Bigfile Tablespaces
o Customization
o Oracle Exadata

LOB PARTITIONING SUPPORT

209

Oracle Partitioning support the storage of LOB types, such as BLOBs
and BFILE types.

One option for LOB support can be attained via Index
Organized Tables, storing LOBs in a separate tablespace.

EATE TAELE new_mktg_campaigns?
[campaigr_id
aign_nam WARCHARZ (207
sales MEER (12,2
: INTEGER COMSTRAINT rck CHECK (period_code EETWEEN 1 AND 260
;campaign_flier_img ELOh
, campai W i

INCLUDING OYERFLOW TABLESPACE T11

P

de’

fERFLOW TAELESPACE t49,

LOB PARTITIONING SUPPORT

Partitioning LOB Support can also be via explicit LOB storage,
e.g. as BFILE, CLOB, or BLOB.

CREATE TAELE new_mktg_flyers (campaign_id NUMEER,
gmmmgmﬂﬂﬂmﬁm,
'I"I'- rar_text cLOE

(TABLESPACE +1 |-|||ru 40
[I:Lr1"|1"::_:-r| by rangefcampaign_ |J|
values less thjn IlHl #ah1'1--r

:-"I-|Ih;"_-. -|n-"7 1'h=u| I alk '

| i 1 |'_'| | 11
. ,,':' It~ E Curre. B¢ Progra.. : Local ... e Admi...

LOB PARTITIONING SUPPORT

However, an LOB column should not be used as a partition
key column itself.

1 CREATE TABLE new mktg_flyers? (campaign_id NUMBER,
2 _ampaign_date DATE,
flyer_text cLOB
I
ASICFILE flyer_text
ETENTION)

'
!

partition by hash(flyer_text) partitions 4 store in (tl,t2,t3,t4)
]

ERROR at line 7: .
ORA-14135: a LOE column cannot serve as a partitioning column

S0l

i - | I ||_|| I
i B O ? ,THInt... v f_‘urre... B/ Progra... : tocal..” [o&] Admi...

PARTITIONING SUPPORT FOR USER-DEFINED

DATATYPES
sy

User-datatype s can be used in a partitioned table.

?REATE TrYPE emailaddr_t AS OBJECT (email WARCHARZI1Z2EDD;

created.

CREATE T¥PE emalil_list AS TAELE OF emalladdr_t;

created.

CREATE TYPE prospect_t AS OEBIECT g
prospect_id RUMEER ,
prospect_name WARCHARZ 257,
prospect_emails email_Tist);

/

created.

CREATE T¥PE prospect_Tlist AS TAELE OF prospect_t;
created.

CREATE TAELE parthners_direct_mktqg

[promo_id NUMBER(E} MOT MULL
cust_id MUMEER MOT HMULL
campaign_date DATE MOT RULL
channel_code CHAR{1D MOT MULL
campaign_id MUMEER (6 ROT MULL
parthner_name WARCHARZ (257
parthner_reps prospect_Tlist

MESTED TAELE parthner_reps STORE A5 cuter _ntah

CMESTED TAELE prospect_emalls STORE A4S dnner_mtakhl
PARTITION E¥Y RANGE (campaign_date) INTERWAL (NLIMTO‘(MINTER‘-.-"AL(l "MOMTH' 30
CPARTITION p_campaigrn_prior_200% wALUES LESS THAW (TO_DATEC'01-1an—-200%"' | "' dd-MON—mree ' 20
EMAELE ROW MOVEMEWNT COMPRESS PARALLEL MOLOGEIMG;

Table created.

S0L =

PARTITIONING SUPPORT FOR USER-DEFINED

DATATYPES
-]

User-defined object ype using the object id (OID) as primary key .

Twphe created.

Y 1 1=
IDEMTIFIER I

=1y
CREA

Tabhle created

Table created.

PARTITIONING SUPPORT FOR NESTED TABLES
-]

Nested tables can be used in a partitioned table.

CREATE TABLE business_prospect (
partner_name VARCHAR2(25),
partner_reps prospect_list)
NESTED TABLE partner_reps STORE AS prospect_outer_ntab
(NESTED TABLE prospect_emails STORE AS prospect_inner_ntab)
PARTITION BY HASH(partner_name) PARTITIONS 4 STORE IN
(11,t2,t3,t4);

0L> CREATE TAELE buziﬂezz_prmzpect (]
4 partner_name YARCHARZ (25
partner_reps pr::p____11 fl
MESTED TAELE partner rep: STORE A% pr“'pw couter _ntak
(MESTED TAELE prospect_emails STORE AS pr"pu_t inner_ntah

partition by hash{partner_name) partitions 4 store in (1, £2,t3,t4)

PARTITIONING SUPPORT FOR VARRAYS

- 0000000000000
Like Nested tables, Varrays can be also used in a partitioned table.

CREATE TYPE member_emails IS VARRAY(30) OF VARCHAR2(128),

/

CREATE TABLE partners_online_dir (partner_id number,
territory VARCHAR2(4),
edom VARCHAR2(30),
partner_ emails member_emails)

PARTITION BY RANGE(edom)
(PARTITION p1 VALUES LESS THAN (‘aol.com’) TABLESPACE T1,
PARTITION p2 VALUES LESS THAN (‘msn.com’) TABLESPACE T2,
PARTITION p3 VALUES LESS THAN (‘yahoo.com’) TABLESPACE T3,
PARTITION p4 VALUES LESS THAN (MAXVALUE) TABLESPACE T4)
ENABLE ROW MOVEMENT COMPRESS FOR ALL OPERATIONS;

SOlLs> CREATE TY¥FPE member_smails IS waARRAY (IO OF wWAaRCHARZCIZED ;
] _.I'I-
created.

CREATE TAELE partners_cnline_d-ir

=

P
b

PARTITION BY R
CPARTITICH =5 THAN
PARTIT IO S5 THARN
PARTITICH =5 THAN
_PARTITIO : TH.AR

') TABLESPACE T1,
'3 TABLESPACE T2,

T T e

E Rl .:. ELE ROWwW MOWEMERT COMPRESS FOR ALL OFERATIORMS ;

PARITTITONING SUPPORI| FOR

XML Data types can be included in partitioned tables, as
illustrated below.

= CREATE TAELE x_adnxml_tab
adn_id '
adn_desc
FARTITION EY HAS I:: adn_1d ::I PARTITIONS 4 STORE IM I::TE T4, Ta, T8 ::I
*MLTYPE adn_desc STORE AS CLOE
([TAELESPACE B
STORAGE (IMITIAL B192 MEXT E192)
CHUME 4000 WNOCACHE LOGSING

| =
A

_II
3
4
5
5

Wl

Tahle cre

BEST PRACTICES

2y

From the business and functional point of view, a
partitioning strategy is normally identified with a functional
goal-seeking perspective, and therefore it needs to be
mapped to an Oracle partitioning technical
recommendation or specific partitioning strategy matching
those business requirements, regulatory compliance , or

systems platform, among others.

BEST PRACTICES

Use Oracle partitioning strategic recommendations for
each database system environment accordingly.

When in doubt refer to sample code, forum
discussions, and case studies.

Consolidate recommendations made in this
presentation into a practical enterprise policy
framework.

TIPS AND TECHNIQUES

0y

Using multiple block size caches can increase load
throughput in DSS, in particular, when using indexes
in a block size larger than the table.

This is more important volumes are based on a (Stripe
and mirror everything) SAME-approach (i.e.,RAID
0+1).

Likewise, performance optimization and contention
reduction can be attained in OLTP systems using the
same approach, when the appropriate partitioning
strategy is being used, in accordance to the strategic
recommendations previously made.

CONSTRAINTS

sy

As previously stated, there is no support for LONG and
LONG RAW data types on any Oracle partitioned object or
any partitioning strategy discussed.

Likewise, an encrypted column cannot serve as
partitioning key.

When migrating to Oracle11g or any other recent release,
consider changing LONG and LONG RAW datatypes into
CLOB, BLOB accordingly for current and future release
forward compatibility and improved manageability.

A VARRAY of XML data types cannot be set in a
partitioned table (via an SQL DDL statement.)

Certain datatypes have size and store constraints like
LOBs or large VARCHAR?2 definitions.

CONCLUDING REMARKS

2

Oracle partitioning provides effective strategies to
attain time and resource optimization, including CPU
and memory.

Oracle Partitioning option is extremely practical to
achieve regulatory compliance.

Oracle partitioning is mission-critical to attain most
needed scalability, manageability, performance, and
high-availability in any system platform.

