

<Insert Picture Here>

Advanced Performance Diagnostics: What the GUI
(Does and) Doesn’t Show You
Nicholas J. Donatone
Principal Grid Sales Consultant

The following is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

<Insert Picture Here>

Agenda

• Review of Performance Methodology

• Review - AWR versus ASH

• Interesting Reports

• Mining your data• Mining your data

Why OracleWhy Oracle
Enterprise Manager?

Oracle’s Complete Enterprise Software Stack
Built-in & Integrated Manageability

• Leader in the complete
enterprise application
stack

• Built-in manageability
in every tier

• Integrated
manageability across
the entire stack

• Manage applications top-
down, from the business
perspective by understanding
user experiences and business
impact of IT issues

• Manage entire application
lifecycle to increase
business agility

Oracle Enterprise Manager
Increases Business Efficiency

lifecycle to increase
business agility with
comprehensive application quality
management and compliance
solutions

• Reduce operational costs
through intelligent diagnostics and
automated IT processes

Oracle’s Performance Methodology

• Methodology has evolved with each release
• Oracle 7

• Wait events instrumentation

• BSTAT, ESTAT

• Oracle 8

• STATSPACK • STATSPACK

• Oracle 10g and 11g

• Enhanced Time-Wait Model

• “Database Time (DB)” Based Methodology

Oracle’s Performance Methodology

• How to tune your system for a given workload?
• Identify operations consuming most DB Time

• Identify resource/capacity related bottlenecks

• Reduce “DB Time” consumed for the workload

• EM embodies Methodology + Best Practice
• Workflows based on Methodology

• Problem determination is few mouse clicks away

EM Performance Page

• How do you tune an Oracle database using EM’s
Performance Page?

• Simplest Answer: “Follow ADDM Recommendations”

• Simple Answer: “Click on the biggest block of color”

<Insert Picture Here>

AWR versus ASH

Automatic Workload Repository (AWR)

In-memory

SYSAUX
MMON

7:00 a.m.

AWR Data

Snapshot 1

ADDM finds
top problems

BG
…

Built-in,
automatic

performance
statistics data

warehouse

SGA

In-memory
statistics

AWR
Statistics

ASH

7:00 a.m.
8:00 a.m.

9:00 a.m.

Snapshot 1

Snapshot 2

Snapshot 3

Snapshot 4

10:00 a.m.

BG

…

FG

FG

…

DBA

Eight
days

V$
DBA_%

AWR

Example

Counter Statistics Number of Executions

• Built-in workload and performance statistics repository
in the database

• Automatically Captures Workload Data

• Stores different classes of data:

Counter Statistics Number of Executions

Time Statistics DB Time

Metrics / Rates Physical Reads / Second

SQL Statistics Disk Reads (Per SQL
statement)

Sampled Data Session Waits

AWR data

• During snapshots, flushed from V$ views to
DBA_HIST_* tables

• Interesting Performance tables:
• DBA_HIST_SNAPSHOT

• Snapshots in the AWR

• Join to other tables to constrain the time frame

• DBA_HIST_SYSTEM_EVENT

• Information on total waits and times for an event

• DBA_HIST_SYS_TIME_MODEL

• System Time Model statistics

• DBA_HIST_SQLSTAT

• SQL statistics over time

Active Session History (ASH)

• ASH is session level data

• Active sessions sampled and persisted in-memory
• Sampling interval = 1 second
• V$ACTIVE_SESSION_HISTORY
• Foreground and background sessions are sampled

• On-disk persistence• On-disk persistence
• DBA_HIST_ACTIVE_SESS_HISTORY

• ASH is a many-dimensional FACT table
• Dimensions are V$SESSION columns
• Fact is that DB time was accumulating over these dimensions

• ASH is a system-wide trace of what happened

DB Time

Query for
Melanie Craft

Novels

Browse and
Read

Reviews

Add
item to

cart

Checkout
using
‘one-
click’

Active Session History (ASH)

WAITING

State

db file sequential
readqa324jffritcf2137:38:26

EventSQL IDModuleSIDTime

CPUaferv5desfzs5Get review id2137:42:35

WAITING log file syncabngldf95f4deOne click2137:52:33

WAITING buffer busy waithk32pekfcbdfrAdd to cart2137:50:59

Book by author

ASH

• Can be used for

• Transient performance problems

• Targeted performance analysis by various dimensions

• SQL_ID

• session

• module• module

• service

• wait_class

AWR versus ASH Summary

AWR ASH

Instance Wide data Yes Yes

Time Based data Yes Yes

Counts/occurrence data Yes No

Analyze any time period No YesAnalyze any time period No Yes

Detailed session level data No Yes

Individual wait event data No Yes

Sampled data No Yes

Time based analysis Yes Yes

Resources in
$ORACLE_HOME/rdbms/admin

• Available report scripts
• Common reports

• awrrpt.sql

• ashrpt.sql

• addmrpt.sql

• Less Well Known reports

• ashrpti.sql

• awrddrpt.sql

• awrsqrpt.sql

• spawrrac.sql

ashrpti.sql

• ASH report for dimensions in addition to time
• SQL_ID
• session
• service
• wait_class
• client_id

awrddrpt.sql
• AWR Compare Periods Report

• Good for finding out ‘what changed’ in the instance

• Use Case
• Overall system performance resulting from SQL tuning

• Two snapshots - before and after SQL tuning

awrddrpt.sql

• System wide ‘Logical Reads per TXN’ significantly reduced

awrsqrpt.sql
• AWR Report for a particular SQL Statement

• Useful for researching individual SQL statement plan changes over
time

• Use Case
• Single SQL statement, before and after tuning
• Buffer gets substantially decreased

Plan Statistics

Before tuning

After tuning

spawrrac.sql
• Generates global AWR report for all nodes on a cluster

• In 11g

• Supplements Global ADDM in 11g

• Has limitations
• Text only• Text only

SysStat

~~~~~~~

Logical     Physical

Global Cache Efficiency Percentages 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

------ Buffer Access --------

• Use Cases
• How localized are my buffer accesses?

• How evenly is my workload distributed?

• What is my cluster-wide physical I/O?

spawrrac.sql

Logical Physical

I# Reads Reads

---- --------------- ------------

1 134,798,497 5,969,938

2 140,324,093 3,371,883

3 39,300,537 477,181

4 58,850,603 1,227,469

--------------- ------------

avg 93,318,433 2,761,618

sum 373,273,730 11,046,471

------ Buffer Access --------

I# Local % Remote % Disk %

---- ----------- -------- --------

1 92.71 2.86 4.43

2 95.45 2.14 2.40

3 97.19 1.60 1.21

4 96.51 1.41 2.08

spawrrac.sql

• Significant enhancements planned

• HTML

• Subset of Instances

• Global Diff Report• Global Diff Report

Additional AWR Scripts

• Moving AWR Data
• Use Cases

• To offload analysis from production database

• To preserve data longer than the default on the production
system

• awrextr.sql• awrextr.sql

• extract data from awr

• awrload.sql

• load data from awrextr dump file

Using AWR Data For Trending

• Common use cases of AWR data are already
presented in EM

• Data in DBA_HIST_* tables can be mined to produce
data for targeted questions for your company

• Following are some examples to get you started

• These examples were produced using charting
capability of SQL Developer

• SQL for these reports are in the appendix

Average Active Sessions
• Average Active Sessions = DBtime / Elapsed Time

• DBtime
• Time foreground processes using CPU or non-idle wait

events
• From dba_hist_sys_time_model

• Elapsed Time
• Calculated from begin / end interval from

dba_hist_snapshotdba_hist_snapshot

• Use Case
• Longer term trending of RAC cluster
• Can choose different time ranges
• Includes data from multiple RAC instances
• Not broken down by wait events

Average Active Sessions

Active Sessions SQL
define num_days=1
select to_char(end_interval_time,'mm-dd hh24') snap_time

, instance_number
, avg(v_ps) pSec

from (
select end_interval_time

, instance_number
, v/ela v_ps

from (
select trunc(s.end_interval_time,'hh24') end_interval_time

, s.instance_number
, (case when s.begin_interval_time = s.startup_time

then value
else value - lag(value,1) over (partition by sy.stat_id

, sy.dbid
, sy.instance_number , sy.instance_number
, s.startup_time

order by sy.snap_id)
end)/1000000 v

, (cast(s.end_interval_time as date) - cast(s.begin_interval_time as date))*24*3600 ela
from dba_hist_snapshot s

, dba_hist_sys_time_model sy
where s.dbid = sy.dbid

and s.instance_number = sy.instance_number
and s.snap_id = sy.snap_id
and sy.stat_name = 'DB time'
and s.end_interval_time > trunc(sysdate) - &num_days))

group by to_char(end_interval_time,'mm-dd hh24'), instance_number
order by to_char(end_interval_time,'mm-dd hh24'), instance_number
/

Average Active Sessions by Wait Class

• Use Case
• Longer term trending of RAC cluster

• Can choose different time ranges

• Broken down by wait events

• Includes data from multiple RAC instances

• Could focus on one class of wait events

• Average Active Sessions = DBtime / Elapsed Time
• Data comes from

• dba_hist_sys_time_model

• dba_hist_snapshot

Average Active Sessions by Wait Class

CPU Load

• Data is from dba_hist_osstat

• Includes data from two RAC instances

• Data captured during every snapshot, averaged over
snapshot time period

• Doesn’t show short term fluctuations

CPU Load

Real Time SQL Monitoring
• Explain Plan Shows Progress During SQL Execution

• In 11.1.0.7 DBControl

Real Time SQL Monitoring

• In 11.1.0.6

• DBMS_SQLTUNE.REPORT_SQL_MONITOR

• Views
• v$sql_monitor• v$sql_monitor

• v$sql_plan_monitor

<Insert Picture Here>

Appendix

Active Sessions SQL
define num_days=1
select to_char(end_interval_time,'mm-dd hh24') snap_time

, instance_number
, avg(v_ps) pSec

from (
select end_interval_time

, instance_number
, v/ela v_ps

from (
select trunc(s.end_interval_time,'hh24') end_interval_time

, s.instance_number
, (case when s.begin_interval_time = s.startup_time

then value
else value - lag(value,1) over (partition by sy.stat_id

, sy.dbid
, sy.instance_number , sy.instance_number
, s.startup_time

order by sy.snap_id)
end)/1000000 v

, (cast(s.end_interval_time as date) - cast(s.begin_interval_time as date))*24*3600 ela
from dba_hist_snapshot s

, dba_hist_sys_time_model sy
where s.dbid = sy.dbid

and s.instance_number = sy.instance_number
and s.snap_id = sy.snap_id
and sy.stat_name = 'DB time'
and s.end_interval_time > trunc(sysdate) - &num_days))

group by to_char(end_interval_time,'mm-dd hh24'), instance_number
order by to_char(end_interval_time,'mm-dd hh24'), instance_number
/

Active Sessions Per Wait Class SQL
define num_days = 1
select to_char(end_time,'mm-dd hh24') snap_time

, wait_class
, sum(pSec) avg_sess

from
(select end_time
, wait_class
, p_tmfg/1000000/ela pSec

from (
select trunc(s.end_interval_time,'hh24') end_time

, (cast(s.end_interval_time as date) - cast(s.begin_interval_time as date))*24*3600 ela
, s.snap_id
, wait_class
, e.event_name
, case when s.begin_interval_time = s.startup_time

then e.time_waited_micro_fg
else e.time_waited_micro_fg else e.time_waited_micro_fg

- lag(time_waited_micro_fg) over (partition by event_id
, e.dbid
, e.instance_number
, s.startup_time

order by e.snap_id)
end p_tmfg

from dba_hist_snapshot s
, dba_hist_system_event e

where s.dbid = e.dbid
and s.instance_number = e.instance_number
and s.snap_id = e.snap_id
and s.end_interval_time > trunc(sysdate) - &num_days
and e.wait_class != 'Idle'

union all
/* Continued on next slide */

Active Sessions Per Wait Class SQL
/* Continued from previous slide */

select trunc(s.end_interval_time,'hh24') end_time

, (cast(s.end_interval_time as date) - cast(s.begin_interval_time as date))*24*3600 ela

, s.snap_id

, t.stat_name wait_class

, t.stat_name event_name

, case when s.begin_interval_time = s.startup_time

then t.value

else t.value

- lag(value) over (partition by stat_id

, t.dbid

, t.instance_number

, s.startup_time

order by t.snap_id)order by t.snap_id)

end p_tmfg

from dba_hist_snapshot s

, dba_hist_sys_time_model t

where s.dbid = t.dbid

and s.instance_number = t.instance_number

and s.snap_id = t.snap_id

and s.end_interval_time > trunc(sysdate) - &num_days

and t.stat_name = 'DB CPU'))

group by to_char(end_time,'mm-dd hh24'), wait_class

order by to_char(end_time,'mm-dd hh24'), wait_class

/

OS CPU Busy SQL
define num_days = 1
select to_char(trunc(end_interval_time,'hh24'),'mm-dd hh24') snap_time

, instance_number
, busy/decode(busy+idle,0,null,busy+idle)*100 pct_busy

from (
select s.snap_id

, s.instance_number
, s.dbid
, s.end_interval_time
, os.stat_name
, case when s.begin_interval_time = s.startup_time

then os.value
else os.value - lag(os.value,1) over (partition by os.stat_name

, os.instance_number
, os.dbid, os.dbid
, s.startup_time

order by os.snap_id)
end delta_v

from dba_hist_snapshot s
, dba_hist_osstat os

where s.snap_id = os.snap_id
and s.instance_number = os.instance_number
and s.dbid = os.dbid
and s.end_interval_time > trunc(sysdate) - &num_days
and os.stat_name in ('BUSY_TIME','IDLE_TIME'))

pivot (sum(delta_v)
for stat_name in ('BUSY_TIME' busy

,'IDLE_TIME' idle))
order by to_char(trunc(end_interval_time,'hh24'),'mm-dd hh24'), instance_number

/

