
1 of 53

Effective Utilization of the Database

in Web Development

Dr. Paul Dorsey

Dulcian, Inc.

NYOUG 25th Anniversary/

NYC Metro Area Oracle Users Group Meeting

December 8, 2009

2 of 53

Background

Fusion technology stack is large and complex.

Hard to make the transition into the J2EE

environment.

Host of different tools, programming languages,

architectures, and technologies

Projects often have the illusion of progress.

Building functioning, scalable production

software often becomes an impossible task.

3 of 53

Why do OO people avoid the

database?

Culture?

Lack of knowledge?

Clinical pathology?

4 of 53

“Frameworkaphobia”

 Definition:

 An irrational avoidance of

frameworks (particularly non-

open source)

 Diagnostic Indications:

 Desire to build everything

him/herself

 “If I don’t build it, it must stink.”

 “If Oracle built it, it must really

stink.”

 Irrational avoidance of

Application Development

Framework – Business

Components (ADF BC)

 Symptoms:

 Higher than expected project cost

 Project failure

 Treatment

 No known cure

 Some success with short leashes

and large bats

 Related conditions

 Megalomania

 Paranoid delusions

5 of 53

“Database Avoidance

Syndrome”

 Definition:

 An aversion to placing any logic in
the database

 Diagnostic Indications:

 “We should be database-
independent.”

 “Databases are old fashioned.
Everyone is coding this way.”

 Symptoms:

 Twice as much code as is necessary

 Performance is 10 times slower.

 Network traffic is 100 times as great.

 Four times the load on the database
server

 Three times the development time

 Treatment

 Direct application of logic
(restraints probably
required)

 Related conditions

 Technical conformity

6 of 53

“SOAphilia”

 Definition:

 Irrational desire to

refactor small systems to

use web services and

BPEL

 Diagnostic Indications:

 Ownership of 72 BPEL

books

 Desire to use BPEL for

data-centric processes

 Symptoms:

 Projects only succeed with

excessive time and

funding.

 Treatment

 Load testing

 Limit funding

 Related conditions

 Herd mentality

7 of 53

“Thick Database” Defined (1)

 Micro-Service-Oriented-Architecture (M-SOA) approach

 Service Component Architecture (SCA)

 Division between the database and user interface (UI)

portions.

 Two key features involved in "thick database thinking":

 Nothing in the UI ever directly interacts with a database table.

All interaction is accomplished through database views or APIs.

 Nearly all application behavior (including screen navigation) is

handled in the database.

 Thick database does not simply mean stuffing everything

into the database and hoping for the best.

8 of 53

“Thick Database” Defined (2)

Creating a thick database makes your application

UI technology-independent.

 Creates reusable, UI technology-independent views

and APIs.

 Reduces the complexity of UI development.

Database provides needed objects.

 Reduces the burden on the UI developer

9 of 53

Thick Database Benefits

Minimizes development risk

Helps build working applications that scale well.

Benefit Metrics:

 Better performance (10X)

 Less network traffic (100X)

 Less code (2X)

 Fewer application servers (3X)

 Fewer database resources (2X)

 Faster development (2X)

10 of 53

Easier to Refactor

UI technology stack changes are common.

The .Net vs. Java EE battle rages on.

Web architecture is more volatile than the

database platform.

Defense against the chaos of a rapidly evolving

standard.

Test: What is the probability that your web UI

standards will be the same in 18 months?

Answer 0%

11 of 53

How Thick is too Thick?

What would happen if 100% of all UI logic were

placed in the database?

 Tabbing out of a field

 LOV populated from database

 Page navigation

Pathologically complete way to implement the

thick database approach.

A system built this way would be sub-optimal.

 But it works

12 of 53

How Thin is too Thin?

Can a skilled team successfully build

applications that are 100% database “thin”?

 Requires a highly skilled team.

Minimize round trips

ANY middle tier technology (e.g. BPEL) can also be

a performance killer.

Possible but difficult

13 of 53

Thick Database

Development Process

 Two portions of an application can be coded
independently

 Teams can work in isolation until substantive portions are
working.

 First version of the UI is built within a few days

 Use as testing environment for the database team

 Feedback can be received from users.

 Use Agile process

 Minimal design work done to produce a partially working
system.

 Additional functionality created in an iterative design process.

14 of 53

Interface Stubbing

Stub out the code for the views and APIs.

 select <values> from dual

APIs = functions that return a correct value (usually

hard-coded).

 Interfaces will change as the application

matures.

15 of 53

The idea:

 Convert relational data into something that will make

user interface development easier.

 Easiest way to separate data representation in the

front-end from the real model.

The solution:

Use a view with a set of INSTEAD-OF triggers

De-Normalized Views

16 of 53

create or replace view v_customer

as

select c.cust_id,

c.name_tx,

a.addr_id,

a.street_tx,

a.state_cd,

a.postal_cd

from customer c

left outer join address a

on c.cust_id = a.cust_id

De-Normalized view

17 of 53

create or replace trigger v_customer_ii

instead of insert on v_customer

declare

v_cust_id customer.cust_id%rowtype;

begin

if :new.name_tx is not null then

insert into customer (cust_id,name_tx)

values(object_seq.nextval,:new.name_tx)

returning cust_id into v_cust_id;

if :new.street_tx is not null then

insert into address (addr_id,street_tx,

state_cd, postal_cd, cust_id)

values (object_seq.nextval,:new.street_tx,

:new.state_cd,:new.postal_cd, v_cust_id);

end if;

end;

INSTEAD-OF Insert

18 of 53

Function-Based Views:

Collections

19 of 53

Using Function-Based Views

Sometimes it is just not possible to represent all

required functionality in a single SQL statement.

Denormalized view cannot be built.

Oracle provides a different mechanism:

 Collections allow you to hide the data separation, as

well as all of the transformation logic.

20 of 53

What is a collection?

Definition:

An ordered group of elements, all of the same type,

addressed by a unique subscript.

 Implementation:

 Since all collections represent data, they are defined

as data types.

21 of 53

Collections: Pros & Cons

 Good news

 Usually faster

 Cleaner code

 Great for UI views

 Bad news

 Not always faster

 Somewhat annoying

syntax

Three types:

1. Nested tables

2. Associative arrays

3. Variable-size arrays (V-Arrays)

22 of 53

Why use collections?

Logical reason:

 Collections allow you to articulate and manipulate

sets of data.

Technical reason:

 Processing data in sets is “usually” faster than doing

so one element at a time.

Physical reason:

Manipulating sets in memory is “usually” 100 times

faster than manipulating sets on the storage device.

23 of 53

Possible Issues

Technical problem:

Amount of memory is limited (especially in 32-bit

architecture)

Economic problem:

 Storage is cheap – memory is NOT.

Learning curve:

 People who are used to old habits of processing one

row at a time (since COBOL days) will have

problems working with sets.

24 of 53

Nested Tables

25 of 53

Nested Tables (1)

Nested tables – arbitrary
group of elements of the
same type with sequential
numbers as a subscript

Undefined number of
elements (added/removed on
the fly)

Available in SQL and
PL/SQL

Very useful in PL/SQL! (but
not in tables)

June

April

September

July

August

March

January

6

4

9

7

8

3

1

table of varchar2(30)

…

26 of 53

Nested Tables (2)

Definition:

declare

type NestedTable is

table of ElementType;

...

create or replace type NestedTable

is table of ElementType;

27 of 53

Nested Tables (3)

Nested tables are NOT dense:

You can remove objects from inside of the array.

 Size of the nested table MAY OR MAY NOT equal

the subscript of the last element

 Built-in NEXT and PREVIOUS can go over the gap

28 of 53

Nested Tables - Example 1
declare

type month_nt is table of VARCHAR2(20);

v_month_nt month_nt:=month_nt();

i number;

begin

v_month_nt.extend(3);

v_month_nt(1):='January';

v_month_nt(2):='February';

v_month_nt(3):='March';

v_month_nt.delete(2);

DBMS_OUTPUT.put_line('Count:'||v_month_nt.count);

DBMS_OUTPUT.put_line('Last:'||v_month_nt.last);

i:=v_month_nt.first;

loop

DBMS_OUTPUT.put_line(v_month_nt(i));

i:=v_month_nt.next(i);

if i is null then exit;

end if;

end loop;

end;

29 of 53

More About Nested Tables

Nested tables can be used in SQL queries with

the special operator: TABLE

Allows hiding of complex procedural logic “under

the hood”

Nested table type must be declared as a user-defined

type (CREATE OR REPLACE TYPE…)

30 of 53

Nested Tables – Example 2a

Specify exactly what is needed as output
and declare the corresponding collection:

Create type lov_oty is object

(id_nr NUMBER,

display_tx VARCHAR2(256));

Create type lov_nt

as table of lov_oty;

31 of 53

Nested Tables - Example 2b

 Write a PL/SQL function to hide all required logic

function f_getLov_nt

(i_table_tx,i_id_tx,i_display_tx,i_order_tx)

return lov_nt is

v_out_nt lov_nt := lov_nt();

begin

execute immediate

'select lov_oty('

||i_id_tx||','||i_display_tx||
')'||

' from '||i_table_tx||

' order by '||i_order_tx

bulk collect into v_out_nt;

return v_out_nt;

end;

32 of 53

Nested Tables - Example 2c

Test SQL statement with the following code:

select id_nr, display_tx

from table(

cast(f_getLov_nt

('emp',

'empno',

'ename||''-''||job',

'ename')

as lov_nt)

)

33 of 53

Nested Tables - Example 2d

 Create a VIEW on the top of the SQL statement.

 Completely hides the underlying logic from the UI

 INSTEAD-OF triggers make logic bi-directional

 Minor problem: There is still no way of passing parameters
into the view other than some kind of global.

Create or replace view v_generic_lov as

select id_nr, display_tx

from table(cast(f_getLov_nt

(GV_pkg.f_getCurTable,

GV_pkg.f_getPK(GV_pkg.f_getCurTable),

GV_pkg.f_getDSP(GV_pkg.f_getCurTable),

GV_pkg.f_getSORT(GV_pkg.f_getCurTable))

as lov_nt)

)

34 of 53

Optimizing Database Processing

35 of 53

Associative Arrays (1)

An associative array is a

collection of elements that

uses arbitrary numbers and

strings for subscript values

 PL/SQL only

 Still useful

April

June

December

2000

1995

1990

Table of varchar2(30)

Index by binary_integer

…

…

…

36 of 53

Associative Arrays (2)

Definition:

declare

type NestedTable is

table of ElementType

index by Varchar2([N]);

...

type NestedTable is

table of ElementType

index by binary_integer;

37 of 53

Associative Arrays - Example 1

declare

type dept_rty is record

(deptNo number, extra_tx VARCHAR2(2000));

type dept_aa is table of dept_rty

index by binary_integer;
v_dept_aa dept_aa;

begin

for r_d in (select deptno from dept) loop

v_dept_aa(r_d.deptno).deptNo:=r_d.deptno;
end loop;

for r_emp in (select ename, deptno from emp) loop

v_dept_aa(r_emp.deptNo).extra_tx:=

v_dept_aa(r_emp.deptNo).extra_tx||

' '||r_emp.eName;

end loop;

end;

38 of 53

More About Associative Arrays

 Index by VARCHAR2 instead of by

BINARY_INTEGER

 Cannot be used in a FOR-loop

Allow creation of simple composite keys with direct

access to the row in memory

39 of 53

Associative Arrays - Example 2a
 Prepare memory structure

declare

type list_aa is table of VARCHAR2(2000)

index by VARCHAR2(256);

v_list_aa list_aa;

cursor c_emp is

select ename, deptno,to_char(hiredate,'q') q_nr

from emp;

v_key_tx VARCHAR2(256);

begin

for r_d in (select deptno from dept order by 1) loop

v_list_aa(r_d.deptno||'|1'):=

'Q1 Dept#' ||r_d.deptno||':';

v_list_aa(r_d.deptno||'|2'):=

'Q2 Dept#' ||r_d.deptno||':';

...

end loop;

40 of 53

Associative Arrays - Example 2b

 Process data and present results
...

for r_emp in c_emp loop

v_list_aa(r_emp.deptno||'|'||r_emp.q_nr):=

list_aa(r_emp.deptno||'|'||r_emp.q_nr)||

' '||r_emp.ename;

end loop;

v_key_tx:=v_list_aa.first;

loop

DBMS_OUTPUT.put_line

(v_list_aa(v_key_tx));

v_key_tx:=v_list_aa.next(v_key_tx);

exit when v_key_tx is null;

end loop;

end;

41 of 53

Bulk Operations

42 of 53

Bulk operations

Operations on SETs

 BULK loading into the memory

 BULK processing

43 of 53

BULK COLLECT (1)

BULK COLLECT clause

 The idea:

 Fetch a group of rows all at once to the collection

 Control a number of fetched rows (LIMIT)

 Risks:

 Does not raise NO_DATA_FOUND

 Could run out of memory

44 of 53

BULK COLLECT (2)

Syntax:
select …

bulk collect into Collection

from Table;

update …

returning … bulk collect into

Collection;

fetch Cursor

bulk collect into Collection;

45 of 53

BULK COLLECT example
declare

type emp_nt is table of emp%rowtype;

v_emp_nt emp_nt;

cursor c_emp is select * from emp;

begin

open c_emp;

loop

fetch c_emp

bulk collect into v_emp_nt limit 100;

p_proccess_row (v_emp_nt);

exit when c_emp%NOTFOUND;

end loop;

close c_emp;

end;

46 of 53

FORALL (1)

FORALL command

The idea:

 Apply the same action for all elements in the

collection.

 Have only one context switch between SQL and

PL/SQL

Risks:

 Special care is required if only some actions from

the set succeeded

47 of 53

FORALL (2)

Syntax:

forall Index in lower..upper

update … set … where id = Collection(i)

...

forall Index in lower..upper

execute immediate ‘…’

using Collection(i);

48 of 53

FORALL (3)

Restrictions:

Only a single command can be executed.

Must reference at least one collection inside the loop

All subscripts between lower and upper limits must

exist.

 Cannot work with associative array INDEX BY

VARCHAR2

 Cannot use the same collection in SET and WHERE

 Cannot refer to the individual column on the

object/record (only the whole object)

49 of 53

FORALL Example

declare

type number_nt is table of NUMBER;

v_deptNo_nt number_nt:=number_nt(10,20);

begin

forall i in v_deptNo_nt.first()

..v_deptNo_nt.last()

update emp

set sal=sal+10

where deptNo=v_deptNo_nt(i);

end;

50 of 53

Conclusions

 The #1 critical success factor for any web development

is effective utilization of the database.

 PL/SQL is not irrelevant (and it continues to improve).

 Code that needs to access the database is faster if it is

placed in the database.

 Database independence is irrelevant

 UI technology independence is more important.

 Just because everyone is moving logic to the middle

tier, does not make it a smart idea.

51 of 53

Share your Knowledge:

Call for Articles/Presentations

 IOUG – The SELECT Journal

 select@ioug.org

 500-1,000 words long with a
specific focus

 ODTUG –
Technical Journal

 pubs@odtug.com

52 of 53

53 of 53

54 of 53

Dulcian’s BRIM® Environment

Full business rules-based development

environment

For Demo

Write “BRIM” on business card

55 of 53

Contact Information

 Dr. Paul Dorsey – paul_dorsey@dulcian.com

 Dulcian website - www.dulcian.com

Developer Advanced
Forms & Reports Designer

Handbook

Latest book:

Oracle PL/SQL for Dummies

Design Using UML
Object Modeling

