
1 of 53

Effective Utilization of the Database

in Web Development

Dr. Paul Dorsey

Dulcian, Inc.

NYOUG 25th Anniversary/

NYC Metro Area Oracle Users Group Meeting

December 8, 2009

2 of 53

Background

Fusion technology stack is large and complex.

Hard to make the transition into the J2EE

environment.

Host of different tools, programming languages,

architectures, and technologies

Projects often have the illusion of progress.

Building functioning, scalable production

software often becomes an impossible task.

3 of 53

Why do OO people avoid the

database?

Culture?

Lack of knowledge?

Clinical pathology?

4 of 53

“Frameworkaphobia”

 Definition:

 An irrational avoidance of

frameworks (particularly non-

open source)

 Diagnostic Indications:

 Desire to build everything

him/herself

 “If I don’t build it, it must stink.”

 “If Oracle built it, it must really

stink.”

 Irrational avoidance of

Application Development

Framework – Business

Components (ADF BC)

 Symptoms:

 Higher than expected project cost

 Project failure

 Treatment

 No known cure

 Some success with short leashes

and large bats

 Related conditions

 Megalomania

 Paranoid delusions

5 of 53

“Database Avoidance

Syndrome”

 Definition:

 An aversion to placing any logic in
the database

 Diagnostic Indications:

 “We should be database-
independent.”

 “Databases are old fashioned.
Everyone is coding this way.”

 Symptoms:

 Twice as much code as is necessary

 Performance is 10 times slower.

 Network traffic is 100 times as great.

 Four times the load on the database
server

 Three times the development time

 Treatment

 Direct application of logic
(restraints probably
required)

 Related conditions

 Technical conformity

6 of 53

“SOAphilia”

 Definition:

 Irrational desire to

refactor small systems to

use web services and

BPEL

 Diagnostic Indications:

 Ownership of 72 BPEL

books

 Desire to use BPEL for

data-centric processes

 Symptoms:

 Projects only succeed with

excessive time and

funding.

 Treatment

 Load testing

 Limit funding

 Related conditions

 Herd mentality

7 of 53

“Thick Database” Defined (1)

 Micro-Service-Oriented-Architecture (M-SOA) approach

 Service Component Architecture (SCA)

 Division between the database and user interface (UI)

portions.

 Two key features involved in "thick database thinking":

 Nothing in the UI ever directly interacts with a database table.

All interaction is accomplished through database views or APIs.

 Nearly all application behavior (including screen navigation) is

handled in the database.

 Thick database does not simply mean stuffing everything

into the database and hoping for the best.

8 of 53

“Thick Database” Defined (2)

Creating a thick database makes your application

UI technology-independent.

 Creates reusable, UI technology-independent views

and APIs.

 Reduces the complexity of UI development.

Database provides needed objects.

 Reduces the burden on the UI developer

9 of 53

Thick Database Benefits

Minimizes development risk

Helps build working applications that scale well.

Benefit Metrics:

 Better performance (10X)

 Less network traffic (100X)

 Less code (2X)

 Fewer application servers (3X)

 Fewer database resources (2X)

 Faster development (2X)

10 of 53

Easier to Refactor

UI technology stack changes are common.

The .Net vs. Java EE battle rages on.

Web architecture is more volatile than the

database platform.

Defense against the chaos of a rapidly evolving

standard.

Test: What is the probability that your web UI

standards will be the same in 18 months?

Answer 0%

11 of 53

How Thick is too Thick?

What would happen if 100% of all UI logic were

placed in the database?

 Tabbing out of a field

 LOV populated from database

 Page navigation

Pathologically complete way to implement the

thick database approach.

A system built this way would be sub-optimal.

 But it works

12 of 53

How Thin is too Thin?

Can a skilled team successfully build

applications that are 100% database “thin”?

 Requires a highly skilled team.

Minimize round trips

ANY middle tier technology (e.g. BPEL) can also be

a performance killer.

Possible but difficult

13 of 53

Thick Database

Development Process

 Two portions of an application can be coded
independently

 Teams can work in isolation until substantive portions are
working.

 First version of the UI is built within a few days

 Use as testing environment for the database team

 Feedback can be received from users.

 Use Agile process

 Minimal design work done to produce a partially working
system.

 Additional functionality created in an iterative design process.

14 of 53

Interface Stubbing

Stub out the code for the views and APIs.

 select <values> from dual

APIs = functions that return a correct value (usually

hard-coded).

 Interfaces will change as the application

matures.

15 of 53

The idea:

 Convert relational data into something that will make

user interface development easier.

 Easiest way to separate data representation in the

front-end from the real model.

The solution:

Use a view with a set of INSTEAD-OF triggers

De-Normalized Views

16 of 53

create or replace view v_customer

as

select c.cust_id,

c.name_tx,

a.addr_id,

a.street_tx,

a.state_cd,

a.postal_cd

from customer c

left outer join address a

on c.cust_id = a.cust_id

De-Normalized view

17 of 53

create or replace trigger v_customer_ii

instead of insert on v_customer

declare

v_cust_id customer.cust_id%rowtype;

begin

if :new.name_tx is not null then

insert into customer (cust_id,name_tx)

values(object_seq.nextval,:new.name_tx)

returning cust_id into v_cust_id;

if :new.street_tx is not null then

insert into address (addr_id,street_tx,

state_cd, postal_cd, cust_id)

values (object_seq.nextval,:new.street_tx,

:new.state_cd,:new.postal_cd, v_cust_id);

end if;

end;

INSTEAD-OF Insert

18 of 53

Function-Based Views:

Collections

19 of 53

Using Function-Based Views

Sometimes it is just not possible to represent all

required functionality in a single SQL statement.

Denormalized view cannot be built.

Oracle provides a different mechanism:

 Collections allow you to hide the data separation, as

well as all of the transformation logic.

20 of 53

What is a collection?

Definition:

An ordered group of elements, all of the same type,

addressed by a unique subscript.

 Implementation:

 Since all collections represent data, they are defined

as data types.

21 of 53

Collections: Pros & Cons

 Good news

 Usually faster

 Cleaner code

 Great for UI views

 Bad news

 Not always faster

 Somewhat annoying

syntax

Three types:

1. Nested tables

2. Associative arrays

3. Variable-size arrays (V-Arrays)

22 of 53

Why use collections?

Logical reason:

 Collections allow you to articulate and manipulate

sets of data.

Technical reason:

 Processing data in sets is “usually” faster than doing

so one element at a time.

Physical reason:

Manipulating sets in memory is “usually” 100 times

faster than manipulating sets on the storage device.

23 of 53

Possible Issues

Technical problem:

Amount of memory is limited (especially in 32-bit

architecture)

Economic problem:

 Storage is cheap – memory is NOT.

Learning curve:

 People who are used to old habits of processing one

row at a time (since COBOL days) will have

problems working with sets.

24 of 53

Nested Tables

25 of 53

Nested Tables (1)

Nested tables – arbitrary
group of elements of the
same type with sequential
numbers as a subscript

Undefined number of
elements (added/removed on
the fly)

Available in SQL and
PL/SQL

Very useful in PL/SQL! (but
not in tables)

June

April

September

July

August

March

January

6

4

9

7

8

3

1

table of varchar2(30)

…

26 of 53

Nested Tables (2)

Definition:

declare

type NestedTable is

table of ElementType;

...

create or replace type NestedTable

is table of ElementType;

27 of 53

Nested Tables (3)

Nested tables are NOT dense:

You can remove objects from inside of the array.

 Size of the nested table MAY OR MAY NOT equal

the subscript of the last element

 Built-in NEXT and PREVIOUS can go over the gap

28 of 53

Nested Tables - Example 1
declare

type month_nt is table of VARCHAR2(20);

v_month_nt month_nt:=month_nt();

i number;

begin

v_month_nt.extend(3);

v_month_nt(1):='January';

v_month_nt(2):='February';

v_month_nt(3):='March';

v_month_nt.delete(2);

DBMS_OUTPUT.put_line('Count:'||v_month_nt.count);

DBMS_OUTPUT.put_line('Last:'||v_month_nt.last);

i:=v_month_nt.first;

loop

DBMS_OUTPUT.put_line(v_month_nt(i));

i:=v_month_nt.next(i);

if i is null then exit;

end if;

end loop;

end;

29 of 53

More About Nested Tables

Nested tables can be used in SQL queries with

the special operator: TABLE

Allows hiding of complex procedural logic “under

the hood”

Nested table type must be declared as a user-defined

type (CREATE OR REPLACE TYPE…)

30 of 53

Nested Tables – Example 2a

Specify exactly what is needed as output
and declare the corresponding collection:

Create type lov_oty is object

(id_nr NUMBER,

display_tx VARCHAR2(256));

Create type lov_nt

as table of lov_oty;

31 of 53

Nested Tables - Example 2b

 Write a PL/SQL function to hide all required logic

function f_getLov_nt

(i_table_tx,i_id_tx,i_display_tx,i_order_tx)

return lov_nt is

v_out_nt lov_nt := lov_nt();

begin

execute immediate

'select lov_oty('

||i_id_tx||','||i_display_tx||
')'||

' from '||i_table_tx||

' order by '||i_order_tx

bulk collect into v_out_nt;

return v_out_nt;

end;

32 of 53

Nested Tables - Example 2c

Test SQL statement with the following code:

select id_nr, display_tx

from table(

cast(f_getLov_nt

('emp',

'empno',

'ename||''-''||job',

'ename')

as lov_nt)

)

33 of 53

Nested Tables - Example 2d

 Create a VIEW on the top of the SQL statement.

 Completely hides the underlying logic from the UI

 INSTEAD-OF triggers make logic bi-directional

 Minor problem: There is still no way of passing parameters
into the view other than some kind of global.

Create or replace view v_generic_lov as

select id_nr, display_tx

from table(cast(f_getLov_nt

(GV_pkg.f_getCurTable,

GV_pkg.f_getPK(GV_pkg.f_getCurTable),

GV_pkg.f_getDSP(GV_pkg.f_getCurTable),

GV_pkg.f_getSORT(GV_pkg.f_getCurTable))

as lov_nt)

)

34 of 53

Optimizing Database Processing

35 of 53

Associative Arrays (1)

An associative array is a

collection of elements that

uses arbitrary numbers and

strings for subscript values

 PL/SQL only

 Still useful

April

June

December

2000

1995

1990

Table of varchar2(30)

Index by binary_integer

…

…

…

36 of 53

Associative Arrays (2)

Definition:

declare

type NestedTable is

table of ElementType

index by Varchar2([N]);

...

type NestedTable is

table of ElementType

index by binary_integer;

37 of 53

Associative Arrays - Example 1

declare

type dept_rty is record

(deptNo number, extra_tx VARCHAR2(2000));

type dept_aa is table of dept_rty

index by binary_integer;
v_dept_aa dept_aa;

begin

for r_d in (select deptno from dept) loop

v_dept_aa(r_d.deptno).deptNo:=r_d.deptno;
end loop;

for r_emp in (select ename, deptno from emp) loop

v_dept_aa(r_emp.deptNo).extra_tx:=

v_dept_aa(r_emp.deptNo).extra_tx||

' '||r_emp.eName;

end loop;

end;

38 of 53

More About Associative Arrays

 Index by VARCHAR2 instead of by

BINARY_INTEGER

 Cannot be used in a FOR-loop

Allow creation of simple composite keys with direct

access to the row in memory

39 of 53

Associative Arrays - Example 2a
 Prepare memory structure

declare

type list_aa is table of VARCHAR2(2000)

index by VARCHAR2(256);

v_list_aa list_aa;

cursor c_emp is

select ename, deptno,to_char(hiredate,'q') q_nr

from emp;

v_key_tx VARCHAR2(256);

begin

for r_d in (select deptno from dept order by 1) loop

v_list_aa(r_d.deptno||'|1'):=

'Q1 Dept#' ||r_d.deptno||':';

v_list_aa(r_d.deptno||'|2'):=

'Q2 Dept#' ||r_d.deptno||':';

...

end loop;

40 of 53

Associative Arrays - Example 2b

 Process data and present results
...

for r_emp in c_emp loop

v_list_aa(r_emp.deptno||'|'||r_emp.q_nr):=

list_aa(r_emp.deptno||'|'||r_emp.q_nr)||

' '||r_emp.ename;

end loop;

v_key_tx:=v_list_aa.first;

loop

DBMS_OUTPUT.put_line

(v_list_aa(v_key_tx));

v_key_tx:=v_list_aa.next(v_key_tx);

exit when v_key_tx is null;

end loop;

end;

41 of 53

Bulk Operations

42 of 53

Bulk operations

Operations on SETs

 BULK loading into the memory

 BULK processing

43 of 53

BULK COLLECT (1)

BULK COLLECT clause

 The idea:

 Fetch a group of rows all at once to the collection

 Control a number of fetched rows (LIMIT)

 Risks:

 Does not raise NO_DATA_FOUND

 Could run out of memory

44 of 53

BULK COLLECT (2)

Syntax:
select …

bulk collect into Collection

from Table;

update …

returning … bulk collect into

Collection;

fetch Cursor

bulk collect into Collection;

45 of 53

BULK COLLECT example
declare

type emp_nt is table of emp%rowtype;

v_emp_nt emp_nt;

cursor c_emp is select * from emp;

begin

open c_emp;

loop

fetch c_emp

bulk collect into v_emp_nt limit 100;

p_proccess_row (v_emp_nt);

exit when c_emp%NOTFOUND;

end loop;

close c_emp;

end;

46 of 53

FORALL (1)

FORALL command

The idea:

 Apply the same action for all elements in the

collection.

 Have only one context switch between SQL and

PL/SQL

Risks:

 Special care is required if only some actions from

the set succeeded

47 of 53

FORALL (2)

Syntax:

forall Index in lower..upper

update … set … where id = Collection(i)

...

forall Index in lower..upper

execute immediate ‘…’

using Collection(i);

48 of 53

FORALL (3)

Restrictions:

Only a single command can be executed.

Must reference at least one collection inside the loop

All subscripts between lower and upper limits must

exist.

 Cannot work with associative array INDEX BY

VARCHAR2

 Cannot use the same collection in SET and WHERE

 Cannot refer to the individual column on the

object/record (only the whole object)

49 of 53

FORALL Example

declare

type number_nt is table of NUMBER;

v_deptNo_nt number_nt:=number_nt(10,20);

begin

forall i in v_deptNo_nt.first()

..v_deptNo_nt.last()

update emp

set sal=sal+10

where deptNo=v_deptNo_nt(i);

end;

50 of 53

Conclusions

 The #1 critical success factor for any web development

is effective utilization of the database.

 PL/SQL is not irrelevant (and it continues to improve).

 Code that needs to access the database is faster if it is

placed in the database.

 Database independence is irrelevant

 UI technology independence is more important.

 Just because everyone is moving logic to the middle

tier, does not make it a smart idea.

51 of 53

Share your Knowledge:

Call for Articles/Presentations

 IOUG – The SELECT Journal

 select@ioug.org

 500-1,000 words long with a
specific focus

 ODTUG –
Technical Journal

 pubs@odtug.com

52 of 53

53 of 53

54 of 53

Dulcian’s BRIM® Environment

Full business rules-based development

environment

For Demo

Write “BRIM” on business card

55 of 53

Contact Information

 Dr. Paul Dorsey – paul_dorsey@dulcian.com

 Dulcian website - www.dulcian.com

Developer Advanced
Forms & Reports Designer

Handbook

Latest book:

Oracle PL/SQL for Dummies

Design Using UML
Object Modeling

