

Anomaly and Fraud Detection with Oracle Data Mining 11g Release 2

ORACLE

Charlie Berger

Sr. Director Product Management, Data Mining Technologies Oracle Corporation charlie.berger@oracle.com

Outline

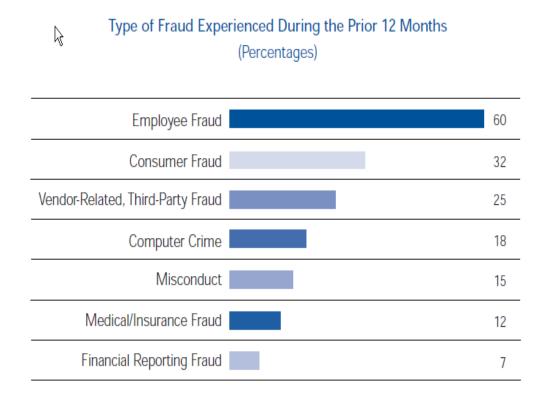
- Fraud as an Industry Problems
- Predictive Analytics and Oracle Data Mining Overview
- Demonstration(s)
- Oracle Data Miner 11gR2 New GUI Preview
- Presentation of Results and Integration with Applications

Insurance Fraud a Significant Problem

- Insurance Fraud a \$31B industry in the US in 2003
- About 10-15 percent of all claims are fraudulent
- Over 25% of all claims have some element of fraud/abuse
- More than 1 of every 3 bodily-injury claims from car crashes involve fraud
- 17-20 cents of every dollar paid for bodily injury claims from auto policies involves fraud or claim buildup
- Property & Casualty Insurers Survey (2004)
 - About 11-30 cents or more of every claim dollar is lost to "soft" fraud (smalltime cheating by normally honest people)
- Fraud adds \$5.2-\$6.3 billion to the auto premiums that policyholders pay each year

Reports of Fraud Are on the Rise

- Expense account abuse and theft of assets showed the greatest percentage point increases since 1998
- 75% percent of companies surveyed report they experienced an instance of fraud (62% in 1998)
- Employee fraud is the most prevalent type of fraud
- Medical/insurance fraud & financial reporting fraud are the most costly



Types of Fraud

- Computer Crime
 - Hacking and other cybertheft
- Consumer Fraud
 - ATM theft
 - Check fraud
 - Credit card fraud
 - Fraudulent classification of merchandise for customers
 - Fraudulent merchandise returns
 - Identity theft
- Employee Fraud
 - Check fraud
 - Expense account abuse
 - Payroll fraud
 - Pension theft
 - Theft or misappropriation of assets
- Financial Reporting Fraud
 - Asset revenue misstatement
 - Concealed liabilities and expenses
 - Improper revenue recognition
 - Inadequate omissions and disclosures

Medical/Insurance Fraud

- Medical/insurance claims fraud
- Policy churning
- Workers' compensation fraud
- Misconduct
 - Conflicts of interest
 - Insider trading
- Vendor and 3rd-Party Fraud
 - · Bid rigging and price fixing
 - Bribery
 - Diversion of sales
 - Duplicate billings
 - Extortion
 - · False invoices and phantom vendors
 - Inventory theft
 - Kickbacks and conflicts of interest
 - Loan fraud
 - Theft of intellectual property

People's Attitudes About Fraud—Consumers

- Nearly one of four Americans say it's ok to defraud insurers
 - Some 8 percent say it's "quite acceptable" to bilk insurers, while 16 percent say it's "somewhat acceptable."
 - About one in 10 people agree it's ok to submit claims for items that aren't lost or damaged, or for personal injuries that didn't occur.
 - Two of five people are "not very likely" or "not likely at all" to report someone who ripped of an insurer. Accenture Ltd.(2003)
- Nearly one of 10 Americans would commit insurance fraud if they knew they could get away with it.
- Nearly three of 10 Americans (29 percent) wouldn't report insurance scams committed by someone they know. Progressive Insurance (2001)

People's Attitudes About Fraud—Consumers

- More than one of three Americans say it's ok to exaggerate insurance claims to make up for the deductible (40 percent in 1997).
 Insurance Research Council (2000)
- One of four Americans says it's ok to pad a claim to make up for premiums they've already paid.
 Insurance Research Council (2000)
- One of three Americans says it's ok for employees to stay off work and receive workers compensation benefits because they feel pain, even though their doctor says it's ok to return to work.
 Insurance Research Council (1999)

People's Attitudes About Fraud—Physicians

- Nearly one of three physicians say it's necessary to "game" the health care system to provide high quality medical care.
- More than one of three physicians says patients have asked physicians to deceive third-party payers to help the patients obtain coverage for medical services in the last year.
- One of 10 physicians has reported medical signs or symptoms a patient didn't have in order to help the patient secure coverage for needed treatment or services in the last year.

Typical Committer of Fraud

- The typical fraudster is male, between 36 and 55 years old
- By the time he starts profiting from his illegal means, he has usually been employed by the company for six or more years
- He typically works in the financial department, and commits the deed alone
- He is driven to crime by a desire for money and by opportunity

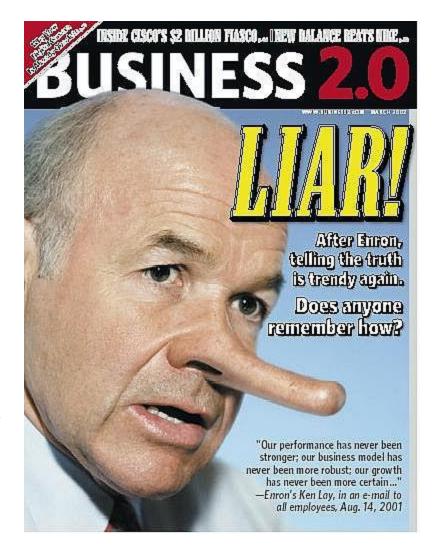
Typical Committer of Fraud

 A rogue trader has cost French bank Société Générale €4.9bn (£3.7bn) in the biggest fraud in financial history

 News of the fraud, which will virtually wipe out 2007 profits at France's second-largest bank, sent shockwaves through European markets, already battered by the escalating credit crisis.

Enron

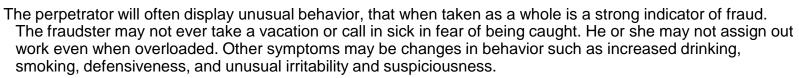
- At the end of 2001 it was revealed that its reported financial condition was sustained substantially by institutionalized, systematic, and creatively planned accounting fraud, sometimes called the "Enron scandal".
- Enron has since become a popular symbol of willful corporate fraud and corruption.



20 Ways to Detect Fraud

http://www.auditnet.org/testing_20_ways.htm

1. Unusual Behavior



2. Complaints

Frequently tips or complaints will be received which indicate that a fraudulent action is going on. Complaints have been known to be some of the best sources of fraud and should be taken seriously. Although all too often, the motives of the complainant may be suspect, the allegations usually have merit that warrant further investigation.

3. Stale Items in Reconciliations

In bank reconciliations, deposits or checks not included in the reconciliation could be indicative of theft. Missing deposits could mean the perpetrator absconded with the funds; missing checks could indicate one made out to a bogus payee.

4. Excessive Voids

Voided sales slips could mean that the sale was rung up, the payment diverted to the use of the perpetrator, and the sales slip subsequently voided to cover the theft.

5. Missing Documents

Documents which are unable to be located can be a red flag for fraud. Although it is expected that some documents will be misplaced, the auditor should look for explanations as to why the documents are missing, and what steps were taken to locate the requested items. All too often, the auditors will select an alternate item or allow the auditee to select an alternate without determining whether or not a problem exists.

6. Excessive Credit Memos

Similar to excessive voids, this technique can be used to cover the theft of cash. A credit memo to a phony customer is written out, and the cash is taken to make total cash balance.

20 Ways to Detect Fraud

7. Common Names and Addresses for Refunds

Sales employees frequently make bogus refunds to customers for merchandise. The address shown for the refund is then made to the employee's address, or to the address of a friend or co-worker.

8. Increasing Reconciling Items

Stolen deposits, or bogus checks written, are frequently not removed, or covered, from the reconciliation. Hence, over a period of time, the reconciling items tend to increase.

9. General Ledger Out-of-Balance

When funds, merchandise, or assets are stolen and not covered by a fictitious entry, the general ledger will be out of balance. An inventory of the merchandise or cash is needed to confirm the existence of the missing assets.

10. Adjustments to Receivables or Payables

In cases where customer payments are misappropriated, adjustments to receivables can be made to cover the shortage. Where payables are adjusted, the perpetrator can use a phony billing scheme to convert cash to his or her own use.

11. Excess Purchases

Excess purchases can be used to cover fraud in two ways:

Fictitious payees are used to convert funds

Excessive purchases may indicate a possible payoff of purchasing agent

12. Duplicate Payments

Duplicate payments are sometimes converted to the use of an employee. The employee may notice the duplicate payment, then he or she may prepare a phony endorsement of the check.

13. Ghost Employees

Ghost employee schemes are frequently uncovered when an auditor, fraud examiner, or other individual distributes paychecks to employees. Missing or otherwise unaccounted for employees could indicate the existence of a ghost employee scheme.

20 Ways to Detect Fraud

14. Employee Expense Accounts

Employees frequently conceal fraud in their individual expense account reimbursements. These reimbursements should be scrutinized for reasonableness and trends, especially in the area of cash transactions on the expense account.

15. Inventory Shortages

Normal shrinkage over a period of time can be computed through historical analysis Excessive shrinkage could explain a host of fraudulent activity, from embezzlement to theft of interpretary

16. Increased Scrap

In the manufacturing process, an increase a mount of star could indicate a star of the steal and resell this material. Scrap is a favorite target be embarated to be sust it is usually under to less scrutiny than regular inventory.

17. Larg Payment III no

Excessive la graph and the interior and indicate instances of fraudulent disbursements.

18. Emp byce Vortage

Employees being paid for overtime hours not worked by altering time sheets before or after management approval.

19. Write-off of Accounts Receivable

Comparing the write-off of receivables by customers may lead to information indicating that the employee has absconded with customer payments.

20. Post Office Boxes as Shipping Addresses

In instances where merchandise is shipped to a post office box, this may indicate that an employee is shipping to a bogus purchaser.

Purchases were made in pairs of \$75.00 purchases

			•			
U	May 22	1:14 PM	FOOD	Monaco Café	\$127.00	
60	May 22	7:32 PM	WINE	Wine Bistro	\$28.00	_ France
exceeds	Gas S	tation?				
S	June 14	2:05 PM	MISC	Mobil Mart	\$ 75.00	
ase od a	→June 14	2:06 PM	MISC	Mobil Mart	<u>\$75.00</u>	
ch.	—→June 15	11:48 AM	MISC	Mobil Mart	\$75.00	Pairs
pall b	——June 15	11:49 AM	MISC	Mobil Mart	\$ <u>75.00</u>	of \$75?
time pe	May 22	7:32	WINE	Wine Bistro	\$28.00	Ψ13:
	May 22	7:32	WINE	Wine Bistro	\$28.00	
	—→June 16	11:48 AM	MISC	Mobil Mart	\$75.00	
	—→June 16	11:49 AM	MISC	Mobil Mart	\$75.00	

All same \$75 amount?

Fraud Prediction

where rnk <= 5

order by percent_fraud desc;

```
drop table CLAIMS SET;
exec dbms data mining.drop model('CLAIMSMODEL');
create table CLAIMS_SET (setting_name varchar2(30), setting_value varchar2(4000));
insert into CLAIMS_SET values
('ALGO_NAME','ALGO_SUPPORT_VECTOR_MACHINES');
insert into CLAIMS_SET values ('PREP_AUTO','ON');
commit;
begin
dbms_data_mining.create_model('CLAIMSMODEL', 'CLASSIFICATION',
 'CLAIMS', 'POLICYNUMBER', null, 'CLAIMS SET');
end;
-- Top 5 most suspicious fraud policy holder claims
select * from
(select POLICYNUMBER, round(prob_fraud*100,2) percent_fraud,
   rank() over (order by prob_fraud desc) rnk from
select POLICYNUMBER, prediction_probability(CLAIMSMODEL, '0' using *) prob_fraud
from CLAIMS
where PASTNUMBEROFCLAIMS in ('2 to 4', 'more than 4')))
```

POLICYNUMBER	PERCENT_FRAUD	RNK
6532	64.78	1
2749	64.17	2
3440	63.22	3
654	63.1	4
12650	62.36	5

Building a Check Fraud Detection System Using Oracle 11g and Oracle Data Mining

Oracle OpenWorld 2009 Vote-a-Session

Login to Mix
Go to Mix and login »

Main Streams Tracks FAQ Home » Industries » Financial Services » Proposal: Building a Check Fraud Dete...

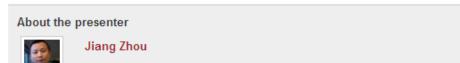
Building a Check Fraud Detection System Using Oracle 11g
and Oracle Data Mining

Type Conference Session Presenter Jiang Zhou (Customer Speaker)

Track Financial Services Stream Industries

Abstract

It is estimated that the nation's banks experience over \$10 billion per year in attempted check fraud. In order to minimize this type of fraud loss, a data driven predictive model is assembled, tested and deployed within a single platform using Oracle 11g and Oracle Data Mining (ODM). Since all of the processes can be executed within a database, it provides a level of security crucial to banks. Oracle 11g and ODM allow users to perform a multitude of analysis using large volumes of transactional data. The features of Oracle 11g and ODM (e.g. analytical functions, various predictive models, ease of model deployment, materialized views, partitioning, etc.) result in substantially increased productivity, manageability and scalability.



25 people voted for this

More in this stream and track

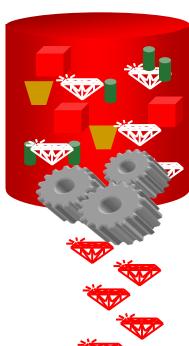
Managing Change in Banking: Integrated
Performance Management Several forces impact
retail, commercial, and investment bankers today: Mor...

The next generation User Experience Everybody is talking about Web2.0 but how does it really enable your business...

Oracle Data Mining Option

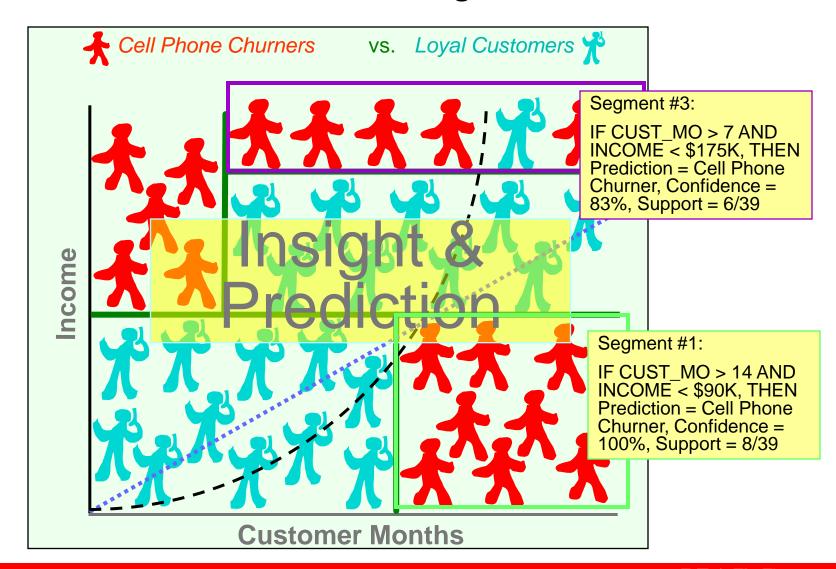
What is Data Mining? $\bigcap_{\text{DATABASE}} 11^g$

- Automatically sifts through data to find hidden patterns, discover new insights, and make predictions
- Data Mining can provide valuable results:
 - Predict customer behavior (Classification)
 - Predict or estimate a value (Regression)
 - Segment a population (Clustering)
 - Identify factors more associated with a business problem (Attribute Importance)
 - Find profiles of targeted people or items (Decision Trees)
 - Determine important relationships and "market baskets" within the population (Associations)
 - Find fraudulent or "rare events" (Anomaly Detection)



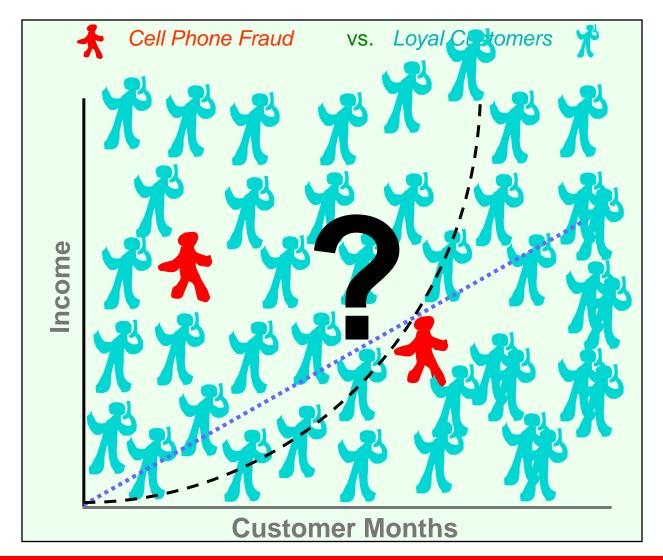
Data Mining Provides

Better Information, Valuable Insights and Predictions



Data Mining Provides

Better Information, Valuable Insights and Predictions

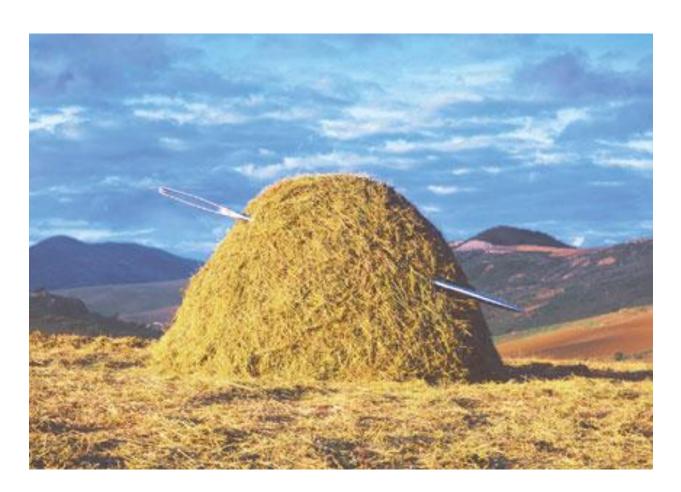


Finding Needles in Haystacks

Haystacks are usuallyBIG

 Needles are typically small and

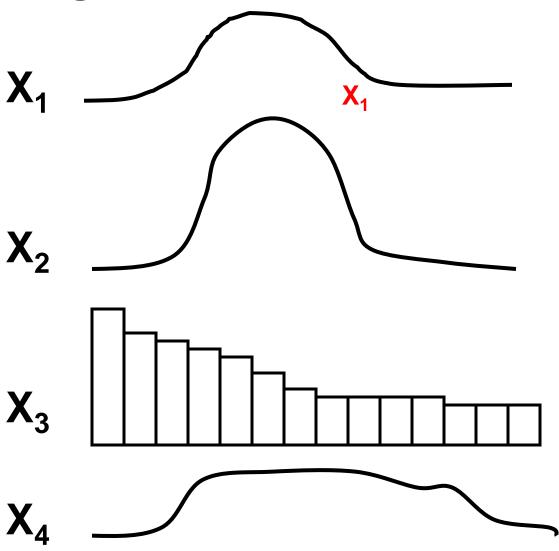
rare



Look for What is "Different"

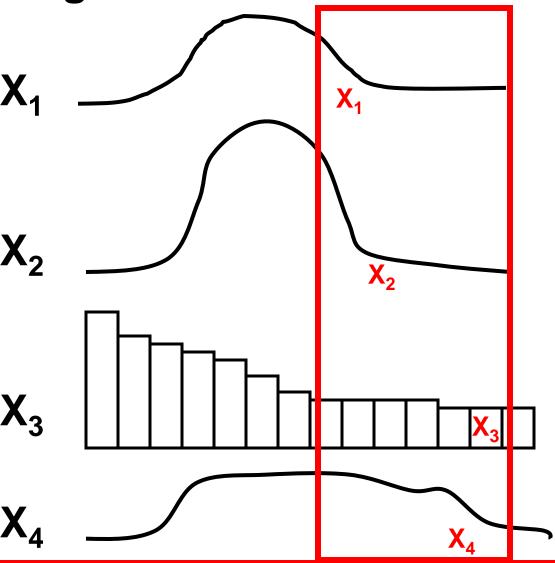
Challenge: Finding Anomalous Records

 Considering one attribute at a time, each record, may look "normal"



Challenge: Finding Anomalous Records

 Considering multiple attributes, taken collectively, a record may appear anomalous



Oracle Data Mining

examples of rare events

Overview (Classification)

	Inpi	ut Attr					rget	Model
	<u>Name</u>	Income		toric			937 98, 0 =No	Relationship:
	Jones	30,000	30			0	•	$Y = F(X_1, X_2,, X_m)$
	Smith	55,000	67			1		$\Gamma = \Gamma (\Lambda_1, \Lambda_2, \dots, \Lambda_m)$
_ /	Lee	25,000	23			0		
S⟨	Rogers	50,000	44			0		
\				New	Data			
١	Campos	40,500	52			?	0 .85	
	Horn	37,000	73			?	0 .74	
	Habers	57,200	32			?	0 .93	ODACI C: 44C
	Berger	95,600	34			?	1 .65	ORACLE 118
								DATABASE ■ ■
						/		

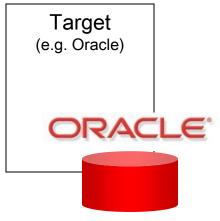
Fraud typically requires a lot more data to find

Prediction Confidence

Cases

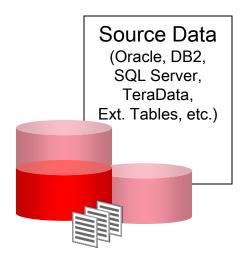
Traditional Analytics (SAS) Environment

Source Data (Oracle, DB2, SQL Server, TeraData, Ext. Tables, etc.)



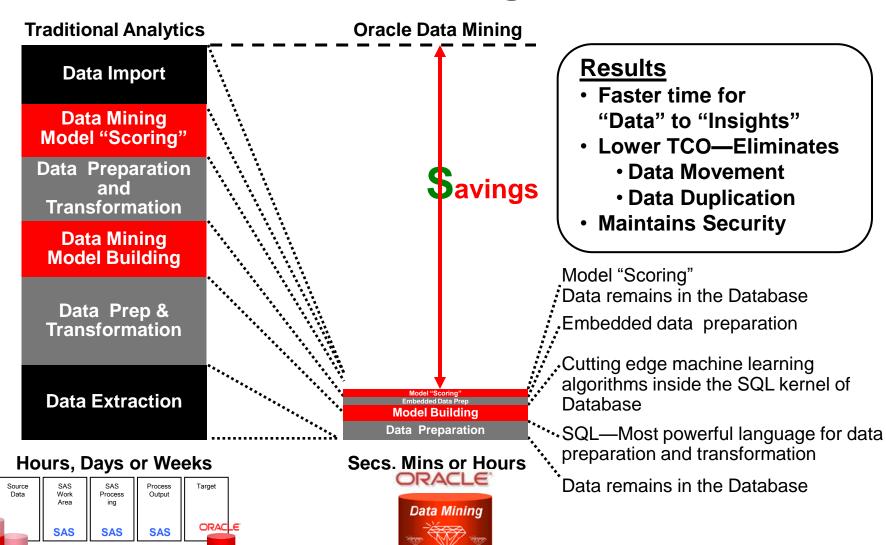
- SAS environment requires:
 - Data movement
 - Data duplication
 - Loss of security

Oracle Architecture



- Oracle environment:
 - Eliminates data movement
 - Eliminates data duplication
 - Preserves security

In-Database Data Mining

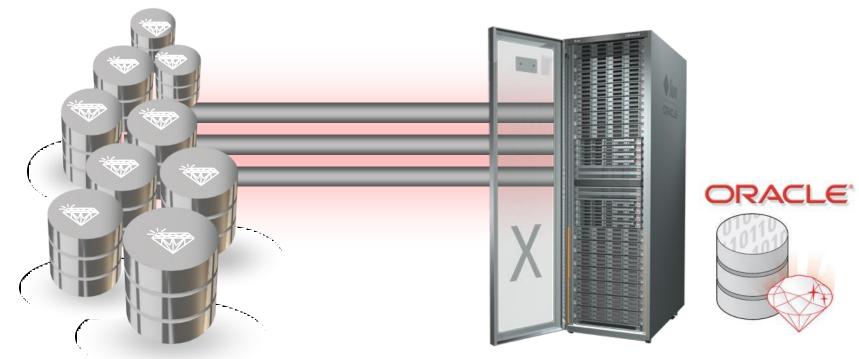


Oracle Database Machine & ODM

- Integrated data warehouse solution
- Extreme Performance
 - 10-100X faster than conventional DW systems
- Scalability to Petabytes
- Enterprise-Ready
 - Complete data warehouse functionality
 - Enterprise-level availability and security
- Scoring of Oracle Data Mining models
 - Blazingly fast performance
 - For example, find the US customers likely to churn:

```
select cust_id
from customers
where region = 'US'
and prediction_probability(churnmod, 'Y' using *) > 0.8;
```

Oracle Database Machine & ODM



 In 11gR2, SQL predicates and Oracle Data Mining models are pushed to storage level for execution

For example, find the US customers likely to churn:

```
select cust_id
from customers
where region = 'US'
and prediction_probability(churnmod, 'Y' using *) > 0.8;
```

ODM 11gR2 Scoring: Offloaded to Exadata

Data mining scoring executed in Exadata:

```
select cust_id
from customers
where region = 'US'
and prediction_probability(churnmod, 'Y' using *) > 0.8;
Scoring
function
executed in
Exadata
```

- All scoring functions offloaded to Exadata
- Benefits
 - Reduces data returned from Exadata to Database server
 - Reduces CPU utilization on Database Server
 - Up to 10x performance gains

Oracle Data Mining

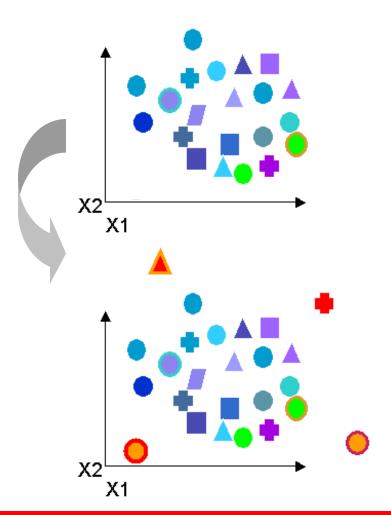
Algorithm Summary 11g

Problem	Algorithm	Applicability
Classification	Logistic Regression (GLM) Decision Trees Naïve Bayes Support Vector Machine	Classical statistical technique Popular / Rules / transparency Embedded app Wide / narrow data / text
Regression	Multiple Regression (GLM) Support Vector Machine	Classical statistical technique Wide / parrow data / text
Anomaly Detection	One Class SVM	Lack examples
Importance Association	Length (MDL)	Identify useful data Reduce data noise
Rules	Apriori	Market basket analysis Link analysis
Clustering	Hierarchical K-Means	Product grouping Text mining
	Hierarchical O-Cluster	Gene and protein analysis
Feature Extraction	NMF	Text analysis Feature reduction

Oracle Data Mining 11g Anomaly Detection

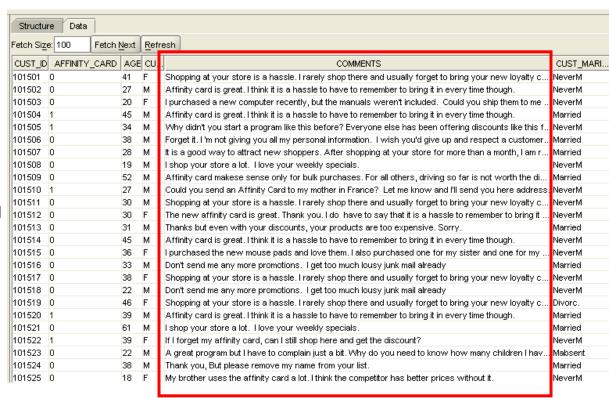
- Rare events, true novelty
- Fraud, noncompliance
- Disease outbreaks
- Outlier detection
- Network intrusion detection
- Oracle Data Mining
 - "One-Class" SVM Models

Problem: Detect rare cases



Oracle Data Mining and Unstructured Data

- Oracle Data
 Mining mines
 unstructured i.e.
 "text" data
- Include free text and comments in ODM models
- Cluster and Classify documents
- Oracle Text used to preprocess unstructured text



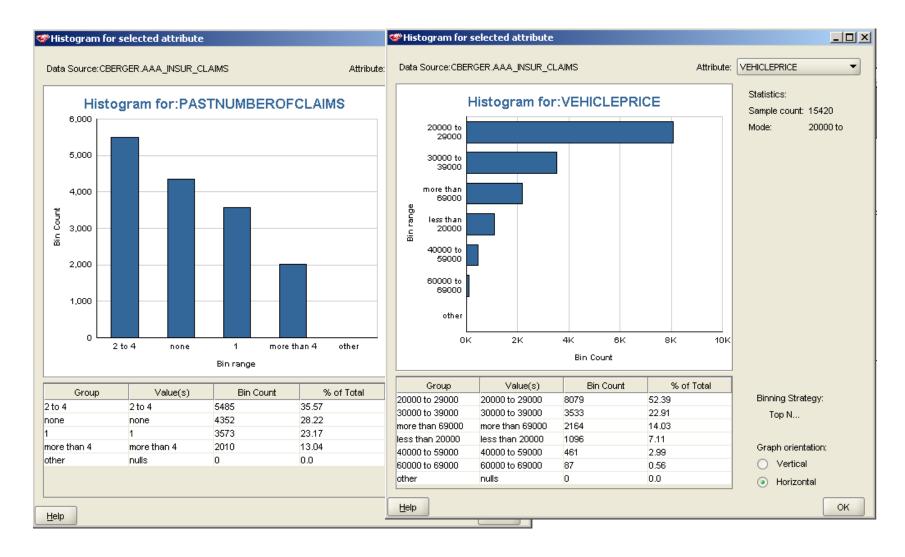
Brief Demonstration

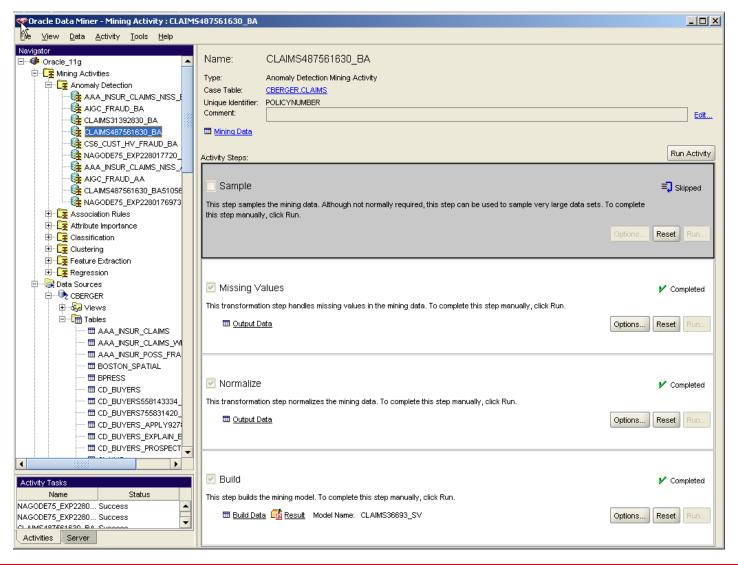
1. Oracle Data Mining

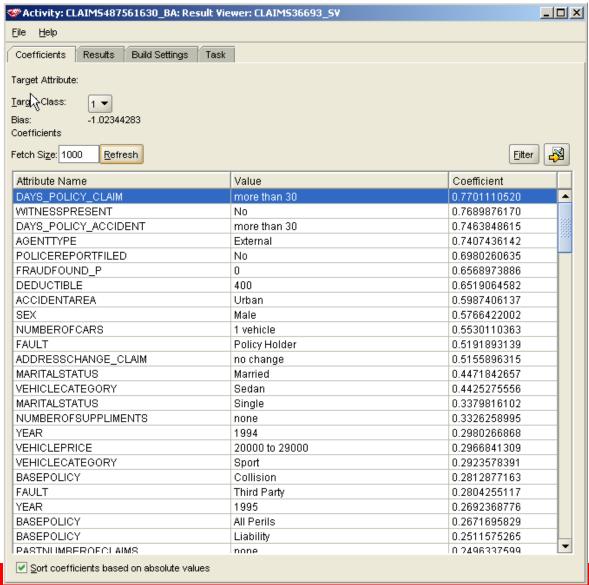
Quick Demo: Oracle Data Mining

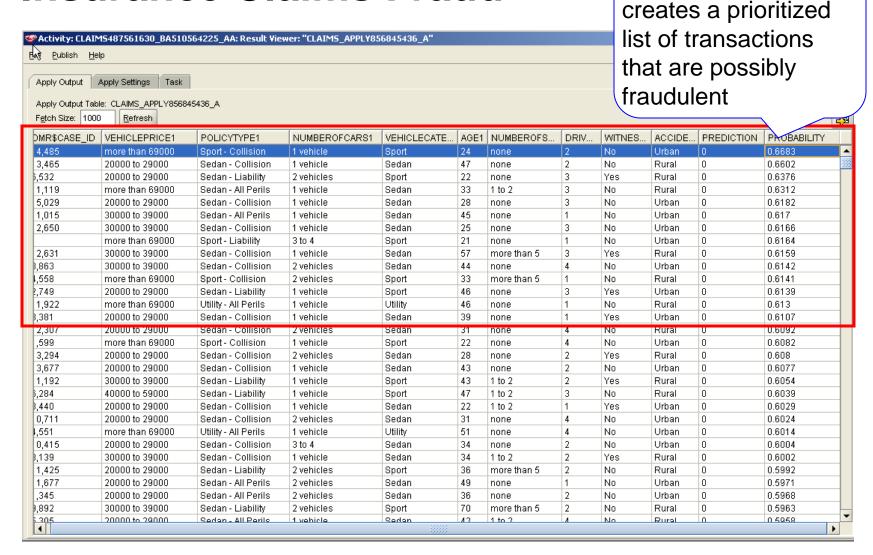
- Scenario: Auto Insurance Company
- Business problem(s):
 - 1. Better understand the business by looking at graphs
 - 2. Target Fraud
 - a. Build a predictive model to discover "normal" records
 - b. Apply the model to flag "most non-normal" records
 - c. View results in an OBI EE Dashboard
 - (Entire process can be automated w/ PL/SQL and/or Java APIs)

Structure	Da	ta											
etch Si <u>z</u> e: 10	00	Fetch Ne	xt <u>R</u> efresh										
MONTH	V	VEEKOFMO	DAYOFWEEK	MAKE	ACCIDENTA	DAYOFWEE	MONTHCLAI	WEEKOFMO	. SEX	MARITALST	AGE	FAULT	POLICYTYPE
ec ec	4		Sunday	Pontiac	Urban	Wednesday	Jan	2	Male	Married	35	Policy Holder	Sedan - Colli
Nov	4		Thursday	Mazda	Urban	Friday	Nov	4	Male	Married	46	Third Party	Sedan - Liabi.
eb	4		Tuesday	Accura	Urban	Friday	Apr	4	Male	Married	62	Policy Holder	Sedan - All P.
eb	4		Tuesday	Dodge	Urban	Thursday	Mar	1	Male	Married	42	Third Party	Sedan - Colli.
Feb -	4		Tuesday	Honda	Urban	Wednesday	Mar	1	Male	Married	40	Policy Holder	Sedan - All P.
Oct	2		Sunday	Mazda	Urban	Monday	Oct	2	Female	Single	33	Third Party	Sedan - All P.
Sep	3		Monday	Honda	Urban	Monday	Sep	3	Male	Married	44	Policy Holder	Sedan - Colli.
Sep	3		Saturday	Pontiac	Urban	Monday	Sep	4	Male	Single	35	Policy Holder	Sedan - Liabi
Sep	1		Monday	Toyota	Urban	Wednesday	Sep	2	Male	Married	57	Policy Holder	Sedan - Liabi
Sep	1		Monday	Pontiac	Urban	Thursday	Sep	2	Male	Married	38	Policy Holder	Sedan - All P
∆ug	4		Friday	Mazda	Urban	Wednesday	Aug	5	Male	Married	30	Policy Holder	Utility - All Pe
lul	3		Tuesday	Mazda	Urban	Thursday	Jul	4	Female	Married	38	Policy Holder	Sedan - Liabi
lul	3		Friday	Pontiac	Urban	Tuesday	Jul	3	Male	Married	54	Policy Holder	Sedan - Liab
Vov	2		Wednesday	Toyota	Urban	Monday	Nov	2	Male	Married	52	Third Party	Sedan - All P
Aug	1		Tuesday	Toyota	Urban	Thursday	Aug	1	Female	Single	26	Policy Holder	Sedan - Colli
Jul	3		Monday	Honda	Urban	Monday	Jul	3	Male	Married	39	Policy Holder	Sedan - Liab
lun	3		Wednesday	Chevrolet	Urban	Tuesday	Jun	3	Male	Married	69	Policy Holder	Sedan - Colli
vlay	3		Wednesday	Toyota	Urban	Thursday	May	3	Male	Single	35	Policy Holder	Sedan - Liab
vlay	2		Friday	Chevrolet	Urban	Friday	May	2	Male	Married	47	Policy Holder	Sedan - Liab
Дрr	4		Friday	Pontiac	Urban	Monday	May	3	Male	Married	55	Policy Holder	Sedan - All P
vlar	4		Saturday	Mazda	Urban	Monday	Mar	4	Male	Married	26	Policy Holder	Sedan - Liabi
Oct	4		Thursday	Mazda	Urban	Friday	Nov	1	Male	Married	25	Policy Holder	Sedan - Colli
Oct	4		Thursday	Chevrolet	Urban	Monday	Nov	2	Male	Married	30	Policy Holder	Sedan - Colli.
Oct	2		Thursday	Honda	Urban	Saturday	Oct	3	Male	Married	31	Policy Holder	Sedan - Liab
Oct	2		Monday	Pontiac	Urban	Thursday	Oct	4	Male	Married	28	Policy Holder	Sedan - Liab
Sep	2		Monday	Toyota	Urban	Tuesday	Sep	3	Male	Married	61	Third Party	Sedan - Liabi
Aug	4		Thursday	Saab	Urban	Saturday	Sep	2	Male	Married	63	Third Party	Sedan - All P
Aug	2		Friday	Mazda	Urban	Tuesday	Sep	1	Male	Married	43	Policy Holder	Sedan - Colli.
lun	2		Tuesday	Toyota	Urban	Wednesday	Jun	3	Female	Married	37	Policy Holder	Sedan - Liabi
vlay	4		Monday	Pontiac	Urban	Monday	May	5	Male	Married	44	Third Party	Sedan - Liabi
Jun	3		Monday	Pontiac	Urban	Monday	Jun	3	Male	Single	30	Policy Holder	Sedan - Colli.





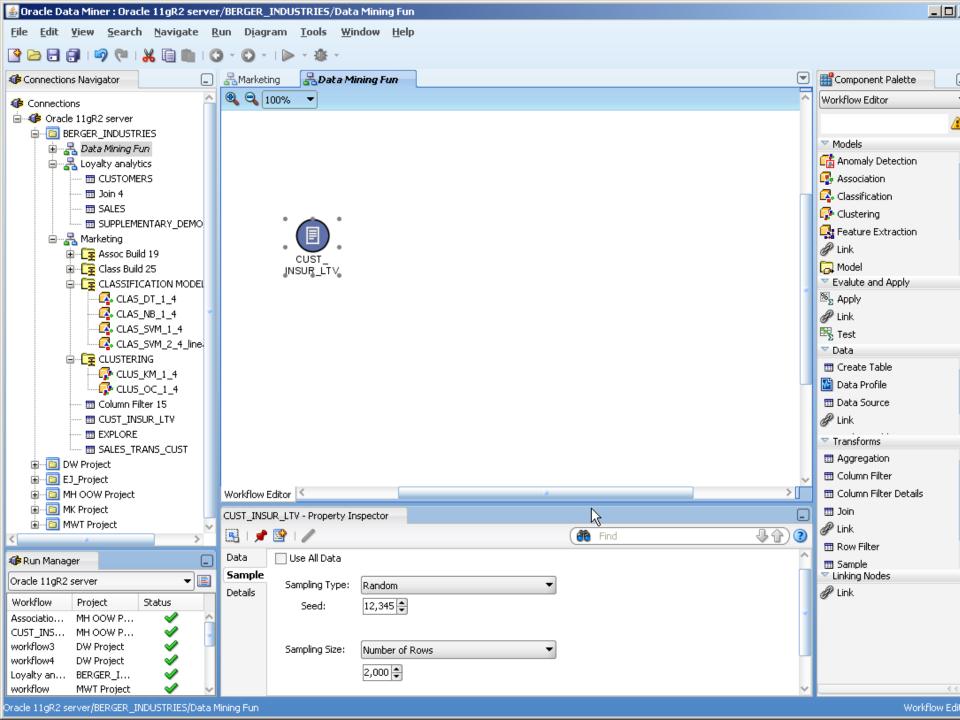


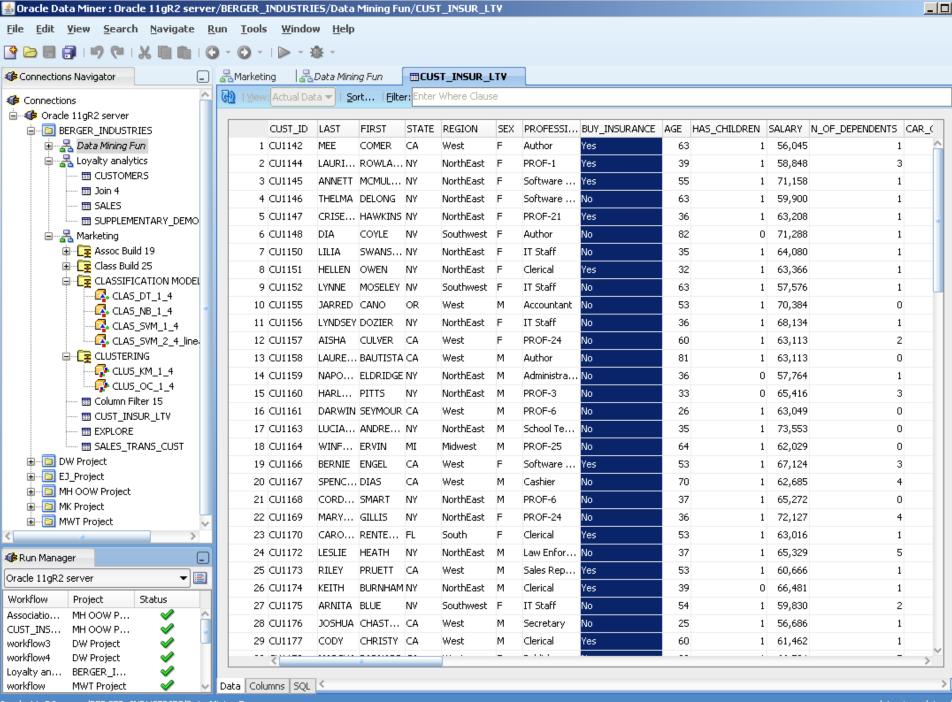


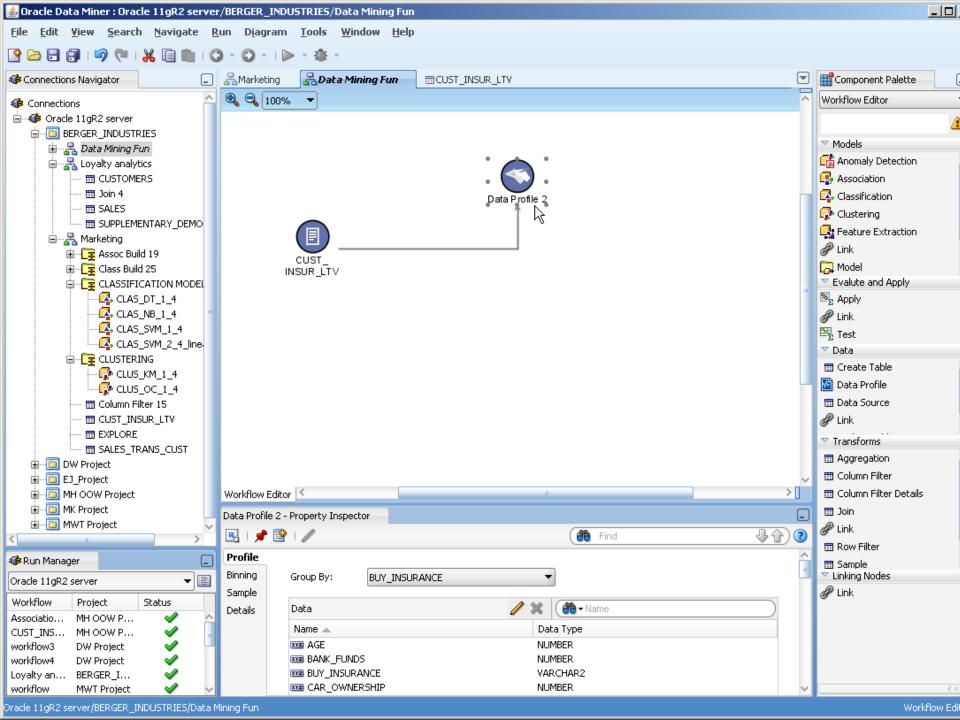
Oracle Data Mining

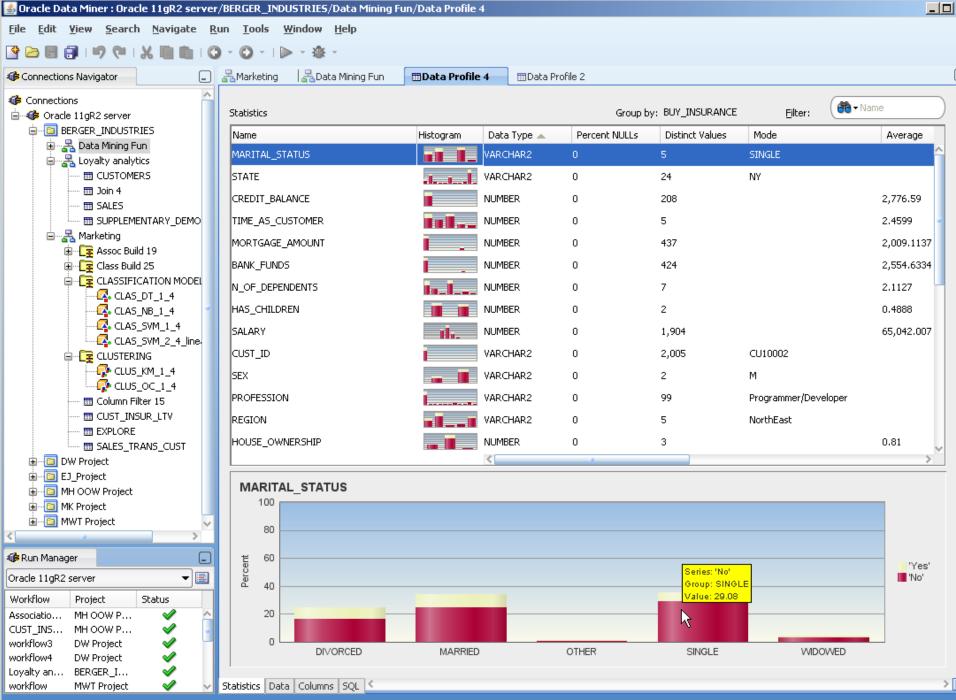
Oracle Data Miner 11gR2 (GUI) Preview

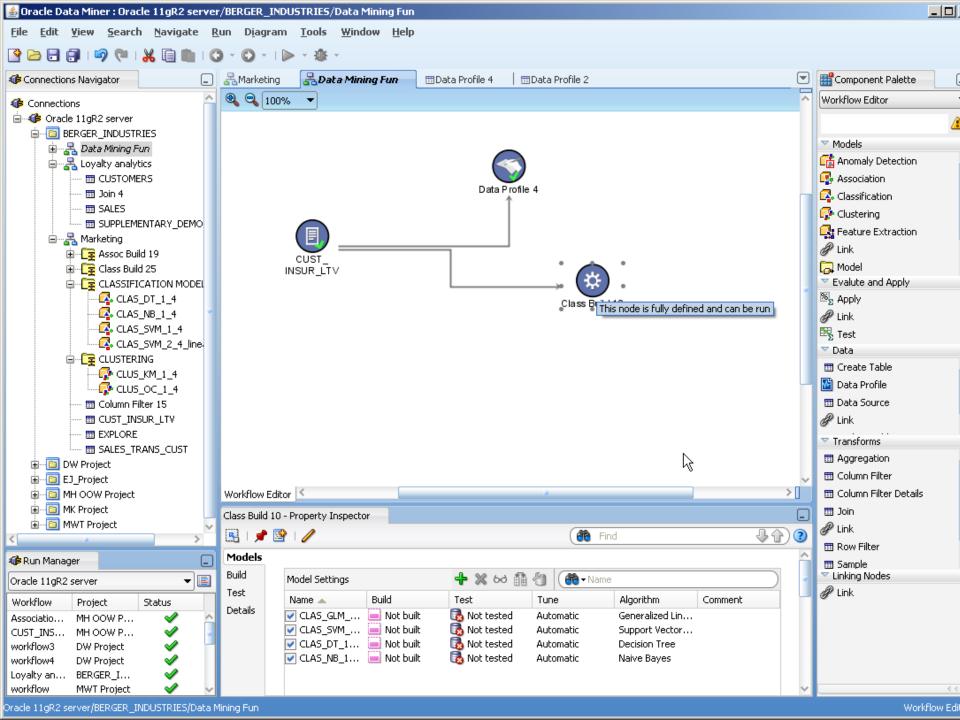
[ODM'r "New"]

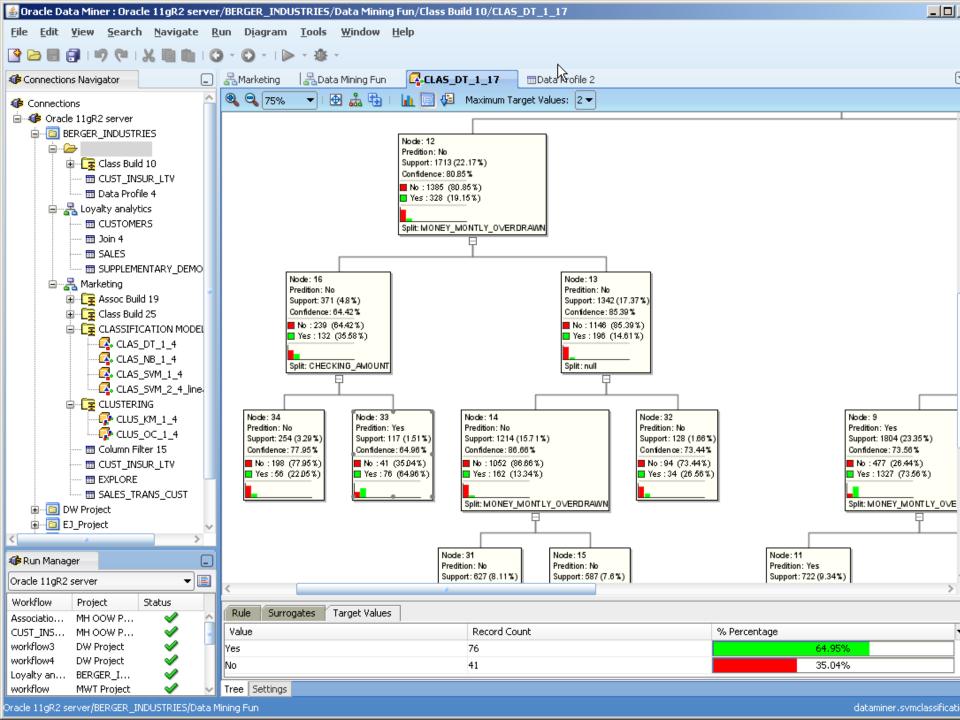


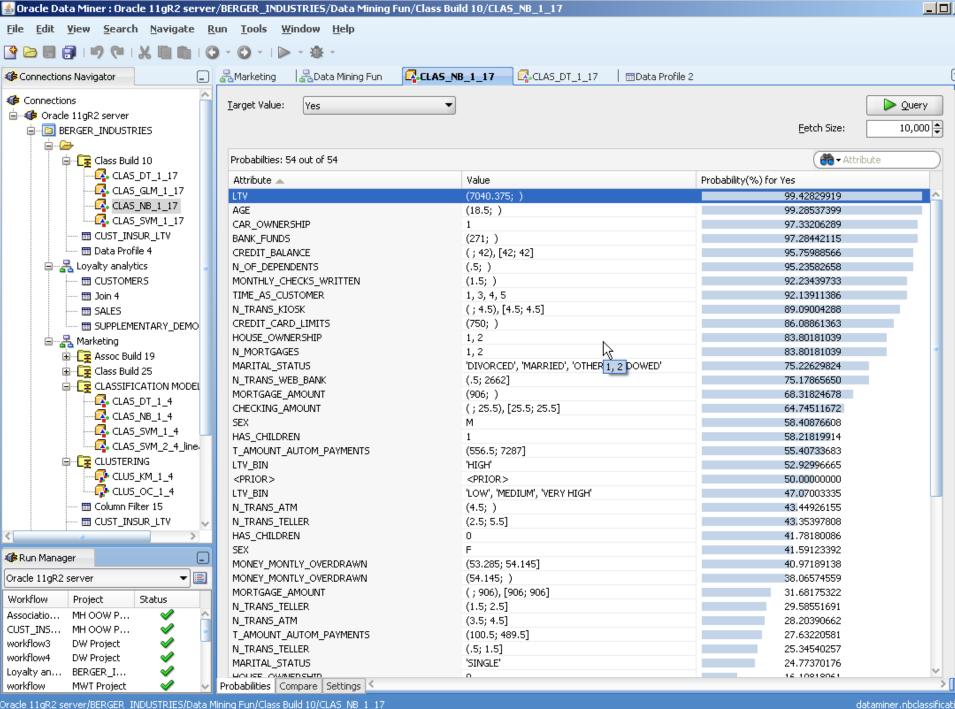


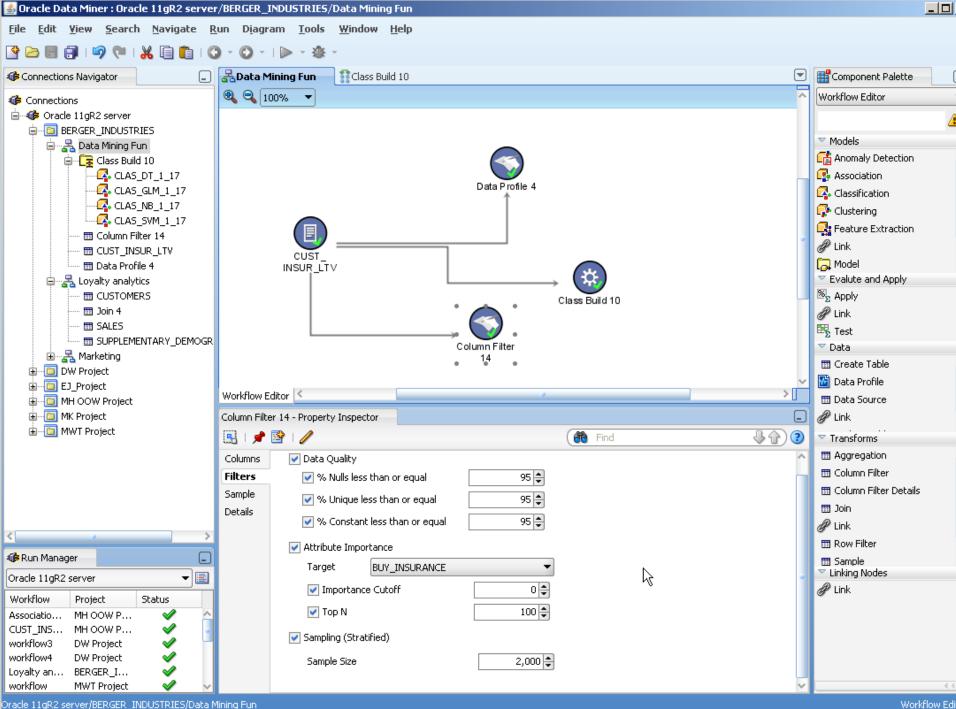


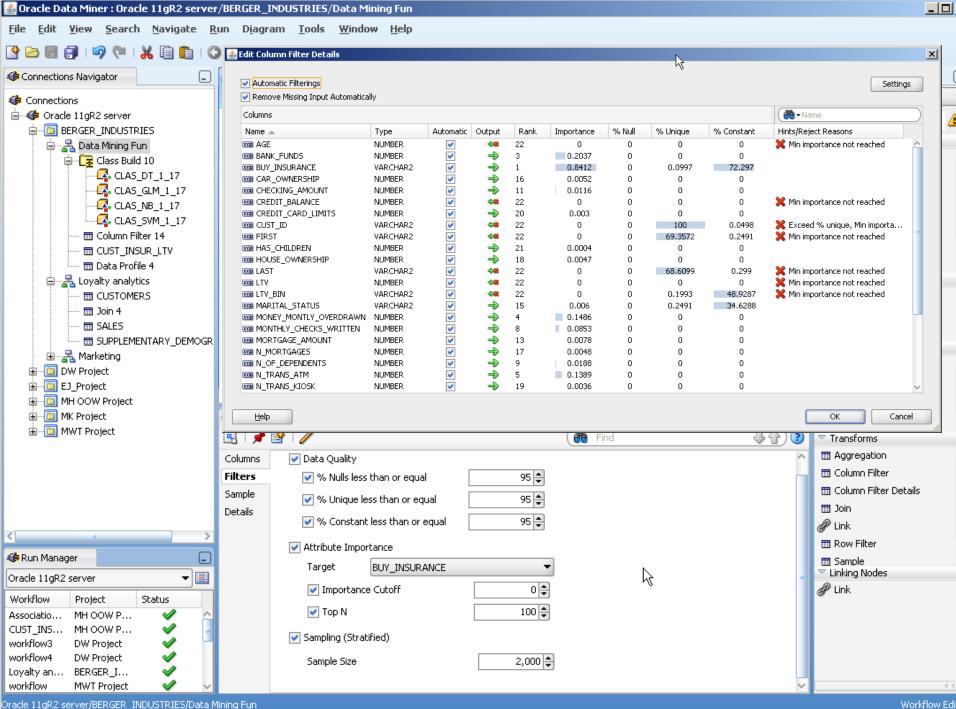


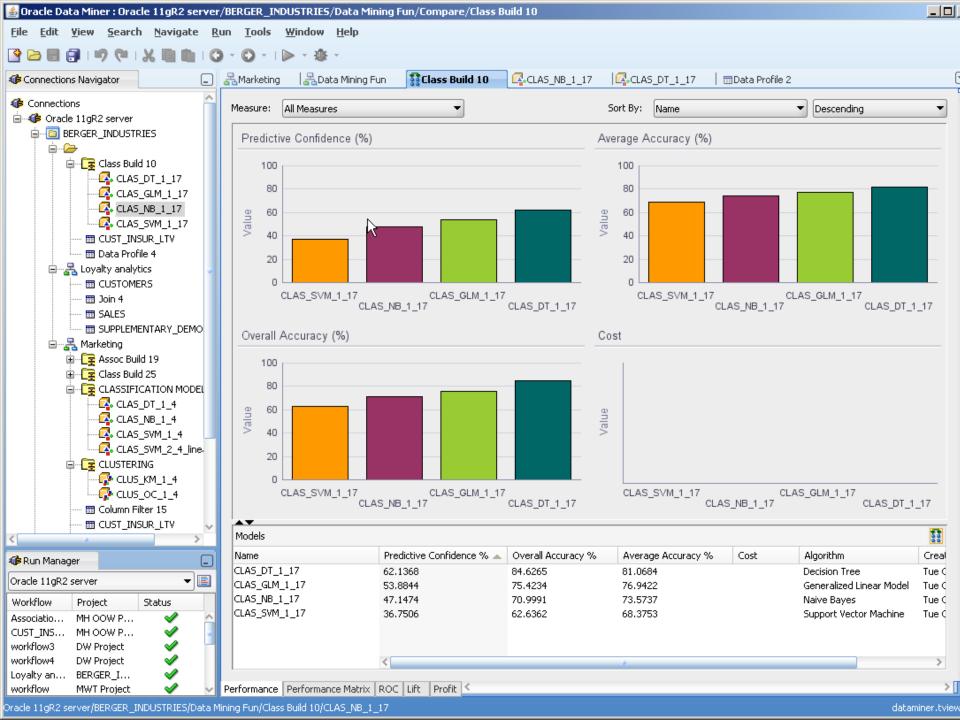


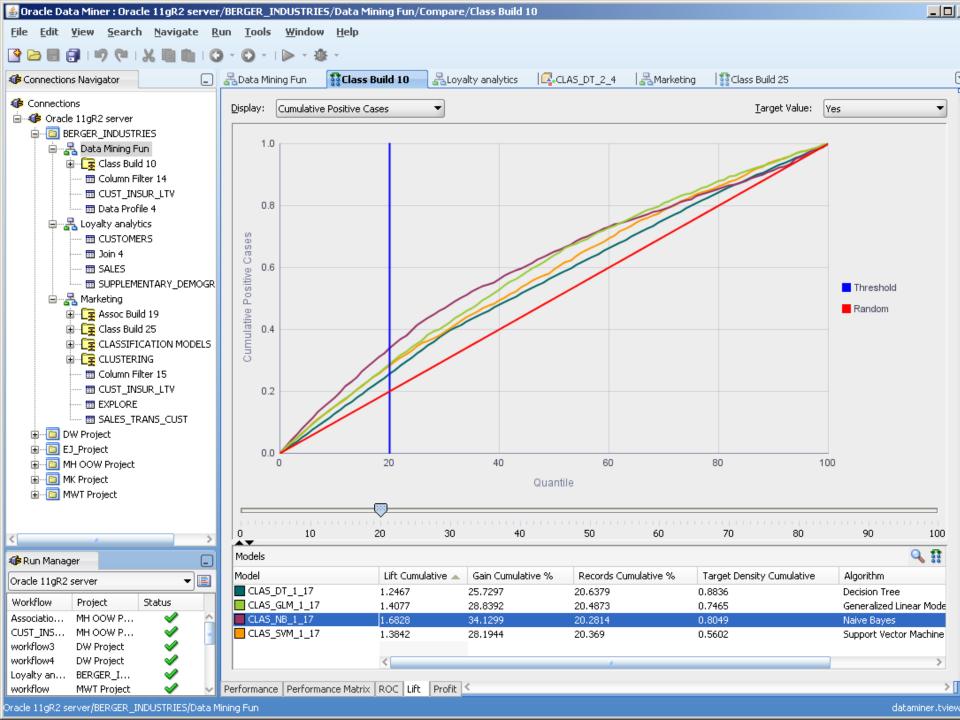


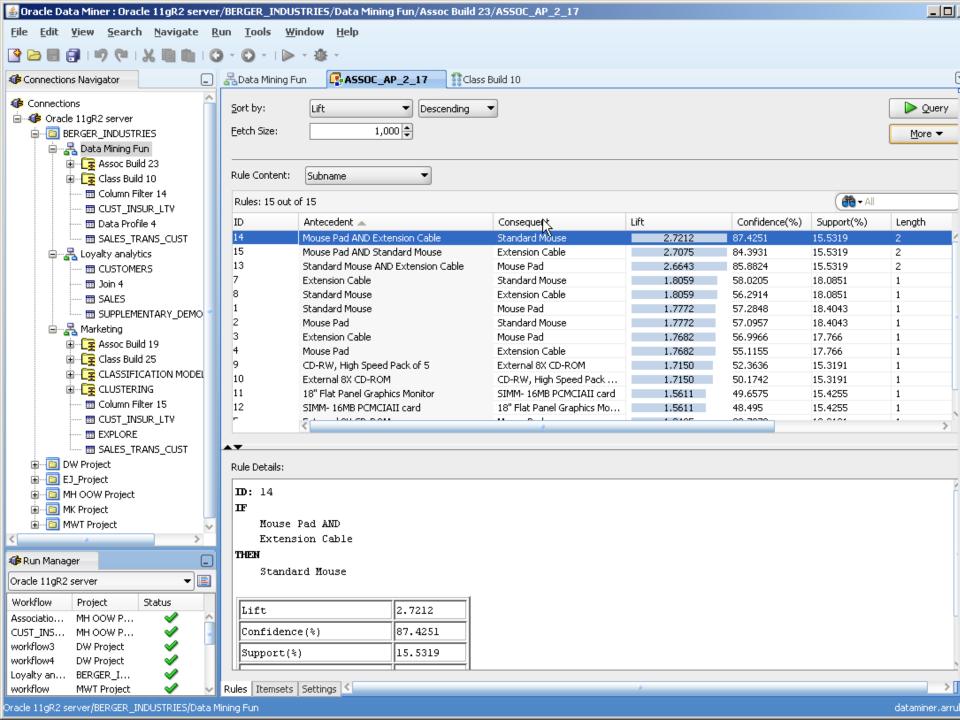


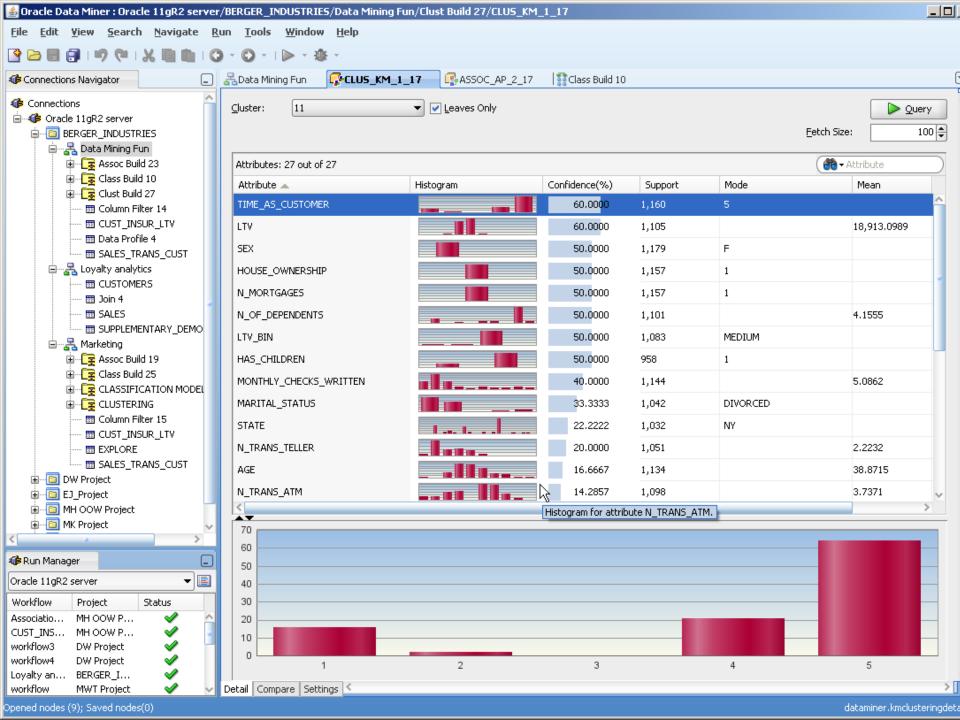






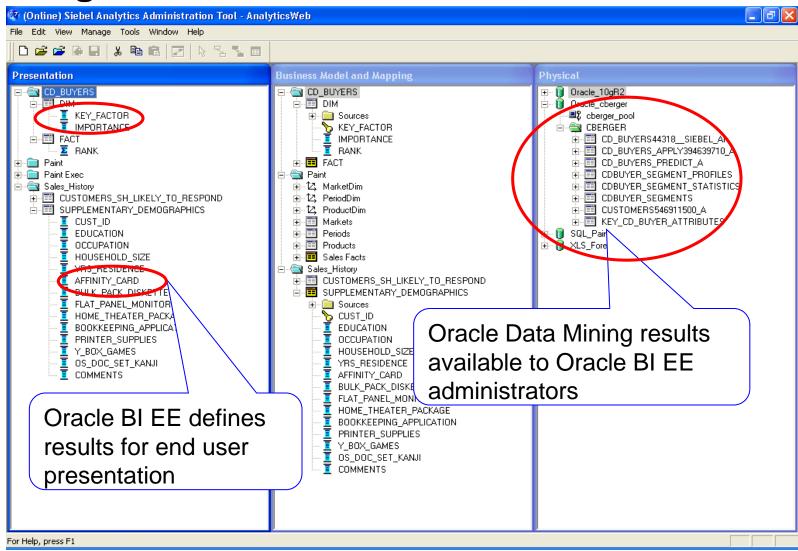






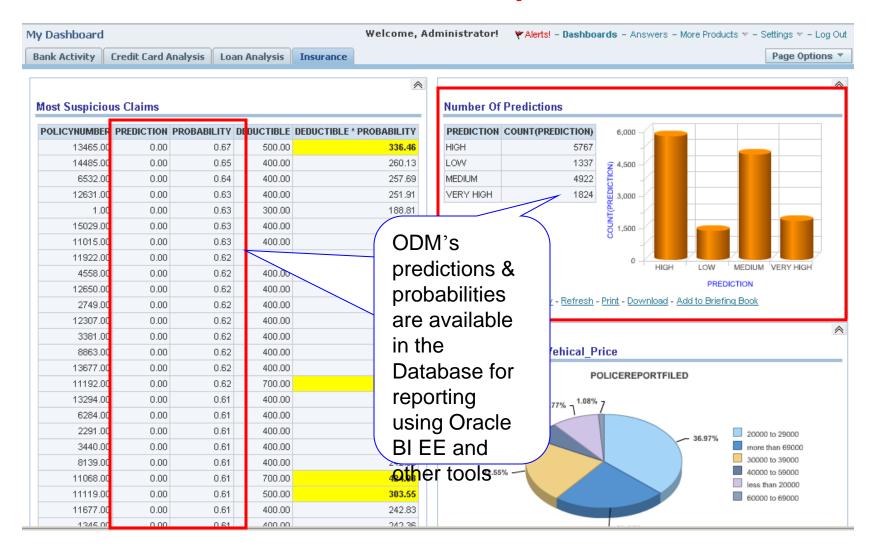
Presentation of Results and Integration with Applications

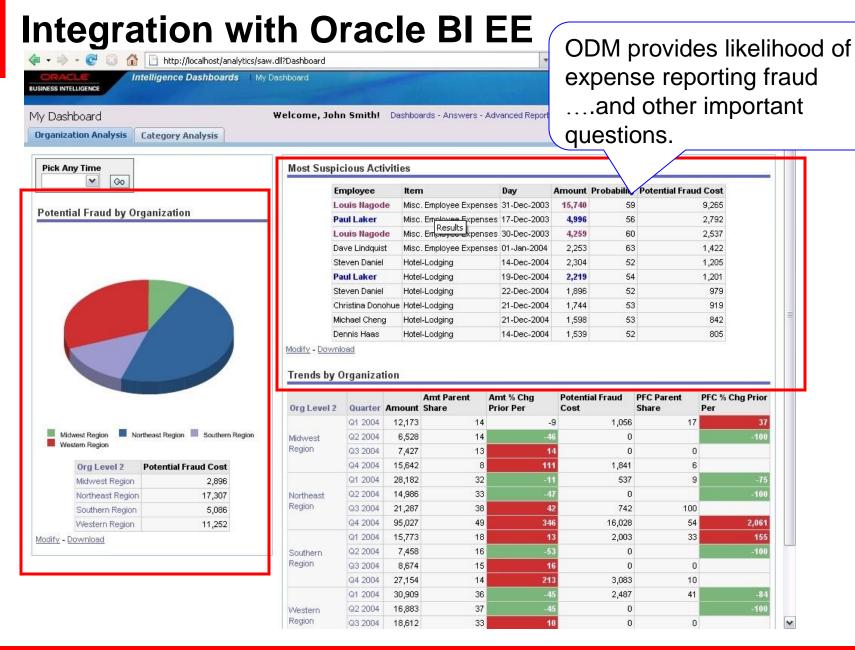
Integration with Oracle BI EE



Example

Better Information for OBI EE Reports and Dashboards





Oracle Spend Classification

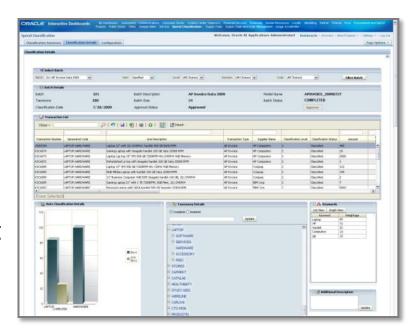
Classify Spend into Purchasing Categories

Features

- Hierarchical classification and scoring
- Auto Spend Classification
 - Inline and Batch
- Integration to OBIA Procurement
 & Spend Analytics 7.9.6

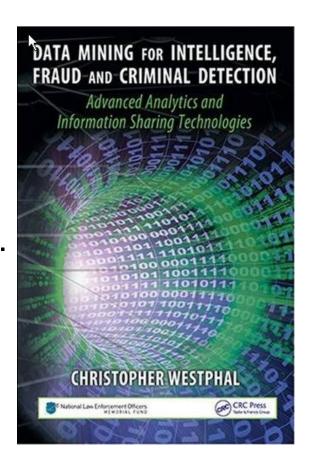
Benefits

- Classifies spend data from various sources into procurement category hierarchies
- Category normalization aids strategic sourcing and contract negotiation
- In-line mode integrated with EBS iProcurement



Further Reading

- Oracle Data Mining Documentation
- Oracle Data Mining Sample PL/SQL and Java Code Examples
- ODM Consultants
- OTN Discussion Forum
- Numerous Books and Papers e.g. ...



More Information:

Oracle Data Mining 11g

oracle.com/technology/products/bi/odm/index.html

Oracle Statistical Functions

http://www.oracle.com/technology/products/bi/stats_fns/index.html

Oracle Business Intelligence Solutions

oracle.com/bi

http://search.oracle.com

oracle data mining

Contact Information: Email: Charlie.berger@oracle.com

ORACLE IS THE INFORMATION COMPANY

