
1

Tuna Helper
Proven Process for SQL Tuning

Dean Richards
Senior DBA, Confio Software

3

 Senior DBA for Confio Software

• DeanRichards@confio.com

 Current – 20+ Years in Oracle, SQL Server

 Former – 15+ Years in Oracle Consulting

 Specialize in Performance Tuning

 Review Performance of 100’s of Databases for
Customers and Prospects

 Common Thread – Paralyzed by Tuning

Who Am I?

4

 Introduction

 Challenges

 Identify - Which SQL and Why

 Gather – Details about SQL

 Tune – Case Study

 Monitor – Make sure it stays tuned

Agenda

5

 SQL Tuning is Hard

 This Presentation is an Introduction

• 3-5 day detailed classes are typical

 Providing a Framework

• Helps develop your own processes

• There is no magic tool

• Tools cannot reliably tune SQL statements

• Tuning requires the involvement of you and other
technical and functional members of team

Introduction

6

Challenges

 Requires Expertise in Many Areas

• Technical – Plan, Data Access, SQL Design

• Business – What is the Purpose of SQL?

 Tuning Takes Time

• Large Number of SQL Statements

• Each Statement is Different

 Low Priority in Some Companies

• Vendor Applications

• Focus on Hardware or System Issues

 Never Ending

7

 Tracing a Session / Process

 User / Batch Job Complaints

 Highest I/O (LIO, PIO)

 SQL Performing Full Table Scans

 Known Poorly Performing SQL

 Highest Wait Times (Ignite, AWR, etc)

Identify – Which SQL

8

Identify – End-to-End

 Business Aspects
• Who registered yesterday for SQL Tuning

• Who uses this information?

• Why does the business need to know this?

• How often is the information needed?

 Technical Information
• Review Tables, Indexes, Triggers, Views, etc

• Understand Relationships

• Know the Data (High Level)

 End-to-End Process
• Understand Application Architecture

• What Portion of the Total Time is Database

9

Identify – End-to-End Time

10

V$SQL

SQL_ID

SQL_FULLTEXT

V$SESSION

SID

USERNAME

SQL_ID

PROGRAM

MODULE

ACTION

PLAN_HASH_VALUE

ROW_WAIT_OBJ#

V$SQLAREA

SQL_ID

EXECUTIONS

PARSE_CALLS

BUFFER_GETS

DISK_READS

V$SESSION_WAIT

SID

EVENT

P1, P1RAW, P2, P2RAW, P3, P3RAW

STATE (WAITING, WAITED…)

• Oracle 10g added this info to V$SESSION

V$SQL_PLAN

SQL_ID

PLAN_HASH_VALUE

DBA_OBJECTS

OBJECT_ID

OBJECT_NAME

OBJECT_TYPE

Wait Event Information

11

V$SQL

SQL_ID

SQL_FULLTEXT

V$SESSION

SID

USERNAME

SQL_ID

PROGRAM

MODULE

ACTION

PLAN_HASH_VALUE

ROW_WAIT_OBJ#

V$SQLAREA

SQL_ID

EXECUTIONS

PARSE_CALLS

BUFFER_GETS

DISK_READS

V$SESSION_WAIT

SID

EVENT

P1, P1RAW, P2, P2RAW, P3, P3RAW

STATE (WAITING, WAITED…)

• Oracle 10g added this info to V$SESSION

V$SQL_PLAN

SQL_ID

PLAN_HASH_VALUE

DBA_OBJECTS

OBJECT_ID

OBJECT_NAME

OBJECT_TYPE

Wait Event Information

12

Wait Event Information

SELECT s.sql_id, sql.sql_text, sql.plan_hash_value,

DECODE(s.state, 'WAITING', s.event, 'CPU') waitevent,

s.p1, s.p2, s.p3

FROM v$session s

JOIN v$sql sql ON (

s.sql_id = sql.sql_id AND s.sql_address = sql.address

)

AND sql.sql_text LIKE 'SELECT%' -- subsitute your own

AND s.sid = 20 -- if you know it

AND <whatever else you know>

13

 Which scenario is worse?

 SQL Statement 1

• Executed 100 times

• Caused 100 minutes of wait time for end user

• Waited 99% of time on “db file sequential read”

 SQL Statement 2

• Executed 1 time

• Caused 100 minutes of wait time for end user

• Waited 99% on “enq: TX – row lock contention”

Wait Time Scenario

14

 Break Down SQL Into Simplest Forms

• Complex SQL becomes multiple SQL

• Sub-Queries Should be Tuned Separately

• UNION’ed SQL Tuned Separately

• Get the definition of views

• Are synonyms being used

 Use Execution Plan (later)

• Helps isolate the portion of the query that is
performing poorly

Identify – Simplification

15

 Determine the SQL

 Understand End-to-End

 Measure Wait Time

 Simplify Statement

• Based on Execution Plan

Identify – Summary

16

 Get baseline metrics

• How long does it take now

• What is acceptable (10 sec, 2 min, 1 hour)

 Collect Wait Time Metrics – How Long

• Locking / Blocking

• I/O problem, Latch contention

• May be multiple issues

• All have different resolutions

 Document everything in simple language

Gather - Metrics

17

 EXPLAIN PLAN
• Estimated execution plan - can be wrong for many

reasons

 V$SQL_PLAN (Oracle 9i+)
• Real execution plan

• Use DBMS_XPLAN for display

 Tracing (all versions)
• Works when you know a problem will occur

ALTER SESSION SET tracefile_identifier = dean;

ALTER SESSION SET sql_trace = true;

 Historical – AWR, Confio Ignite

Gather – Execution Plan

18

SELECT company, attribute

FROM data_out WHERE segment = :B1

 Wait Time – 100% on “db file scattered read”

 Plan from EXPLAIN PLAN

 Plan from V$SQL_PLAN using DBMS_XPLAN

All Plans Not Equal

19

 V$SQL_BIND_CAPTURE
• STATISTICS_LEVEL = TYPICAL or ALL
• Collected at 15 minute intervals

SELECT name, position, datatype_string, value_string

FROM v$sql_bind_capture

WHERE sql_id = '15uughacxfh13';

NAME POSITION DATATYPE_STRING VALUE_STRING

----- ---------- --------------- ------------

:B1 1 BINARY_DOUBLE

 Bind Values also provided by tracing
• Level 4 – bind values
• Level 8 – wait information
• Level 12 – bind values and wait information

Gather – Bind Values

20

 Use TuningStats.sql
• http://support.confio.com/kb/1534

 Provides data on objects in execution plans.
• Table sizes

• Existing indexes

• Cardinality of columns

• Segment sizes

• Histograms and Data Skew

• Many things the CBO uses

 Run it for any table involved in query

Gather – Table / Index Stats

http://support.confio.com/kb/1534

21

 Who registered yesterday for SQL Tuning

SELECT s.fname, s.lname, r.signup_date

FROM student s, registration r, class c

WHERE s.student_id = r.student_id

AND r.class_id = c.class_id

AND UPPER(c.name) = 'SQL TUNING'

AND r.signup_date BETWEEN

TRUNC(SYSDATE-1) AND TRUNC(SYSDATE)

AND r.cancelled = 'N'

 Execution Time – 12:38

 Wait Time – 95% on “db file scattered read”

Example SQL Statement

22

CLASS
class_id
name
class_level

STUDENT
student_id
fname
lname

REGISTRATION
class_id
student_id
signup_date
cancelled

Relationship

23

--

| Id | Operation | Name | Rows | Bytes | Cost |

--

| 0 | SELECT STATEMENT | | | | 95 |

| 1 | NESTED LOOPS | | 1 | 167 | 95 |

| 2 | NESTED LOOPS | | 1 | 138 | 94 |

| 3 | NESTED LOOPS | | 7 | 357 | 87 |

| 4 | VIEW | VW_SQ_1 | 201 | 7035 | 87 |

|* 5 | FILTER | | | | |

| 6 | HASH GROUP BY | | 201 | 3417 | 87 |

|* 7 | FILTER | | | | |

|* 8 | TABLE ACCESS FULL | REGISTRATION | 80000 | 1328K| 76 |

|* 9 | INDEX UNIQUE SCAN | SYS_C0036920 | 1 | 16 | 0 |

|* 10 | TABLE ACCESS BY INDEX ROWID| CLASS | 1 | 87 | 1 |

|* 11 | INDEX UNIQUE SCAN | SYS_C0036919 | 1 | | 0 |

| 12 | TABLE ACCESS BY INDEX ROWID | STUDENT | 1 | 29 | 1 |

|* 13 | INDEX UNIQUE SCAN | SYS_C0036918 | 1 | | 0 |

--

Predicate Information (identified by operation id):

5 - filter((MAX("SIGNUP_DATE")>=TRUNC(SYSDATE@!-1) AND

MAX("SIGNUP_DATE")<=TRUNC(SYSDATE@!)))

7 - filter(TRUNC(SYSDATE@!-1)<=TRUNC(SYSDATE@!))

8 - filter("CANCELLED"='N')

9 - access("R1"."STUDENT_ID"="STUDENT_ID" AND "R1"."CLASS_ID"="CLASS_ID" AND

"SIGNUP_DATE"="VW_COL_1")

filter(("SIGNUP_DATE">=TRUNC(SYSDATE@!-1) AND "SIGNUP_DATE"<=TRUNC(SYSDATE@!)))

10 - filter(UPPER("C"."NAME“)='SQL TUNING')

11 - access("CLASS_ID"="C"."CLASS_ID")

13 - access("S"."STUDENT_ID"="STUDENT_ID")

Execution Plan

24

 Execution Plan

• V$SQL_PLAN

• Do not use EXPLAIN PLAN

• DBMS_XPLAN

 Bind Values

• V$SQL_BIND_CAPTURE

• Tracing

 Table and Index Statistics

 ERD

Gather – Summary

25

Tune – Create SQL Diagram

registration

student class

5

1

30

1

.04

.002

select count(1) from registration where cancelled = 'N'

and signup_date between trunc(sysdate-1) and trunc(sysdate)

3562 / 80000 = .0445

select count(1) from class where UPPER(name) = 'SQL TUNING'

2 / 1000 = .002

 SQL Tuning – Dan Tow
• Great book that teaches SQL Diagramming
• http://www.singingsql.com

26

create index cl_uname on class (upper(name));

 Index on registration was (student_id, class_id)

create index reg_alt on registration (class_id);

--

| Id | Operation | Name | Rows | Bytes | Cost |

--

| 0 | SELECT STATEMENT | | | | 10|

|* 1 | FILTER | | | | |

| 2 | NESTED LOOPS | | 1 | 132 | 7|

| 3 | NESTED LOOPS | | 1 | 103 | 6|

|* 4 | TABLE ACCESS BY INDEX ROWID | CLASS | 1 | 87 | 5|

|* 5 | INDEX RANGE SCAN | CL_UNAME | 4 | | 1|

|* 6 | INDEX RANGE SCAN | REG_ALT | 1 | 16 | 1|

| 7 | SORT AGGREGATE | | 1 | 17 | |

|* 8 | TABLE ACCESS BY INDEX ROWID| REGISTRATION | 1 | 17 | 3|

|* 9 | INDEX RANGE SCAN | REG_ALT | 1 | | 2|

| 10 | TABLE ACCESS BY INDEX ROWID | STUDENT | 1 | 29 | 1|

|* 11 | INDEX UNIQUE SCAN | SYS_C0036918 | 1 | | 0|

--

New Plan

27

 Who cancelled classes within the week
SELECT s.lname, c.name, r.signup_date cancel_date

FROM registration r, student s, class c

where r.signup_date between sysdate and sysdate-7

AND r.cancelled = 'Y'

AND r.student_id = s.student_id

AND r.class_id = c.class_id

 30% of rows are dated within last week

 No index on CANCELLED column = FTS

 Will an index on CANCELLED column help?
• Why or why not?

Query 2

28

Tune – Create SQL Diagram

registration

student class

5

1

30

1

.007

select count(1) from registration where cancelled = ‘Y’

and signup_date between trunc(sysdate-1) and trunc(sysdate)

622 / 80000 = .0077

select count(1) from registration where cancelled = ‘Y‘

638 / 80000 = .0079

select count(1) from registration

where signup_date between trunc(sysdate-1) and trunc(sysdate)

11598 / 80000 = .1449

.14

29

create index reg_can on registration(cancelled);

select cancelled, count(1)

from registration group by cancelled;

C COUNT(1)

- ----------

Y 638

N 79345

 Oracle will not use an index on this column
• Unless it has more information
• CBO assumes an even data distribution

 Histograms give more information to Oracle
• Based on skewed data, CBO realizes an index would be

beneficial
• Works best with literal values
• Bind Variables – Oracle peeks first time only

Query 2 Column Stats

30

dbms_stats.gather_table_stats(

ownname => 'STDMGMT',

tabname => 'REGISTRATION',

method_opt=>'FOR COLUMNS cancelled SIZE AUTO')

--

| Id | Operation | Name | Rows | Bytes | Cost |

--

| 0 | SELECT STATEMENT | | | | 7|

|* 1 | FILTER | | | | |

|* 2 | TABLE ACCESS BY INDEX ROWID| REGISTRATION | 1 | 17 | 7|

|* 3 | INDEX RANGE SCAN | REG_CAN | 754 | | 2|

--

Query 2 - Histogram

31

Monitor

 Monitor the improvement
• Be able to prove that tuning made a difference

• Take new metrics measurements

• Compare them to initial readings

• Brag about the improvements – no one else will

 Monitor for next tuning opportunity
• Tuning is iterative

• There are always room for improvements

• Make sure you tune things that make a difference

 Shameless Product Pitch - Ignite

34

Confio Software - Monitor

 Developer of Wait-Based Performance Tools

 Igniter Suite

• Ignite for SQL Server, Oracle, DB2, Sybase

 Provides Help With

• Identify

• Gather

• Monitor

 Based in Colorado, worldwide customers

 Free trial at www.confio.com

http://www.confio.com/

