
A COMPREHENSIVE GUIDE A COMPREHENSIVE GUIDE
TO TO

ORACLE PARTITIONING ORACLE PARTITIONING
WITH SAMPLESWITH SAMPLES

SUCCESSFUL ORACLE DATAWAREHOUSING AND BUSINESS INTELLIGENCESUCCESSFUL ORACLE DATAWAREHOUSING AND BUSINESS INTELLIGENCE

ANTHONY D NORIEGAANTHONY D NORIEGA
anthony.noriega@adnmis.comanthony.noriega@adnmis.com

ADN RADN R && D D www.adnmis.comwww.adnmis.com

2

SPEAKER QUALIFICATIONSSPEAKER QUALIFICATIONS

• Independent Consultant, ADN
• Speaker at NYOUG meetings, IOUG LIVE and Collaborate
• 24 years of IT experience
• 18 years of Oracle experience, 13 as a DBA (v6 thru 11g)
• RMAN experience with Oracle8i,9i, 10g, and 11g, since

1999.
• BS Systems Engineering, Universidad del Norte, 1987.
• MS Computer Science, NJIT, 1993
• PhD CIS candidate, NJIT, 1997
• MBA MIS, Montclair State University, 2006
• College Math Professor and former HS Math Teacher

Principal.

3

OBJECTIVES

Present the various types of object
partitioning options with sample code.
Derive a series of guidelines to existing
and newly defined best practices.
Provide a consolidated framework to
partition-based performance tuning.
Analyze and synthesize Oracle
recommendations to object partitioning.
Discuss various partitioning scenario-
driven cases.

4

WHY AND WHEN TO PARTITION

Table Size
Table Access requires specific control
Improve Index Performance
Combining Technologies
(Multiple block size caches)

5

OBJECT PARTITIONING

Table (Includes Materialized Views)
Index
Index-Organized Table (IOT)

6

PARTITIONING STRATEGIES

7

TABLE PARTITIONING

Basic Partitions
Composite Partitions
Partition Extensions

8

TABLE PARTITIONING

BASIC (Single Level)
Range (Includes Interval Partitioning)
List
Hash

9

TABLE PARTITIONING

COMPOSITE
Range-Range
Range-Hash
Range-List
List-Range
List-Hash
List-List

10

INTERVAL PARTITIONING

INTERVAL PARTITIONING
Interval-Range

11

PARTITION EXTENSIONS

PARTITIONING KEY EXTENSION
Reference Partitioning
Virtual Column-Based Partition

12

INDEX PARTITIONING

GLOBAL
Global Range Partitioned Indexes
Global Hash Partitioned Indexes

LOCAL
Default
Customized (Tablespace and Block Size)

13

INDEX PARTITION MAINTENANCE

Operations on heap-organized tables
marking all global indexes as unusable.

ADD (HASH)

COALESCE (HASH)

DROP

EXCHANGE

MERGE

MOVE

SPLIT

TRUNCATE

14

IOT PARTITIONING

INDEX-ORGANIZED TABLE (IOT)
PARTITIONING
Follows nearly the same options as table
partitioning with some constraints.

15

CREATING PARTITIONS

Creating a partitioned table or index is similar to creating a
non-partitioned table or index, by adding a partitioning clause
(and its subclauses, if any) to the CREATE TABLE statement.

Partitioning is possible on both regular, i.e., heap organized
tables, and index-organized tables (IOT), except for those
containing LONG or LONG RAW columns. It is possible to
create non-partitioned global indexes, range or hash-
partitioned global indexes, and local indexes on partitioned
tables.

Specifying either ENABLE ROW MOVEMENT or DISABLE ROW
MOVEMENT may be done when creating or altering a
partitioned table.

16

CREATING PARTITIONS

A partitioned table can have both partitioned and non-
partitioned indexes.
Likewise, a non-partitioned table can have both
partitioned and non-partitioned indexes.

Non-partitioned table

Partitioned Index

Non-Partitioned Index

Partitioned Index

Non-Partitioned Index

Partitioned table

17

PARTITIONING COMBINATION
STRATEGY

18

CREATING A RANGE PARTITIONED
TABLE

This sample code creates a table with four partitions and enables row movement:
CREATE TABLE credential_evaluations
(eval_idVARCHAR2(16) primary key
, grad_id VARCHAR2(12)
, grad_date DATE
, degree_granted VARCHAR2(12)
, degree_major VARCHAR2(64)
, school_id VARCHAR2(32)
, final_gpa NUMBER(4,2))

PARTITION BY RANGE (grad_date)
(PARTITION grad_date_70s

VALUES LESS THAN (TO_DATE('01-JAN-1980','DD-MON-YYYY')) TABLESPACE T1
, PARTITION grad_date_80s
VALUES LESS THAN (TO_DATE('01-JAN-1990','DD-MON-YYYY')) TABLESPACE T2

, PARTITION grad_date_90s
VALUES LESS THAN (TO_DATE('01-JAN-2000','DD-MON-YYYY')) TABLESPACE T3

, PARTITION grad_date_00s
VALUES LESS THAN (TO_DATE('01-JAN-2010','DD-MON-YYYY')) TABLESPACE T4)

ENABLE ROW MOVEMENT;

19

RANGE-PARTITIONED GLOBAL
INDEX

Creating a range-partitioned global index is similar to
creating range-partitioned table. This example creates a
range-partitioned global index on final_gpa for
credential_evaluations. Each index partition is named but
is stored in the default tablespace for the index.

CREATE INDEX ndx_final_gpa ON credential_evaluations
(final_gpa)
GLOBAL PARTITION BY RANGE(final_gpa)

(PARTITION c1 VALUES LESS THAN (2.5)
, PARTITION c2 VALUES LESS THAN (3.0)
, PARTITION b1 VALUES LESS THAN (3.4)
, PARTITION b2 VALUES LESS THAN (3.7)
, PARTITION a1 VALUES LESS THAN (3.9)
, PARTITION a2 VALUES LESS THAN (MAXVALUE));

20

QUERYING DICTIONARY
VIEWS

21

QUERYING DICTIONARY
VIEWS

22

RANGE-PARTITIONED GLOBAL
INDEXES

Creating a range-partitioned global index is similar to
creating range-partitioned table. This example creates a
range-partitioned global index on final_gpa for
credential_evaluations. Each index partition is named but is
stored in the default tablespace for the index.

CREATE INDEX ndx_final_gpa ON credential_evaluations (final_gpa)
GLOBAL PARTITION BY RANGE(final_gpa)

(PARTITION c1 VALUES LESS THAN (2.5)
, PARTITION c2 VALUES LESS THAN (3.0)
, PARTITION b1 VALUES LESS THAN (3.4)
, PARTITION b2 VALUES LESS THAN (3.7)
, PARTITION a1 VALUES LESS THAN (3.9)
, PARTITION a2 VALUES LESS THAN (MAXVALUE));

23

RANGE-PARTITIONED GLOBAL
INDEX

Creating a range-partitioned global index is similar to creating
range-partitioned table. This example creates a range-partitioned
global index on final_gpa for credential_evaluations. Each index
partition is named but is stored in the default tablespace for the
index.

CREATE INDEX ndx_final_gpa ON credential_evaluations
(final_gpa)
GLOBAL PARTITION BY RANGE(final_gpa)

(PARTITION c1 VALUES LESS THAN (2.5)
, PARTITION c2 VALUES LESS THAN (3.0)
, PARTITION b1 VALUES LESS THAN (3.4)
, PARTITION b2 VALUES LESS THAN (3.7)
, PARTITION a1 VALUES LESS THAN (3.9)
, PARTITION a2 VALUES LESS THAN (MAXVALUE));

24

INTERVAL-PARTITIONED
TABLES

The INTERVAL clause of the CREATE TABLE statement
sets interval partitioning for the table. At least one range
partition must be specified using the PARTITION clause.
The range partitioning key value determines the high
value of the range partitions (transition point) and the
database automatically creates interval partitions for data
beyond that transition point.
For each interval partition, the lower boundary is the non-
inclusive upper boundary of the previous range or interval
partition.
The partitioning key can only be a single column name
from the table and it must be of NUMBER or DATE type.
The optional STORE IN clause lets you specify one or
more tablespaces.

25

INTERVAL-PARTITIONED
TABLES

This example sets four partitions with varying widths. It also
specifies that above the transition point of January 1, 2009,
partitions are created with a width of one month.

CREATE TABLE rental_costs (
item_id NUMBER(6),
time_intv DATE,
unit_cost NUMBER(12,2),
unit_price NUMBER(12,2))

PARTITION BY RANGE (time_intv)
INTERVAL(NUMTOYMINTERVAL(1, 'MONTH'))
(PARTITION pca VALUES LESS THAN (TO_DATE('1-1-2006', 'DD-MM-YYYY')) tablespace t2,

PARTITION pcb VALUES LESS THAN (TO_DATE('1-1-2007', 'DD-MM-YYYY')) tablespace t4,
PARTITION pcc VALUES LESS THAN (TO_DATE('1-1-2008', 'DD-MM-YYYY')) tablespace t8,
PARTITION pcd VALUES LESS THAN (TO_DATE('1-1-2009', 'DD-MM-YYYY')) tablespace t12

);

The high bound of partition pcd establishes the transition point. pcd and all
partitions below it, namely, (pca, pcb, and pcc) are in the range section while
all partitions above it fall into the interval section.

26

HASH-PARTITIONED TABLES
CREATE TABLE school_directory

(stid NUMBER PRIMARY KEY,
lname VARCHAR2 (50),
fname VARCHAR2 (50),
phone VARCHAR2(16),
email VARCHAR2(128),
class_year VARCHAR2(4))

PARTITION BY HASH (stid) PARTITIONS 4 STORE IN (t1, t2, t3, t4);

The PARTITION BY HASH clause of the CREATE TABLE statement
identifies that the table is to be hash-partitioned.
The PARTITIONS clause can then be used to specify the number of
partitions to create, and optionally, the tablespaces to store them in.
Otherwise, PARTITION clauses can be used to name the individual
partitions and their tablespaces .
The only attribute TO specify for hash partitions is TABLESPACE. All of
the hash partitions of a table must share the same segment attributes
(except TABLESPACE), which are inherited from the table level.

27

CREATING LIST-PARTITIONED
TABLES

CREATE TABLE regional_rentals
(divno NUMBER,
divname VARCHAR2(40),
rentals_quarterly NUMBER(12, 2),
state VARCHAR2(2))

PARTITION BY LIST (state)
(PARTITION pnw VALUES ('OR', 'WA', 'WY') TABLESPACE T1,
PARTITION psw VALUES ('AZ', 'CA', 'UT') TABLESPACE T3,
PARTITION pne VALUES ('CT', 'NY', 'NJ') TABLESPACE T5,
PARTITION pse VALUES ('FL', 'GA', 'SC') TABLESPACE T7);
A PARTITION BY LIST clause is used in the CREATE TABLE statement to
create a table partitioned by list, by specifying lists of literal values,(the
discrete values of the partitioning columns qualifying rows matching the
partition’s single column partitioning key.) There is no sense of order among
partitions.
The DEFAULT keyword is used to describe the value list for a partition that
will accommodate rows that do not map into any of the other partitions.
Optional subclauses of a PARTITION clause can specify physical and other
attributes specific to a partition segment. If not overridden at the partition
level, partitions inherit the attributes of their parent table.

28

REFERENCE-PARTITIONED
TABLES

The PARTITION BY REFERENCE clause is used with the CREATE TABLE
statement, specifying the name of a referential constraint, which becomes the
partitioning referential constraint used as the basis for reference partitioning in
the table. The referential integrity constraint must be enabled and enforced.
It is possible to set object-level default attributes, and optionally specify
partition descriptors that override the object-level defaults on a per-partition
basis.
When providing partition descriptors, the number of partitions described
should match the number of partitions or subpartitions in the referenced table,
i.e., the table will have one partition for each subpartition of its parent when
the parent table is composite; otherwise the table will have one partition for
each partition of its parent.
No partition bounds can be set for the partitions of a reference-partitioned
table.
The partitions of a reference-partitioned table can be named, inheriting their
name from the respective partition in the parent table, unless this inherited
name conflicts with one of the explicit names given. In this scenario, the
partition will have a system-generated name.
Partitions of a reference-partitioned table will collocate with the corresponding
partition of the parent table, if no explicit tablespace is set accordingly.

29

REFERENCE-PARTITIONED
TABLES

Master Table
CREATE TABLE order_hist

(ord_id NUMBER(16),
ord_date TIMESTAMP WITH LOCAL TIME

ZONE,
ord_mode VARCHAR2(8),
cust_id NUMBER(9),
ord_status VARCHAR2(4),
ord_total NUMBER(12,2),
act_mgr_id NUMBER(9),
promo_id NUMBER(8),
CONSTRAINT ord_pk PRIMARY KEY(ord_id) USING

INDEX TABLESPACE INDX) PARTITION BY
RANGE(ord_date)

(PARTITION pq1 VALUES LESS THAN
(TO_TIMESTAMP_TZ('01-APR-2008 07:00:00 -5:00' , 'DD-
MON-YYYY HH:MI:SS TZH:TZM')),

PARTITION pq2 VALUES LESS THAN
(TO_TIMESTAMP_TZ('01-JUL-2008 07:00:00 -5:00' , 'DD-
MON-YYYY HH:MI:SS TZH:TZM')),

PARTITION pq3 VALUES LESS THAN
(TO_TIMESTAMP_TZ('01-OCT-2008 07:00:00 -5:00' , 'DD-
MON-YYYY HH:MI:SS TZH:TZM')),

PARTITION pq4 VALUES LESS THAN
(TO_TIMESTAMP_TZ('01-JAN-2009 07:00:00 -5:00' , 'DD-
MON-YYYY HH:MI:SS TZH:TZM')));

Details Table

CREATE TABLE order_details
(ord_id NUMBER(16) NOT NULL,

line_item_id NUMBER(3) NOT NULL,
prod_id NUMBER(8) NOT NULL,
unit_price NUMBER(12,2),
qty NUMBER(8),
CONSTRAINT ord_det_fk
FOREIGN KEY(ord_id)

REFERENCES order_hist(ord_id)
)

PARTITION BY
REFERENCE(ord_det_fk);

CREATE TABLE order_details
(ord_id NUMBER(16) NOT NULL,

line_item_id NUMBER(3) NOT NULL,
prod_id NUMBER(8) NOT NULL,
unit_price NUMBER(12,2),
qty NUMBER(8),
CONSTRAINT ord_det_fk
FOREIGN KEY(ord_id)

REFERENCES order_hist(ord_id)
)

PARTITION BY
REFERENCE(ord_det_fk);

30

REFERENCE-PARTITIONED
TABLES

31

LOCAL PARTITIONED INDEXES
When creating a local index for a table, the database constructs the index
so that it is equipartitioned (1-to-1 correspondence) with the underlying
table.
The database also ensures that the index is maintained automatically
when maintenance operations are performed on the underlying table. This
sample code creates a local index on the table dept:

CREATE INDEX ndx_gd ON school_directory (email) LOCAL
PARTITIONS 4 STORE IN (t1, t2, t3, t4);

It is possible to optionally name the hash partitions and tablespaces
into which the local index partitions are to be stored, otherwise, the
database uses the name of the corresponding base partition as the
index partition name, and stores the index partition in the same
tablespace as the table partition.

32

HASH-PARTITIONED GLOBAL
INDEX

Hash-partitioned global indexes can improve the performance of
indexes where a small number of leaf blocks in the index have
high contention in multiuser OLTP environments.
Hash-partitioned global indexes can also limit the impact of index
skew on monotonously increasing column values. Queries
involving the equality and IN predicates on the index partitioning
key can efficiently use hash-partitioned global indexes.

The syntax is similar to that used for a hash partitioned table.

CREATE UNIQUE INDEX ndx_sch_dir ON
school_directory (stid,phone,email) GLOBAL
PARTITION BY HASH (stid,phone)
(PARTITION psp1 TABLESPACE t1,
PARTITION psp2 TABLESPACE t2,
PARTITION psp3 TABLESPACE t4,
PARTITION psp4 TABLESPACE t8);

33

In general, to create a composite partitioned table, use the PARTITION BY [RANGE | LIST]
clause of a CREATE TABLE statement. Next, you specify a SUBPARTITION BY [RANGE |
LIST | HASH] clause that follows similar syntax and rules as the PARTITION BY [RANGE |
LIST | HASH] clause. The PARTITION and SUBPARTITION or SUBPARTITIONS clauses,
and optionally a SUBPARTITION TEMPLATE clause.

RANGE-HASH PARTITIONED
TABLES

34

RANGE-HASH PARTITIONED
TABLES

The partitions of a range-hash partitioned table are logical structures only, as their data is stored in the
segments of their subpartitions.
As with partitions, these subpartitions share the same logical attributes.
Unlike range partitions in a range-partitioned table, the subpartitions cannot have different physical
attributes from the owning partition, but they can reside another tablespace.
Attributes specified for a range partition apply to all subpartitions of that partition.
Specify different attributes for each range partition
Specify a STORE IN clause at the partition level if the list of tablespaces across which the
subpartitions of that partition should be spread is different from those of other partitions.

CREATE TABLE emp (deptno NUMBER , lname VARCHAR(32),
fname VARCHAR2(32) , grade NUMBER)

PARTITION BY RANGE(deptno) SUBPARTITION BY HASH(empname)
SUBPARTITIONS 8 STORE IN (ts1, ts3, ts5, ts7)

(PARTITION p1 VALUES LESS THAN (20000),
PARTITION p2 VALUES LESS THAN (40000)

STORE IN (t2, t4, t6, t8), PARTITION p3 VALUES LESS THAN (MAXVALUE)
(SUBPARTITION p1_s1 TABLESPACE ts4,
SUBPARTITION p3_s2 TABLESPACE ts5));

35

RANGE-LIST PARTITIONED
TABLES

CREATE TABLE q_territory_sales
(divno VARCHAR2(12), depno NUMBER,

itemno VARCHAR2(16), accrual_date DATE,
sales_amount NUMBER, state VARCHAR2(2),
constraint pk_q_dvdno primary key(divno,depno)

) TABLESPACE t8 PARTITION BY RANGE
(accrual_date) SUBPARTITION BY LIST (state)

(PARTITION q1_2000 VALUES LESS THAN
(TO_DATE('1-APR-2000','DD-MON-YYYY'))

(SUBPARTITION q1_2000_nw VALUES ('OR', 'WY'),
SUBPARTITION q1_2000_sw VALUES ('CA', 'NM'),
SUBPARTITION q1_2000_ne VALUES ('NY', 'CT'),
SUBPARTITION q1_2000_se VALUES ('FL', 'GA'),
SUBPARTITION q1_2000_nc VALUES ('SD', 'WI'),
SUBPARTITION q1_2000_sc VALUES ('TX', 'LA‘)),

PARTITION q2_2000 VALUES LESS THAN
(TO_DATE('1-JUL-2000','DD-MON-YYYY'))

(SUBPARTITION q2_2000_nw VALUES ('OR', 'WY'),
SUBPARTITION q2_2000_sw VALUES ('CA', 'NM'),
SUBPARTITION q2_2000_ne VALUES ('NY', 'CT'),

SUBPARTITION q2_2000_se VALUES ('FL', 'GA'),
SUBPARTITION q2_2000_nc VALUES ('SD', 'WI'),
SUBPARTITION q2_2000_sc VALUES ('TX', 'LA‘)

), PARTITION q3_2000 VALUES LESS THAN
(TO_DATE('1-OCT-2000','DD-MON-YYYY'))

(SUBPARTITION q3_2000_nw VALUES ('OR', 'WY'),
SUBPARTITION q3_2000_sw VALUES ('CA', 'NM'),
SUBPARTITION q3_2000_ne VALUES ('NY', 'CT'),
SUBPARTITION q3_2000_se VALUES ('FL', 'GA'),
SUBPARTITION q3_2000_nc VALUES ('SD', 'WI'),
SUBPARTITION q3_2000_sc VALUES ('TX', 'LA')
), PARTITION q4_2000 VALUES LESS THAN (

TO_DATE('1-JAN-2001','DD-MON-YYYY'))
(SUBPARTITION q4_2000_nw VALUES ('OR', 'WY'),
SUBPARTITION q4_2000_sw VALUES ('CA', 'NM'),
SUBPARTITION q4_2000_ne VALUES ('NY', 'CT'),
SUBPARTITION q4_2000_se VALUES ('FL', 'GA'),
SUBPARTITION q4_2000_nc VALUES ('SD', 'WI'),
SUBPARTITION q4_2000_sc VALUES ('TX', 'LA')
));

This example illustrates the creation of a range-list partitioned table.

36

RANGE-LIST PARTITIONED
TABLES

37

CREATING LIST-HASH PARTITIONED
TABLES

This example shows a car_rentals table that is list partitioned by territory and
subpartitioned using hash by customer identifier.

CREATE TABLE car_rentals
(car_id VARCHAR2(16)
, account_number NUMBER
, customer_id NUMBER
, amount_paid NUMBER
, branch_id NUMBER
, territory VARCHAR(2)
, status VARCHAR2(1)
)
PARTITION BY LIST (territory)
SUBPARTITION BY HASH (customer_id) SUBPARTITIONS 8
(PARTITION p_nw VALUES ('OR', 'WY') TABLESPACE T1
, PARTITION p_sw VALUES ('AZ', 'CA') TABLESPACE T2
, PARTITION p_ne VALUES ('NY', 'CT') TABLESPACE T3
, PARTITION p_se VALUES ('FL', 'GA') TABLESPACE T4
, PARTITION p_nc VALUES ('SD', 'WI') TABLESPACE T5
, PARTITION p_sc VALUES ('OK', 'TX') TABLESPACE T6
);

38

CREATING LIST-RANGE PARTITIONED
TABLES

CREATE TABLE car_rentals
(car_id VARCHAR2(16)
, account_number NUMBER
, customer_id NUMBER
, amount_paid NUMBER
, branch_id NUMBER
, territory VARCHAR(2)
, status VARCHAR2(1))
PARTITION BY LIST (territory)
SUBPARTITION BY RANGE (amount_paid)
(PARTITION p_nw VALUES ('WA', 'WY')
(SUBPARTITION snwlow VALUES LESS THAN (1000)
, SUBPARTITION snwmid VALUES LESS THAN (10000)
, SUBPARTITION snwhigh VALUES LESS THAN

(MAXVALUE))
, PARTITION p_ne VALUES ('NY', 'CT')
(SUBPARTITION snelow VALUES LESS THAN (1000)
, SUBPARTITION snemid VALUES LESS THAN (10000)
, SUBPARTITION snehigh VALUES LESS THAN

(MAXVALUE)
)

, PARTITION p_sw VALUES ('CA', 'AZ')
(SUBPARTITION sswlow VALUES LESS THAN

(1000)
, SUBPARTITION sswmid VALUES LESS THAN

(10000)
, SUBPARTITION sswhigh VALUES LESS THAN

(MAXVALUE)
)

, PARTITION p_se VALUES ('FL', 'GA')
(SUBPARTITION sselow VALUES LESS THAN

(1000)
, SUBPARTITION ssemid VALUES LESS THAN

(10000)
, SUBPARTITION ssehigh VALUES LESS THAN

(MAXVALUE)
)

);

This sample code shows a car_rentals table that is list by territory and subpartitioned by range
using the rental paid amount. Note that row movement is enabled.

39

LIST-LIST PARTITIONED
TABLES

CREATE TABLE car_rentals_acct
(car_id VARCHAR2(16)
, account_number NUMBER
, customer_id NUMBER
, amount_paid NUMBER
, branch_id NUMBER
, territory VARCHAR(2)
, status VARCHAR2(1)
, rental_date TIMESTAMP WITH LOCAL TIME ZONE
, constraint pk_car_rhist primary

key(car_id,account_number,branch_id,rental_date)
)
PARTITION BY LIST (territory)
SUBPARTITION BY LIST (status)
(PARTITION p_nw VALUES ('WA', 'WY')
(SUBPARTITION snw_low VALUES ('C')
, SUBPARTITION snw_avg VALUES ('B')
, SUBPARTITION snw_high VALUES ('A')
)

,
PARTITION p_ne VALUES ('NY', 'CT')

(SUBPARTITION sne_low VALUES ('C')
, SUBPARTITION sne_avg VALUES ('B')
, SUBPARTITION sne_high VALUES ('A')
)

, PARTITION p_sw VALUES ('CA', 'AZ')

(SUBPARTITION ssw_low VALUES ('C')

, SUBPARTITION ssw_avg VALUES ('B')

, SUBPARTITION ssw_high VALUES ('A')

)

, PARTITION p_se VALUES ('FL', 'GA')

(SUBPARTITION sse_low VALUES ('C')

, SUBPARTITION sse_avg VALUES ('B')

, SUBPARTITION sse_high VALUES ('A')

)

) enable row movement
;

This sample code shows an car_rentals_acct table that is list-partitioned by territory and subpartitioned
by list using account status column.

40

LIST-LIST PARTITIONED
TABLES

41

RANGE-HASH PARTITIONED TABLE
USING A SUBPARTITION TEMPLATE

CREATE TABLE credential_evaluations
(eval_id VARCHAR2(16) primary key
, grad_id VARCHAR2(12)
, grad_date DATE
, degree_granted VARCHAR2(12)
, degree_major VARCHAR2(64)
, school_id VARCHAR2(32)
, final_gpa NUMBER(4,2)

)
PARTITION BY RANGE (grad_date)

SUBPARTITION BY HASH (grad_id)
SUBPARTITION TEMPLATE
(SUBPARTITION S_a TABLESPACE t1,

SUBPARTITION S_b TABLESPACE t2,
SUBPARTITION S_c TABLESPACE t3,
SUBPARTITION S_d TABLESPACE t4

)

(PARTITION grad_date_70s
VALUES LESS THAN (

TO_DATE('01-JAN-1980','DD-MON-YYYY'))
, PARTITION grad_date_80s

VALUES LESS THAN (
TO_DATE('01-JAN-1990','DD-MON-YYYY'))
, PARTITION grad_date_90s

VALUES LESS THAN (
TO_DATE('01-JAN-2000','DD-MON-YYYY'))
, PARTITION grad_date_00s

VALUES LESS THAN (
TO_DATE('01-JAN-2010','DD-MON-YYYY'))
);

42

MULTICOLUMN RANGE-PARTITIONED
TABLE

This example shows a multicolumn range-partitioned table, storing the actual DATE
information in three separate columns: year, month, and day with partition quarterly granularity

CREATE TABLE bi_auto_rentals_summary
(acctno NUMBER,

rental_date TIMESTAMP WITH LOCAL TIME ZONE,
year NUMBER,
month NUMBER,
day NUMBER,
total_amount NUMBER,
CONSTRAINT pk_actdate PRIMARY KEY (acctno, rental_date))

PARTITION BY RANGE (year,month)
(PARTITION prior2008 VALUES LESS THAN (2008,1),
PARTITION pq1_2008 VALUES LESS THAN (2008,4),
PARTITION pq2_2008 VALUES LESS THAN (2008,7),
PARTITION pq3_2008 VALUES LESS THAN (2008,10),
PARTITION pq4_2008 VALUES LESS THAN (2009,1),
PARTITION p_current VALUES LESS THAN (MAXVALUE,1));

43

This sample code illustrates the use of a multicolumn partitioned
approach for table supplier_parts, storing the relevant data including
price. Partition the table on (supid, partno) to enforce equally sized
partitions.

CREATE TABLE sp_price (
supid NUMBER,
partno NUMBER,
unitprice NUMBER,
status VARCHAR2(1))

PARTITION BY RANGE (supid, partno)
(PARTITION p1 VALUES LESS THAN (10000,1000),
PARTITION p2 VALUES LESS THAN (50000,2000),
PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE));

MULTICOLUMN RANGE-PARTITIONED
TABLE

44

USING VIRTUAL COLUMN-BASED
PARTITIONING

In the context of partitioning, a virtual
column can be used as any regular
column.
All partition methods are supported when
using virtual columns, including interval
partitioning and all different combinations
of composite partitioning.
There is no support for calls to a PL/SQL
function on the virtual column used as the
partitioning column.

45

VIRTUAL COLUMN-BASED
PARTITIONING

CREATE TABLE direct_marketing
(promo_id NUMBER(6) NOT NULL
, cust_id NUMBER NOT NULL
, campaign_date DATE NOT NULL
, channel_code CHAR(1) NOT NULL
, campaign_id NUMBER(6) NOT NULL
, hist_avg_sales NUMBER(12,2) NOT NULL
, sales_forecast NUMBER(12,2) NOT NULL
, discrepancy AS (sales_forecast - hist_avg_sales))

PARTITION BY RANGE (campaign_date) INTERVAL (NUMTOYMINTERVAL(1,'MONTH'))
SUBPARTITION BY RANGE(discrepancy) SUBPARTITION TEMPLATE

(SUBPARTITION p_low VALUES LESS THAN (5000)
, SUBPARTITION p_avg VALUES LESS THAN (15000)
, SUBPARTITION p_high VALUES LESS THAN (100000)
, SUBPARTITION p_max VALUES LESS THAN (MAXVALUE))

(PARTITION p_campaign_prior_2009 VALUES LESS THAN (TO_DATE('01-JAN-2009','dd-MON-yyyy'))
)
ENABLE ROW MOVEMENT COMPRESS PARALLEL NOLOGGING;

This sample code shows the sales table
partitioned by range-range using a virtual
column for the subpartitioning key. The
virtual column calculates the difference
between the historic average sales and the
forecasted potential sales. As a rule, at
least one partition must be specified.

46

USING COMPRESSION AND
PARTITIONING

For heap-organized partitioned tables, compress
some or all partitions using table compression.

The compression attribute can be declared for a
tablespace, a table, or a partition of a table.

Whenever the compress attribute is not specified,
it is inherited like any other storage attribute.

47

This sample code creates a list-
partitioned table with both compressed
and uncompressed partitions. The
compression attribute for the table and
all other partitions is inherited from the
tablespace level.

USING COMPRESSION AND
PARTITIONING

CREATE TABLE credential_evaluations
(eval_id VARCHAR2(16) primary key
, grad_id VARCHAR2(12)
, grad_date DATE
, degree_granted VARCHAR2(12)
, degree_major VARCHAR2(64)
, school_id VARCHAR2(32)
, final_gpaNUMBER(4,2))
PARTITION BY RANGE (grad_date)
SUBPARTITION BY HASH (grad_id) SUBPARTITIONS 8 STORE IN (T1,T2,T3,T4)

(PARTITION grad_e_70s
VALUES LESS THAN (TO_DATE('01-JAN-1980','DD-MON-YYYY')) TABLESPACE T1 COMPRESS

, PARTITION grad_date_80s
VALUES LESS THAN (TO_DATE('01-JAN-1990','DD-MON-YYYY')) TABLESPACE T2 COMPRESS

, PARTITION grad_date_90s
VALUES LESS THAN (TO_DATE('01-JAN-2000','DD-MON-YYYY')) TABLESPACE T3 NOCOMPRESS

, PARTITION grad_date_00s
VALUES LESS THAN (TO_DATE('01-JAN-2010','DD-MON-YYYY')) TABLESPACE T4 NOCOMPRESS)

ENABLE ROW MOVEMENT;

48

USING PARTITIONED
INDEX KEY COMPRESSION

Compress some or all partitions of a B-tree index using key compression.
Key compression is applicable only to B-tree indexes.
Bitmap indexes are stored in a compressed manner by default.
An index using key compression eliminates repeated occurrences of key column prefix
values, thus saving space and I/O.
This sample code creates a local partitioned index with all partitions except the most
recent one compressed:

CREATE INDEX ndx_grad_date ON credential_evaluations (grad_date)
COMPRESS LOCAL

(
PARTITION grad_date_70s,
PARTITION grad_date_80s,
PARTITION grad_date_90s,
PARTITION grad_date_00s NOCOMPRESS

);
It is NOT possible to specify COMPRESS (or NOCOMPRESS) explicitly for an index

subpartition. The compression setting in a partition is inherited for a child
subpartition. Attribute. Each index subpartition of a parent partition inherits its key
compression setting .

49

CREATING RANGE-PARTITIONED
INDEX-ORGANIZED TABLES

It is possible to partition index-organized tables, and their secondary indexes, by the range method.
This sample code creates the range-partitioned index-organized table new_mktg_campaings. The
INCLUDING clause specifies that all columns after period_code are to be stored in an overflow
segment. There is one overflow segment for each partition, all stored in the same tablespace (T11).
Optionally, OVERFLOW TABLESPACE is specified at the individual partition level, in which case
some or all of the overflow segments could have separate TABLESPACE attributes.

CREATE TABLE new_mktg_campaigns
(campaign_id NUMBER(8)
, period_code INTEGER CONSTRAINT rck CHECK (period_code BETWEEN
1 AND 26)
, campaign_name VARCHAR2(20)
, projected_sales NUMBER(12,2)
, campaign_desc VARCHAR2(4000),

PRIMARY KEY (campaign_id, period_code)
) ORGANIZATION INDEX

INCLUDING period_code OVERFLOW TABLESPACE T11
PARTITION BY RANGE (period_code)

(PARTITION VALUES LESS THAN (10) TABLESPACE t1,
PARTITION VALUES LESS THAN (20) TABLESPACE t2 OVERFLOW TABLESPACE

t9,
PARTITION VALUES LESS THAN (MAXVALUE) TABLESPACE t13);

50

HASH-PARTITIONED INDEX-ORGANIZED
TABLES

Another option for partitioning index-organized tables is to use the hash method. In the
following example, the future_mktg_campaings index-organized table is partitioned by the
hash method.

CREATE TABLE future_mktg_campaigns
(campaign_id NUMBER(8)
, period_code INTEGER

CONSTRAINT fnock CHECK (period_code BETWEEN 1 AND 26)
, campaign_name VARCHAR2(20)
, projected_sales NUMBER(12,2)
, campaign_desc VARCHAR2(2000),

PRIMARY KEY (campaign_id, period_code)
)

ORGANIZATION INDEX
INCLUDING period_code OVERFLOW TABLESPACE T11
PARTITION BY HASH (period_code)

PARTITIONS 8
STORE IN (T1,T2,T3,T4,T5,T6,T7,T8)
OVERFLOW STORE IN (T9,T10,T11);

51

LIST-PARTITIONED INDEX-ORGANIZED
TABLES

The other option for partitioning index-organized tables is to use the list
method.

CREATE TABLE current_mktg_campaigns
(campaign_id NUMBER(8)
, period_code INTEGER CONSTRAINT fpclst_ck

CHECK (period_code BETWEEN 1 AND 26)
, campaign_name VARCHAR2(20)
, projected_sales NUMBER(12,2)
, campaign_desc VARCHAR2(4000),

PRIMARY KEY (campaign_id, period_code))
ORGANIZATION INDEX
INCLUDING period_code OVERFLOW TABLESPACE T11
PARTITION BY LIST (period_code)
(PARTITION A VALUES (2, 4, 8, 10,12,14,16) TABLESPACE t12,
PARTITION B VALUES (1,3,5,7,9,11,13,15,17) TABLESPACE t14
OVERFLOW TABLESPACE t15,
PARTITION C VALUES (DEFAULT) TABLESPACE t10);

52

COMPOSITE INTERVAL-* PARTITIONED
TABLES

53

COMPOSITE INTERVAL-* PARTITIONED
TABLES

• Include the INTERVAL definition.
• Specify at least one range partition using the PARTITION clause.
• Note that:

• The range partitioning key value determines the high value of the
range partitions, which is called the transition point, and the database
automatically creates interval partitions for data beyond that transition
point.

• The subpartitions for intervals in an interval-* partitioned table will be
created when the database creates the interval. You can specify the
definition of future subpartitions only through the use of a subpartition
template.

• Create an interval-hash partitioned table with multiple hash
partitions using one of the following methods:

• Either specify a number of hash partitions in the PARTITIONS
clause or Use a subpartition template: Future interval partitions will
only get a single hash subpartition.

54

COMPOSITE INTERVAL-* PARTITIONED
TABLES

CREATE TABLE pro_marketing_campaigns
(campaign_id NUMBER(8)
, campaign_name VARCHAR2(20)
, campaign_date DATE
, period_code INTEGER CONSTRAINT fcopck CHECK (period_code BETWEEN 1 AND 26)
, projected_sales NUMBER(12,2)
, campaign_desc VARCHAR2(4000),

PRIMARY KEY (campaign_id, period_code))
PARTITION BY RANGE (campaign_date) INTERVAL (NUMTOYMINTERVAL(1,'MONTH'))
SUBPARTITION BY HASH (period_code) SUBPARTITIONS 4
(PARTITION p_prior_2009 VALUES LESS THAN (TO_DATE('01-JAN-2009','dd-mon-yyyy')))
PARALLEL COMPRESS FOR ALL OPERATIONS;

This sample code shows the pro_marketing_campaigns table as
interval-partitioned using monthly intervals on campaign_date, with
hash subpartitions by period_code.

55

PARTITIONING AND
ENCRYPTION

There is no encryption support for a column
used a partitioning key

56

OMBSDB: Multiple Block Size Caches

57

USING MUTIPLE BLOCK SIZE
CACHES

Creating indexes on a tablespace with a larger block size will increasing performance in
DSS and in most OLTP scenarios.
This sample code creates the credential_tables in the 8k block size T1,T2,T3,and T4
tablespaces, and local indexes on the 16k T18,T20,T22,T24 tablespaces, as cached
respectively.

58

USING MUTIPLE BLOCK SIZE
CACHES

Analyzing
Performance from
Optimizer access path
as explained.

59

RELEVANT DATA DICTIONARY
VIEWS

60

PARTITIONED TABLE
MAINTENANCE

61

PARTITIONED INDEX
MAINTENANCE

62

MAINTENANCE OPERATIONS
The following operations support the UPDATE INDEXES clause:

ADD PARTITION | SUBPARTITION
COALESCE PARTITION | SUBPARTITION
DROP PARTITION | SUBPARTITION
EXCHANGE PARTITION | SUBPARTITION
MERGE PARTITION | SUBPARTITION
MOVE PARTITION | SUBPARTITION
SPLIT PARTITION | SUBPARTITION
TRUNCATE PARTITION | SUBPARTITION
SKIP_UNUSABLE_INDEXES Initialization Parameter
As of Oracle10g, SKIP_UNUSABLE_INDEXES is an initialization parameter with a
default value of TRUE. This setting disables error reporting of indexes and index
partitions marked UNUSABLE. To avoid choosing an alternative execution plan to
evading the unusable elements, set this parameter to FALSE.

63

MAINTENANCE OPERATIONS

ALTER TABLE credential_evaluatons ADD PARTITION grad_date_10s
VALUES LESS THAN (TO_DATE('01-JAN-2020','DD-MON-YYYY')) TABLESPACE T10;

64

MAINTENANCE OPERATIONS

ALTER TABLE school_directory COALESCE PARTITION PARALLEL;

65

MAINTENANCE OPERATIONS

ALTER TABLE order_hist DROP PARTITION pq4 UPDATE INDEXES;

66

MAINTENANCE OPERATIONS

ALTER TABLE bi_auto_rentals_summary EXCHANGE PARTITION pq1_2008
WITH TABLE bi_auto_rentals_summary _1 UPDATE INDEXES;

67

MAINTENANCE OPERATIONS

ALTER TABLE bi_auto_rentals_summary MOVE PARTITION pq1_2008
TABLESPACE T9 UPDATE INDEXES;

68

MAINTENANCE OPERATIONS

69

MAINTENANCE OPERATIONS

70

MAINTENANCE OPERATIONS

ALTER TABLE q_territory_sales SPLIT PARTITION q4_2000 AT
(TO_DATE('15-MOV-2000','DD-MON-YYYY'));

71

MAINTENANCE OPERATIONS
ALTER TABLE credential_evaluations TRUNCATE PARTITION grad_date_10s
DROP STORAGE UPDATE INDEXES;

72

MAINTENANCE OPERATIONS

ALTER INDEX ndx_final_gpa REBUILD PARTITION C1;
ALTER INDEX ndx_final_gpa REBUILD PARTITION C2;
ALTER INDEX ndx_final_gpa REBUILD PARTITION B1;
ALTER INDEX ndx_final_gpa REBUILD PARTITION B2;
ALTER INDEX ndx_final_gpa REBUILD PARTITION A1;
ALTER INDEX ndx_final_gpa REBUILD PARTITION A2;

73

MAINTENANCE OPERATIONS
This is a Sample questions from the OCP DBA certification test preparation.

74

MANAGEABILITY

75

PARTITIONING FOR AVAILABILITY,
MANAGEABILITY, AND PERFORMANCE

Partition Pruning
Partition-Wise Joins
Index Partitioning
Partitioning and Table Compression
Tuning and Mixing objects in Multiple Block
Size Database Models

76

PARTITION PRUNING
Partition pruning is a foundational performance feature to both
DSS and OLTP, enabling the Oracle Database to perform
operations only on those partitions that are relevant to the SQL.
The optimizer analyzes FROM and WHERE clauses in SQL
statements to eliminate unneeded partitions.
Partition pruning greatly optimizes time and resources when
retrieving data from disk, thus improving query performance.
When partitioning an index and a table on different columns
(with a global partitioned index), then partition pruning also
eliminates index partitions even when the partitions of the
underlying table cannot be eliminated.
Either static or dynamic pruning could be used, depending on
SQL statement.
Static pruning occurs at compile-time, with the information
about the partitions accessed beforehand while dynamic
pruning occurs at run-time.

77

PARTITION PRUNING

Partition pruning affects the statistics of the
objects involved and therefore also the
execution plan of the statement.
Oracle Database prunes partitions when using
range, LIKE, equality, and IN-list predicates on
the range or list partitioning columns, and when
using equality and IN-list predicates on the hash
partitioning columns.
When using composite partitioned objects,
Oracle can prune at both levels using the
relevant predicates.

78

PARTITION-WISE JOINS

Partition-wise joins minimize query response
time by reducing the amount of data exchanged
among parallel execution servers when joins
execute in parallel, thus reducing response time
and improving the use of both CPU and memory
resources.
In Oracle Real Application Clusters (RAC)
environments, partition-wise joins also avoid or
at least limit the data traffic over the
interconnect, which is the key to achieving good
scalability for massive join operations.

79

PARTITION-WISE JOINS
Partition-wise joins can be full or partial. Oracle decides which one to use.

Full Partition-Wise Joins
A full partition-wise join divides a large join into smaller joins between a pair of
partitions from the two joined tables. To use this feature, you must equipartition
both tables on their join keys, or use reference partitioning. For example,
consider a large join between a sales table and a customer table on cust_id.
The query "find the records of all customers who were part of the campaign more
than 200 potential sales items in the 3rd Quarter of 2008" is a typical example of
a SQL statement performing such a join. This example shows a partition-wise
join:

SELECT c.cust_lname COUNT(*)
FROM direct_marketing dm, customers c
WHERE dm.cust_id = c.cust_id

AND dm.campaign_init_date = c.campaign_date
AND dm.campaign_date BETWEEN TO_DATE('01-JUL-2008', 'DD-MON-YYYY') AND

(TO_DATE('01-OCT-2008', 'DD-MON-YYYY'))
GROUP BY c.cust_lname HAVING COUNT(*) > 200;

80

PARTITION-WISE JOINS

Partition-wise joins reduce query response time and
optimizing CPU and memory resources by minimizing the
amount of data exchanged among parallel execution
servers when joins execute in parallel.
In RAC environments, partition-wise joins also avoid or at
least limit the data traffic over the interconnect, which is
the key to achieving good scalability for massive joins.
To avoid remote I/O, both matching partitions should have
affinity to the same node.
Partition pairs should be spread over all nodes to use all
CPU resources available and avoid bottlenecks .
Nodes can host multiple pairs when there are more pairs
than nodes, e.g., for an 8-node system and 16 partition
pairs, each node receives two pairs.

81

PARTITION-WISE JOINS

Full Partition-Wise Joins: Composite - Single-Level
This method is a variation of the single-level - single-level
method. In this scenario, one table (typically the larger
table) is composite partitioned on two dimensions, using
the join columns as the subpartition key.
Partial Partition-Wise Joins: Single-Level Partitioning
The simplest method to enable a partial partition-wise join
is to partition sales by hash on cust_id.
The number of partitions determines the maximum
degree of parallelism, because the partition is the
smallest granule of parallelism for partial partition-wise
join operations.

82

PARTITION-WISE JOINS

Full Partition-Wise Joins: Composite -
Composite
When necessary, it is possible to also partition a
table by a composite method.
It is possible to get full partition-wise joins on all
combinations of partition and subpartition
partitions: partition - partition, partition -
subpartition, subpartition - partition, and
subpartition - subpartition.

83

Partial Partition-Wise Joins
Oracle Database can perform partial partition-wise joins
only in parallel.
Unlike full partition-wise joins, partial partition-wise joins
require partitioning only one table on the join key.
The partitioned table is referred to as the reference table.
The other table may or may not be partitioned. Partial
partition-wise joins are more common than full partition-wise
joins.
To execute a partial partition-wise join, the database
dynamically repartitions the other table based on the
partitioning of the reference table. Then, the execution
becomes similar to a full partition-wise join.

PARTITION-WISE JOINS

84

PARTITION-WISE JOINS

The performance advantage that partial partition-wise
joins have over joins in non-partitioned tables is that the
reference table is not moved during the join operation.
The parallel joins between non-partitioned tables require
both input tables to be redistributed on the join key. This
redistribution operation involves exchanging rows
between parallel execution servers.
This is a CPU-intensive operation that can lead to
excessive interconnect traffic in RAC environments.

85

RULES TO INDEX
PARTITIONING

The rules for partitioning indexes are similar to those for
tables:
An index can be partitioned unless:

The index is a cluster index.
The index is defined on a clustered table.

It is possible to mix partitioned and nonpartitioned indexes
with partitioned and nonpartitioned tables:
A partitioned table can have partitioned or nonpartitioned
indexes.
A nonpartitioned table can have partitioned or
nonpartitioned indexes.
Bitmap indexes on nonpartitioned tables cannot be
partitioned.
A bitmap index on a partitioned table must be a local index.
Nonprefixed indexes are particularly useful in historical
databases.

86

RULES TO LOCAL INDEX
PARTITIONING

The three Oracle-supported Local Index partitioning types are:
Local Partitioned Indexes
In a local index, all keys in a particular index partition refer only to rows
stored in a single underlying table partition. A local index is created by
specifying the LOCAL attribute.
Oracle constructs the local index so that it is equi-partitioned with the
underlying table.
Oracle also maintains the index partitioning automatically when
partitions in the underlying table are added, dropped, merged, or split,
or when hash partitions or subpartitions are added or coalesced,
ensuring that the index remains equipartitioned with the table.
A local index can be created UNIQUE if the partitioning columns form a
subset of the index columns. This restriction guarantees that rows with
identical index keys always map into the same partition, where
uniqueness violations can be detected.

87

LOCAL INDEXES ADVANTAGES
Only one index partition needs to be rebuilt when a maintenance
operation other than SPLIT PARTITION or ADD PARTITION is
performed on an underlying table partition.
The duration of a partition maintenance operation is proportional to
partition size.
Local indexes support partition independence.
Local indexes support smooth roll-out of old data and roll-in of new data
in historical tables.
Oracle can take advantage of the fact that a local index is equi-
partitioned with the underlying table to generate improved query access
plans.
Local indexes simplify the task of tablespace incomplete recovery. In
order to recover a partition or subpartition of a table to a point in time,
the corresponding index entries must be recovered to the same point in
time.
Oracle Database PL/SQL Packages and Types Reference for a
description of the DBMS_PCLXUTIL package

88

INDEX PARTITIONING TYPES
Local Prefixed Indexes
A local index is prefixed if it is partitioned on a left prefix of the index
columns.
Local Nonprefixed Indexes
A local index is nonprefixed if it is not partitioned on a left prefix of the
index columns. Therefore, it is not possible to have a unique local
nonprefixed index unless the partitioning key is a subset of the index key.
Global Partitioned Indexes
In a global partitioned index, the keys in a particular index partition may
refer to rows stored in more than one underlying table partition or
subpartition.
A global index can be range or hash partitioned, though it can be defined
on any type of partitioned table.
A global index is created by specifying the GLOBAL attribute.
Index partitions can be merged or split as necessary.

89

GUIDELINES TO INDEX
PARTITIONING

Global Partitioned Indexes (continued)
Normally, a global index is not equipartitioned with the underlying table
and usualy nothing could prevent this. An index that must be equi-
partitioned with the underlying table should be created as LOCAL.
A global partitioned index contains a single B-tree with entries for all
rows in all partitions. Each index partition may contain keys that refer to
many different partitions or subpartitions in the table.
The highest partition of a global index must have a partition bound all of
whose values are MAXVALUE.
Prefixed and Non-Prefixed Global Partitioned Indexes
A global partitioned index is prefixed if it is partitioned on a left prefix of
the index columns.
Global prefixed partitioned indexes can be unique or nonunique.
Nonpartitioned indexes are treated as global prefixed nonpartitioned
indexes.

90

GUIDELINES TO INDEX
PARTITIONING

Management of Global Partitioned Indexes
Global partitioned indexes are harder to manage than local indexes.
When the data in an underlying table partition is moved or removed
(SPLIT, MOVE, DROP, or TRUNCATE), all partitions of a global index
are affected. So, global indexes do not support partition independence.
When an underlying table partition or subpartition is recovered to a point
in time, all corresponding entries in a global index must be recovered to
the same point in time. Because these entries may be scattered across
all partitions or subpartitions of the index, mixed in with entries for other
partitions or subpartitions that are not being recovered, there is no way
to accomplish this except by re-creating the entire global index.
When deciding how to partition indexes on a table, consider the mix of
applications that need to access the table.
There is a trade-off between performance and availability, and
manageability.

91

GUIDELINES TO INDEX
PARTITIONING

For OLTP applications
Global indexes and local prefixed indexes provide improved performance
over local non-prefixed indexes because they minimize the number of index
partition probes.
Local indexes support more availability when there are partition or
subpartition maintenance operations on the table.
Local non-prefixed indexes are very useful for historical databases.

For DSS applications
Local non-prefixed indexes can improve performance because many index
partitions can be scanned in parallel by range queries on the index key.
For historical tables, indexes should be local if possible. This limits the
impact of regularly scheduled drop partition operations.
Unique indexes on columns other than the partitioning columns must be
global because unique local non-prefixed indexes whose key does not
contain the partitioning key are not supported.

92

TYPES OF INDEX PARTITIONING:
SUMMARY

93

TABLE COMPRESSION AND BITMAP
INDEXES

When using table compression on partitioned tables with
bitmap indexes, you need to do the following before
introducing the compression attribute for the first time:

1. Mark bitmap indexes unusable.
2. Set the compression attribute.
3. Rebuild the indexes.

94

PARTITION STRATEGY CHOICE:
RECOMMENDATIONS

When to Use Range or Interval Partitioning
Range partitioning is a convenient method for partitioning historical data.
The boundaries of range partitions define the ordering of the partitions in
the tables or indexes.
Interval partitioning is an extension to range partitioning in which, beyond
a point in time, partitions are defined by an interval. Interval partitions are
automatically created when the data is inserted into the partition.
Range or interval partitioning is often used to organize data by time
intervals on a column of type DATE.
For instance, keeping the past 48 months’ worth of data online, Range
partitioning simplifies this process. To add data from a new month, the
DBA will load it into a separate table, clean it, index it, and then add it to
the range-partitioned table using the EXCHANGE PARTITION statement,
all while the original table remains online.
After adding the new partition, the DBA can drop the trailing month with
the DROP PARTITION statement.

95

PARTITION STRATEGY CHOICE:
RECOMMENDATIONS

When to Use Hash Partitioning
There are scenarios when it is not trivial into which partition data should
reside, although the partitioning key can be identified. With hash partitioning, a
row is placed into a partition based on the result of passing the partitioning key
into a hashing algorithm.
When using this approach, data is randomly distributed across the partitions
rather than grouped together.
Hence, this is a great approach for some data, but may not be an effective
way to manage historical data.
Partition pruning is limited to equality predicates.
Hash partitioning also supports partition-wise joins, parallel DML and parallel
index access.
Excellent when the DBA needs to enable partial or full parallel partition-wise
joins with very likely equi-sized partitions or distribute data evenly among the
nodes of an MPP platform using RAC, thus minimizing interconnect traffic
when processing internode parallel statements.

96

When to Use List Partitioning
It is recommended to use list partitioning when you want to specifically map
rows to partitions based on discrete values.

When to Use Composite Partitioning
Composite partitioning offers the benefits of partitioning on two dimensions.
From a performance perspective, it benefits from partition pruning on one or
two dimensions depending on the SQL statement, taking advantage of both
full or partial partition-wise joins on either dimension, as needed.
It can benefit from parallel backup and recovery of a single table
(manageability perspective).
The DBA can split up backups of your tables and you can decide to store
data differently based on identification by a partitioning key.
The database stores every subpartition in a composite partitioned table as a
separate segment.
Thus, the subpartitions may have properties that differ from the properties of
the table or from the partition to which the subpartitions belong.

PARTITION STRATEGY CHOICE:
RECOMMENDATIONS

97

When to Use Composite Range-Hash Partitioning
Composite range-hash partitioning is particularly common for tables
that store history, are very large as a result, and are frequently joined
with other large tables,

Then, composite range-hash partitioning provides the benefit of partition
pruning at the range level
Opportunity to perform parallel full or partial partition-wise joins at the
hash level. Specific cases can benefit from partition pruning on both
dimensions for specific SQL statements.

Composite range-hash partitioning can also be utilized for tables that
traditionally use hash partitioning, but also use a rolling window
approach.

PARTITION STRATEGY CHOICE:
RECOMMENDATIONS

98

When to Use Composite Range-List Partitioning
Composite range-list partitioning is mostly used for large tables that store
historical data and are usually accessed on more than one dimension.
When to Use Composite Range-Range Partitioning
Composite range-range partitioning is helpful for applications that store time-
dependent data on more than one time dimension.
Business cases for composite range-range partitioning could include ILM
scenarios, and applications that store historical data and need to categorize its
data by range on another dimension.
When to Use Composite List-Hash Partitioning
Composite list-hash partitioning is utilized for large tables that are usually
accessed on one dimension, but because of their size need yet to take
advantage of parallel full or partial partition-wise joins.
When to Use Composite List-List Partitioning
Composite list-list partitioning is helpful for large tables that are often accessed
on different dimensions. The DBA can explicitly map rows to partitions on those
dimensions on the basis of discrete values.

PARTITION STRATEGY CHOICE:
RECOMMENDATIONS

99

When to Use Composite List-Range Partitioning
Composite list-range partitioning is advantageous for large tables that are
accessed on different dimensions. For the most commonly used dimension,
the DBA can explicitly map rows to partitions on discrete values.
List-range partitioning is likely to be used for tables that use range values
within a list partition; in contrast range-list partitioning is mostly used for
discrete list values within a range partition.
List-range partitioning is less likely to be used to store historical data,
although equivalent scenarios all work. Range-list partitioning can be
implemented using interval-list partitioning, while list-range partitioning does
not support interval partitioning.

PARTITION STRATEGY CHOICE:
RECOMMENDATIONS

100

When to Use Interval Partitioning
Interval partitioning can be used for every table that is range partitioned and
uses fixed intervals for new partitions. The database automatically creates
interval partitions as data for that partition is loaded. Until this happens, the
interval partition exists but no segment is created for the partition.
The benefit of interval partitioning is that there is no need to create your
range partitions explicitly. Therefore, a DBA could consider using interval
partitioning unless there is a need to create range partitions with different
intervals, or a need to specific partition attributes when creating range
partitions.
When upgrading an application it is recommended to use range partitioning
or composite range-* partitioning, accordingly.

PARTITION STRATEGY CHOICE:
RECOMMENDATIONS

101

When to Use Reference Partitioning
Reference partitioning is effective in the following scenarios:
When denormalizing or planning to denormalize, a column from a master table
into a child table in order to get partition pruning benefits on both tables.
If two large tables are joined often, then the tables are not partitioned on the join
key, but you want to take advantage of partition-wise joins.
Indeed, reference partitioning implicitly enables full partition-wise joins.
If data in multiple tables has a related life cycle, then reference partitioning can
provide significant manageability benefits.
Partition management operations against the master table are automatically
cascaded to its descendents. For example, when adding a partition to the master
table, that creation is automatically propagated to all its descendents.
In order to use reference partitioning, the DBA has to enable and enforce the
foreign key relationship between the master table and the reference table in
place.
It is also possible to cascade reference-partitioned tables based on the data
model used.

PARTITION STRATEGY CHOICE:
RECOMMENDATIONS

102

When to Partition on Virtual Columns
Virtual column partitioning enables you to partition on an expression, which
may use data from other columns, and perform calculations with these
columns.
There is no support for PL/SQL function calls on a virtual column definitions
as a partitioning key.
Virtual column partitioning supports all partitioning methods as well as
performance and manageability features.
Virtual columns could be used when tables are frequently accessed using a
predicate that is not directly captured in a column, but can be derived, in
order to get partition pruning benefits.
The virtual column does not require any storage.

PARTITION STRATEGY CHOICE:
RECOMMENDATIONS

103

ORACLE PARTITIONING FOR ILM
SUPPORT

Oracle Database for ILM
The Oracle Database Partitioning option provides an uniquely ideal platform
for implementing an ILM solution offering:

Application Transparency
There is no need to customize applications
Data can easily be moved and accessed at the different stages of its lifecycle.
Flexibility required to quickly adapt to any new regulatory compliance.

Fine-grained
View data at a very fine-grained level as well as group related data together,
whereas storage devices only see bytes and blocks.

Low-Cost
Low cost storage is a key factor in implementing ILM.

Enforceable Compliance Policies
It is imperative to show to regulatory bodies that data is being retained and
managed in accordance with the regulations defining security and audit policies,
which enforce and log all access to data.

103

104

In general, Enforceable Compliance Policies where
Oracle Partitioning is valuable involve:

Data Retention

Immutability

Privacy

Auditing

Expiration

104

ORACLE PARTITIONING FOR ILM
SUPPORT

105

ORACLE PARTITIONING FOR ILM
SUPPORT105

106

ILM PARTITIONING STRATEGY
106

107

ORACLE PARTITIONING FOR
DATAWAREHOUSING

Datawarehouses often require techniques
both for managing large tables and
providing good query optimization.
Oracle Partitioning is beneficial in attaining
the following Datawarehousing goals,
namely:

Scalability
Performance
Manageability

107

108

Scalability
Partitioning is effective scaling a data warehouse by
dividing database objects into smaller pieces,
enabling access to smaller, more manageable
objects. Providing direct access to smaller objects
addresses the scalability requirements of data
warehouses:

Bigger Database
Bigger Individual tables: More Rows in Tables
More Users Querying the System
More Complex Queries

108

ORACLE PARTITIONING FOR
DATAWAREHOUSING

109

More Users Querying the System
With partitioning, users are more likely to hit isolated and
smaller data sets and the database returns results faster
with less data contention.
More Complex Queries
Smaller data sets help perform complex queries faster (in
memory processing and less I/O overhead.)
Performance
Optimal performance is a key to success for a data
warehouse. Analyses run against the database should
return within a reasonable amount of time even on terabyte-
size tables.

109

ORACLE PARTITIONING FOR
DATAWAREHOUSING

110

Partition Pruning
Partition pruning is an essential performance feature since the
optimizer analyzes FROM and WHERE clauses in SQL statements
to eliminate unneeded partitions when building the partition access
list.
Partition pruning greatly reduces the amount of data retrieved from
disk and shortens processing time, thus improving query
performance and optimizing resource utilization.

Basic Partition Pruning Techniques
The optimizer utilizes a wide variety of predicates for pruning. The
three predicate types, equality, range, and IN-list, are the most
commonly used cases of partition pruning.

Advanced Partition Pruning Techniques
Oracle also prunes in the presence of more complex predicates or
SQL statements involving partitioned tables. For instance, when a
partitioned table is joined to the subset of another table, constrained
by a WHERE clause condition.

110

ORACLE PARTITIONING FOR
DATAWAREHOUSING

111

Partial Partition-Wise Joins
Oracle Database can perform partial partition-wise
joins only in parallel.
To execute a partial partition-wise join, the database
dynamically repartitions the other table based and
the execution is similar to a full partition-wise join.

Benefits of Partition-Wise Joins
Reduction of Communications Overhead
Reduction of Memory Requirements

111

ORACLE PARTITIONING FOR
DATAWAREHOUSING

112

ORACLE PARTITIONING FOR
DATAWAREHOUSING

Partitioning Materialized Views
The underlying storage for a materialized view is a table
structure,and therefore partitioning materialized views is quite
similar.
When the database rewrites a query to run against
materialized views, the query can take advantage of the same
performance features as those queries running against tables
MV’s directly benefit from.
A rewritten query may eliminate materialized view partitions
and it can take advantage of partition-wise joins, when joins
back to tables or with other materialized views are necessary.

112

113

ORACLE PARTITIONING FOR
DATAWAREHOUSING

Partitioning Materialized Views (continued)
This sample code illustrates how to effectively create a compressed
materialized view partitioned by hash, which using an aggregation on
period_code.

113

114

Partitioning Materialized Views (continued)
Partition Exchange Load (PEL)
Partitions can be added using Partition Exchange Load (PEL).
When using PEL, a separate identical table to a single partition is
created, including the same indexes and constraints, if any.
Partitioning and Materialized View Refresh Strategies

Full refresh
Fast (incremental) refresh based on materialized view logs
against the base tables
Manually using DML, followed by ALTER MATERIALIZED VIEW
CONSIDER FRESH

To enable query rewrites, set the QUERY_REWRITE_INTEGRITY
initialization parameter.

To manually keep materialized views up to date, the init.ora parameter
QUERY_REWRITE_INTEGRITY must be set to either TRUSTED or
STALE_TOLERATED.

114

ORACLE PARTITIONING FOR
DATAWAREHOUSING

115

Partitioning Materialized Views (continued)
When using materialized views and base tables with
comparable partitioning strategies, then PEL can be an
extremely powerful way to keep materialized views up-
to-date manually.

Here is how PEL can work:
Create tables to enable PEL against the tables and materialized
views
Load data into the tables, build the indexes, and implement any
constraints
Update the base tables using PEL
Update the materialized views using PEL
Execute ALTER MATERIALIZED VIEW CONSIDER FRESH for
every materialized view you updated using this strategy

115

ORACLE PARTITIONING FOR
DATAWAREHOUSING

116

ORACLE PARTITIONING FOR
OLTP

Partitioning is often used for Online Transaction Processing (OLTP)
systems to reduce contention in order to support a very large user
population since (OLTP) systems are one of the most common data
processing systems in today's enterprises, including, for instance,
financial and retail systems. Partitioning also helps in addressing
regulatory requirements facing OLTP systems, including storing
larger amounts of data in a cost-effective manner.
Oracle partitioning effectively optimizes OLTP focus on:

Performance
Manageability
Availability

116

117

ORACLE PARTITIONING FOR
OLTP

Partitioning also effectively addresses OLTP features such as,
namely:

Short response time
Small transactions
Data maintenance operations
Large user populations
High concurrency
Large data volumes
High availability
Lifecycle related data usage

117

118

STORAGE MANAGEMENT

High Availability: Implementing storage redundancy.
Hardware-based mirroring
Using ASM for mirroring
Software-based mirroring not using ASM

Performance: optimum throughput from storage devices,
multiple disks must work in parallel.

Hardware-based striping
Software-based striping using ASM
Software-based striping not using ASM

118

119

STORAGE MANAGEMENT

ILM
In an Information Lifecycle Management environment, it is not possible
to use striping across all devices, because all data would then be
distributed across all storage pools, in contrast with different storage
pools typically involving different performance characteristics.

Partition Placement
Using Bigfile Tablespaces
Customization
Oracle Exadata

119

120

LOB PARTITIONING SUPPORT

Oracle Partitioning support the storage of LOB types, such as BLOBs

and BFILE types.
One option for LOB support can be attained via Index
Organized Tables, storing LOBs in a separate tablespace.

121

LOB PARTITIONING SUPPORT

Partitioning LOB Support can also be via explicit LOB storage,
e.g. as BFILE, CLOB, or BLOB.

122

LOB PARTITIONING SUPPORT

However, an LOB column should not be used as a partition
key column itself.

123

PARTITIONING SUPPORT FOR USER-DEFINED
DATATYPES

User-datatype s can be used in a partitioned table.

124

PARTITIONING SUPPORT FOR USER-DEFINED
DATATYPES

User-defined object ype using the object id (OID) as primary key .

125

PARTITIONING SUPPORT FOR NESTED TABLES

Nested tables can be used in a partitioned table.

CREATE TABLE business_prospect (
partner_name VARCHAR2(25),
partner_reps prospect_list)
NESTED TABLE partner_reps STORE AS prospect_outer_ntab
(NESTED TABLE prospect_emails STORE AS prospect_inner_ntab)

PARTITION BY HASH(partner_name) PARTITIONS 4 STORE IN
(t1,t2,t3,t4);

126

PARTITIONING SUPPORT FOR VARRAYS

Like Nested tables, Varrays can be also used in a partitioned table.

CREATE TYPE member_emails IS VARRAY(30) OF VARCHAR2(128);
/
CREATE TABLE partners_online_dir (partner_id number,

territory VARCHAR2(4),
edom VARCHAR2(30),
partner_ emails member_emails)

PARTITION BY RANGE(edom)
(PARTITION p1 VALUES LESS THAN ('aol.com') TABLESPACE T1,
PARTITION p2 VALUES LESS THAN ('msn.com') TABLESPACE T2,
PARTITION p3 VALUES LESS THAN ('yahoo.com') TABLESPACE T3,
PARTITION p4 VALUES LESS THAN (MAXVALUE) TABLESPACE T4)

ENABLE ROW MOVEMENT COMPRESS FOR ALL OPERATIONS;
/

127

PARTITIONING SUPPORT FOR
XML

XML Data types can be included in partitioned tables, as
illustrated below.

128

BEST PRACTICES

From the business and functional point of view, a
partitioning strategy is normally identified with a functional
goal-seeking perspective, and therefore it needs to be
mapped to an Oracle partitioning technical
recommendation or specific partitioning strategy matching
those business requirements, regulatory compliance , or
systems platform, among others.

129

BEST PRACTICES

□ Use Oracle partitioning strategic recommendations for
each database system environment accordingly.

□ When in doubt refer to sample code, forum
discussions, and case studies.

□ Consolidate recommendations made in this
presentation into a practical enterprise policy
framework.

130

TIPS AND TECHNIQUES

□ Using multiple block size caches can increase load
throughput in DSS, in particular, when using indexes
in a block size larger than the table.

□ This is more important volumes are based on a (Stripe
and mirror everything) SAME-approach (i.e.,RAID
0+1).

□ Likewise, performance optimization and contention
reduction can be attained in OLTP systems using the
same approach, when the appropriate partitioning
strategy is being used, in accordance to the strategic
recommendations previously made.

131

CONSTRAINTS

As previously stated, there is no support for LONG and
LONG RAW data types on any Oracle partitioned object or
any partitioning strategy discussed.
Likewise, an encrypted column cannot serve as
partitioning key.
When migrating to Oracle11g or any other recent release,
consider changing LONG and LONG RAW datatypes into
CLOB, BLOB accordingly for current and future release
forward compatibility and improved manageability.
A VARRAY of XML data types cannot be set in a
partitioned table (via an SQL DDL statement.)
Certain datatypes have size and store constraints like
LOBs or large VARCHAR2 definitions.

132

CONCLUDING REMARKS

Oracle partitioning provides effective strategies to
attain time and resource optimization, including CPU
and memory.
Oracle Partitioning option is extremely practical to
achieve regulatory compliance.
Oracle partitioning is mission-critical to attain most
needed scalability, manageability, performance, and
high-availability in any system platform.

