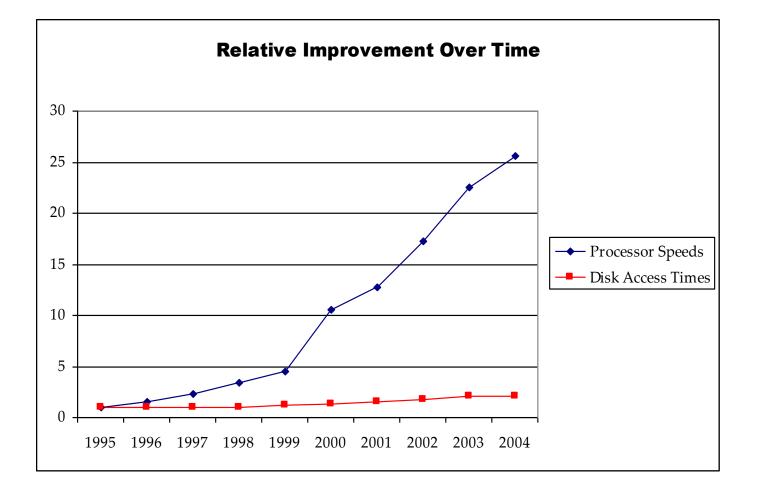


Using Preferred Read Groups in Oracle ASM

Introduction

Important Oracle databases require:

- High Performance
 - Queries, reports, and screens must return quickly
 - Scale to high user loads
- Reliability
 - 100% uptime
 - Single system fault can not be fatal
 - Loss of processing impacts bottom line
- Cost Effectiveness
 - Effective use of resources
 - Leverage tech to achieve outsized performance gains for the cost
 - Reliability can not be compromised



Oracle Performance

Performance

C

 Issues that most affect the performance are related to the IO subsystem

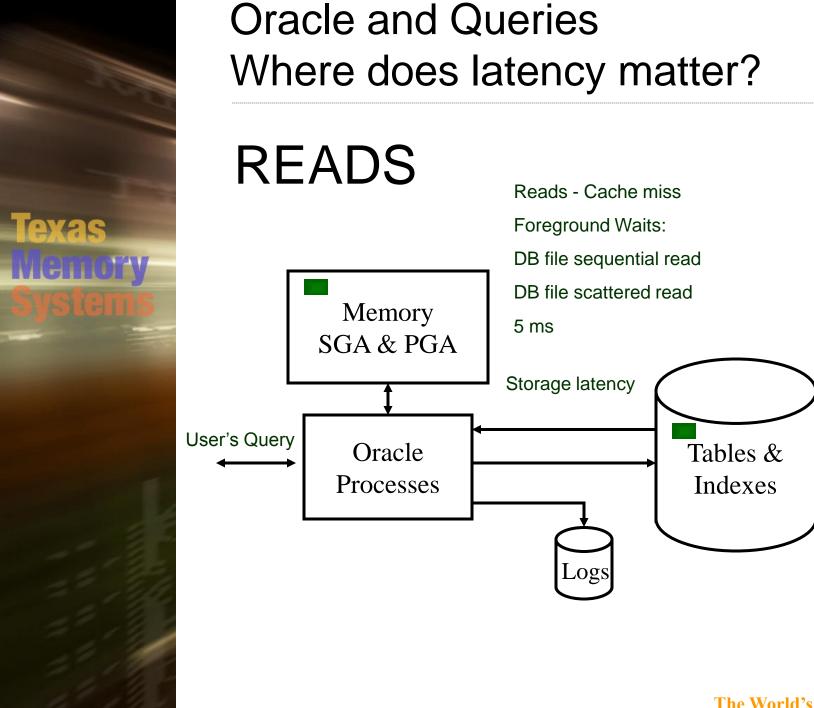
IO is the Biggest Issue

- The IO subsystem is the weakest link
- Many complex techniques are used to squeeze the last bit of performance from disk drives
- Disk drives
 - Limited to 15K RPM

- Latency ~5 milliseconds
 - The main component of a disk drive's latency is its rotational latency

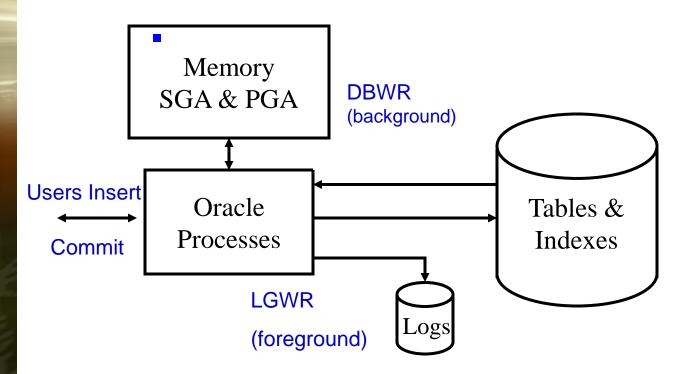
How Do Disk Systems Compensate?

- Increase the number of active disks
- Each disk has a max of 200 random IOPS
- To achieve 10,000 IOPS
 - ~ 50 disk drives for 2-5 ms response time


 Does NOT reduce latency below that of what a single disk can achieve

Solid State Disks

- Solid State Disks have 10 to 50x better latency than HDDs
 - 80 *micro*second write performance
 - 250 <u>micro</u>second read performance



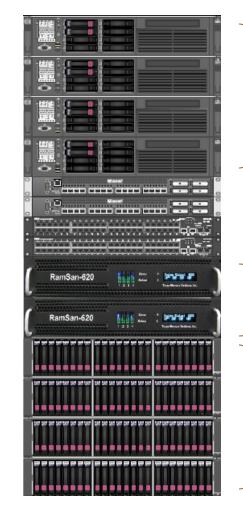
Oracle and Insert/update/delete Where does latency matter?

LOG WRITES

exas

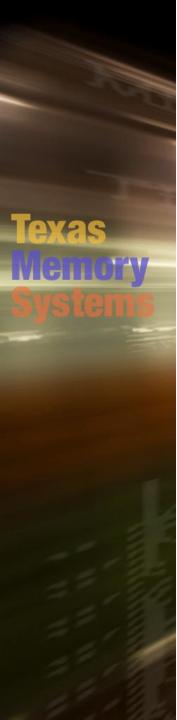
Memory

What is the Solution?


- Adding disks may help, up to a point!
- SSDs help but can be expensive
- Mirroring to both disk and SSD can cause convoy effect
- ASM Preferred Read Groups offer the solution

Optimized Architecture for ASM PRG

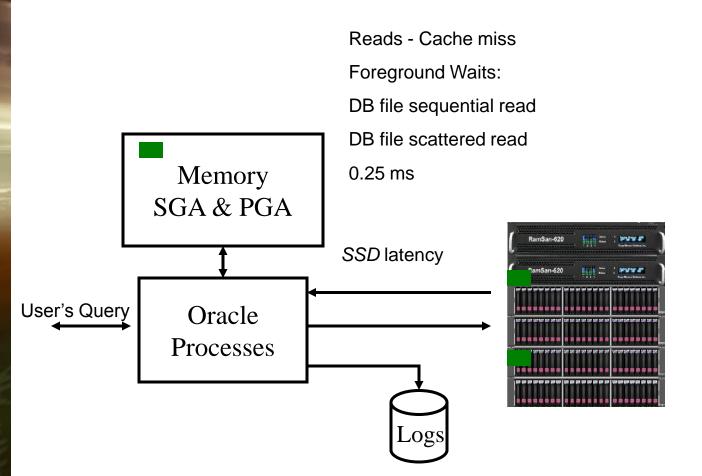
Optimized Architecture for ASM PRG

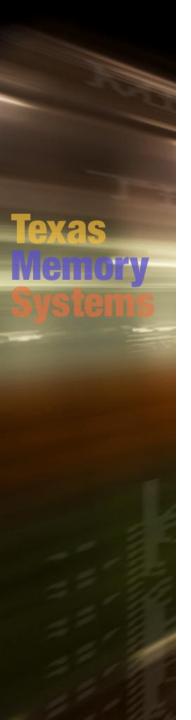


Lots of RAM and CPU resources

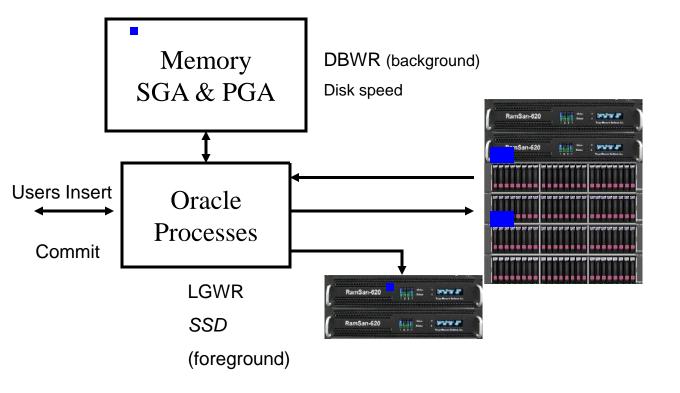
2, 10, or 20 TB of SSD

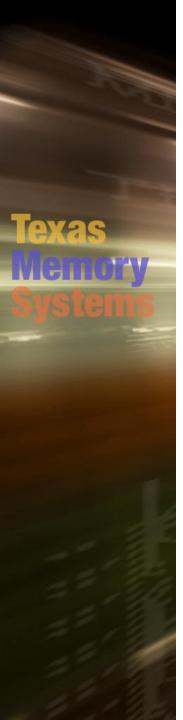
6, 30, or 60 TB of Enterprise SAS HDD

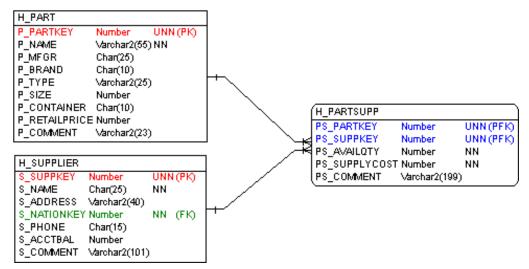

Architectue

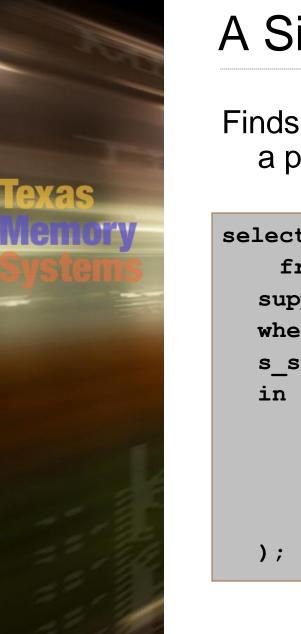

- Integrates Oracle 11g ASM as the Preferred Read Mirror (Group) option
 - Mirror created between SSD and HDD
 - Writes to both
 - Reads are only serviced by the SSD
- Redo Undo and Temp
 - Write performance matters
 - Stored on mirrored SSD
- Other disk managers also offer this!

Optimized PRG - Reads


exas


Memory


Optimized PRG – Writes Insert, Update, Delete



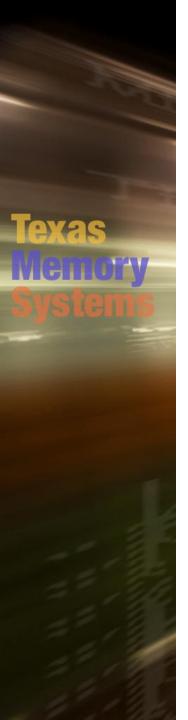
Demonstration Setup

- Three Tables
 - Part (600m rows)
 - Supplier(30m rows)
 - PartSupp (2.4b rows)
- Three Indexes
 - (partkey, suppkey, partkey+suppkey)

A Simple query

Finds the total amount owed to all suppliers for a particular part:

```
select sum(s_acctbal) into sum_s_acctbal
 from
 supplier
 where
 s_suppkey
 in (
     select
     ps_suppkey
     from partsupp
     where ps_partkey = (x)
 );
```



Run many times

- From each server (4 total), 50 simulated users run a stored procedure 10 times that submits this query 1000 times
- 4*50*10*1000 = 2,000,000 Queries
- Demo with disks or SSD set to preferred
 - SQL> alter system set ASM_PREFERRED_READ_FAILURE_GROUPS = 'HYBRID.RAMSAN';

System altered.

- SQL> alter system set ASM_PREFERRED_READ_FAILURE_GROUPS = 'HYBRID.DISK'; System altered.

With the Disks Alone (PRG=DISK)

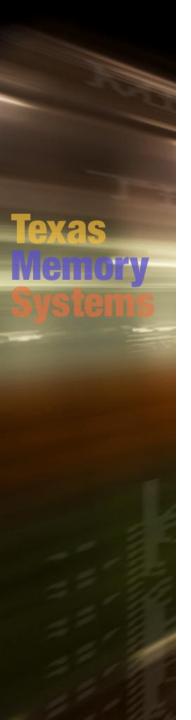
- ~4000 IOPS per RAC node
 16,000 IOPS total
- 12.25 minutes to complete with 4 nodes running (2m queries).

[oracle@opera1 ~]\$ time ./spawn_50.sh

- real 12m15.434s
- user 0m5.464s
- sys 0m4.031s

With the SSD (PRG=SSD)

- 40,000 IOPS per RAC node
 160,000 total in this test
- 1.3 minutes to complete with 4 nodes running (2m queries).


[oracle@opera1 ~]\$ time ./spawn_50.sh

real	1m19.	838s
real	IMI9.	0305

Texas

Memory

- user 0m4.439s
- sys 0m3.215s

Comparison-AWR

Disk (13 ms per read):

Top 5 Timed Foreground Events

Event	Waits	Time(s)	Avg wait (ms)	% DB time	Wait Class
db file sequential read	257,293	3,293	13	82.54	User I/O
db file parallel read	30,915	567	18	14.22	User I/O
DB CPU		75		1.88	
gc cr grant 2-way	199,215	36	0	0.91	Cluster
reliable message	346	10	28	0.24	Other

SSD(<1 ms per read):</p>

Top 5 Timed Foreground Events

Event	Waits	Time(s)	Avg wait (ms)	% DB time	Wait Class
gc cr grant 2-way	1,703,359	1,344	1	35.93	Cluster
db file sequential read	2,250,261	1,253	1	33.51	User I/O
DB CPU		637		17.02	
gc cr multi block request	367,691	356	1	9.52	Cluster
db file parallel read	276,130	111	0	2.96	User I/O

Tablespace IOStats

Tablespace IO Stats

• Disk:

Texas

Memory

ordered by IOs (Reads + Writes) des

Tablespace	Reads	Av Reads/s
TS_S	131,487	1,677
TS_I_LORDERKEY	124,720	1,590
TS_PS	58,061	740
SYSAUX	3,761	48
UNDOTBS3	178	2
DISKS_TEMP	38	0
SYSTEM	68	1

• SSD:

Tablespace IO Stats

• ordered by IOs (Reads + Writes) desc

Tablespace	Reads	Av Reads/s
TS_S	1,161,958	15,562
TS_I_LORDERKEY	1,117,768	14,970
TS_PS	520,385	6,969
SYSAUX	2,448	33
UNDOTBS3	713	10
SYSTEM	296	4
DISKS_TEMP	41	1
UNDOTBS1	3	0

PRG in Oracle ASM

exas

Wembry

- ALL blocking IO is handled by the SSD
 - >10 times faster performance than HDDs!
- Disks provide redundancy in order to keep costs reasonable.
- No sacrificing redundancy
- Allows reuse of legacy hardware

The World's Fastest Storage[®]