The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.
Outline

• Today’s BI must go beyond simple reporting
• To succeed, companies must
 • Eliminate data movement
 • Collapse information latency
 • Deliver better BI through analytics
• ODM makes the Database an “Analytical Database”
 • Enables applications “Powered by Oracle Data Mining”
• Brief demonstrations
 1. Oracle Data Mining
 2. OBI EE Dashboards with ODM Results
 3. Oracle Sales Prospector with embedded ODM
Analytics: Strategic and Mission Critical

• **Competing on Analytics**, by Tom Davenport

 “Some companies have built their very businesses on their ability to collect, analyze, and act on data.”

 “Although numerous organizations are embracing analytics, only a handful have achieved this level of proficiency. But analytics competitors are the leaders in their varied fields—consumer products finance, retail, and travel and entertainment among them.”

• **“Organizations are moving beyond query and reporting”** - IDC 2006

• **Super Crunchers**, by Ian Ayers

 “In the past, one could get by on intuition and experience. Times have changed. Today, the name of the game is data.” —Steven D. Levitt, author of Freakonomics

 “Data-mining and statistical analysis have suddenly become cool.... Dissecting marketing, politics, and even sports, stuff that complex and important shouldn't be this much fun to read.” —Wired
Competitive Advantage

- Optimization
- Predictive Modeling
- Forecasting/Extrapolation
- Statistical Analysis
- Alerts
- Query/drill down
- Ad hoc reports
- Standard Reports
- What’s the best that can happen?
- What will happen next?
- What if these trends continue?
- Why is this happening?
- What actions are needed?
- Where exactly is the problem?
- How many, how often, where?
- What happened?

Source: Competing on Analytics, by T. Davenport & J. Harris

Copyright © 2009 Oracle Corporation
What is Data Mining?

• Automatically sifts through data to find hidden patterns, discover new insights, and make predictions

• Data Mining can provide valuable results:
 • Predict customer behavior (*Classification*)
 • Predict or estimate a value (*Regression*)
 • Segment a population (*Clustering*)
 • Identify factors more associated with a business problem (*Attribute Importance*)
 • Find profiles of targeted people or items (*Decision Trees*)
 • Determine important relationships and “market baskets” within the population (*Associations*)
 • Find fraudulent or “rare events” (*Anomaly Detection*)
Oracle Data Mining Example Use Cases

- **Retail**
 - Customer segmentation
 - Response modeling
 - Recommend next likely product
 - Profile high value customers

- **Banking**
 - Credit scoring
 - Probability of default
 - Customer profitability
 - Customer targeting

- **Insurance**
 - Risk factor identification
 - Claims fraud
 - Policy bundling
 - Employee retention

- **Higher Education**
 - Alumni donations
 - Student acquisition
 - Student retention
 - At-risk student identification

- **Healthcare**
 - Patient procedure recommendation
 - Patient outcome prediction
 - Fraud detection
 - Doctor & nurse note analysis

- **Life Sciences**
 - Drug discovery & interaction
 - Common factors in (un)healthy patients
 - Cancer cell classification
 - Drug safety surveillance

- **Telecommunications**
 - Customer churn
 - Identify cross-sell opportunities
 - Network intrusion detection

- **Public Sector**
 - Taxation fraud & anomalies
 - Crime analysis
 - Pattern recognition in military surveillance

- **Manufacturing**
 - Root cause analysis of defects
 - Warranty analysis
 - Reliability analysis
 - Yield analysis

- **Automotive**
 - Feature bundling for customer segments
 - Supplier quality analysis
 - Problem diagnosis

- **Chemical**
 - New compound discovery
 - Molecule clustering
 - Product yield analysis

- **Utilities**
 - Predict power line / equipment failure
 - Product bundling
 - Consumer fraud detection
Data Mining Provides
Better Information, Valuable Insights and Predictions

Segment #1:
IF CUST_MO > 14 AND INCOME < $90K, THEN Prediction = Cell Phone Churner, Confidence = 100%, Support = 8/39

Segment #3:
IF CUST_MO > 7 AND INCOME < $175K, THEN Prediction = Cell Phone Churner, Confidence = 83%, Support = 6/39

Source: Inspired from Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management by Michael J. A. Berry, Gordon S. Linoff

Copyright © 2009 Oracle Corporation
Predicting High LTV Customers Using a Decision Tree Model

Simple model:
Other ODM models can mine:
- unstructured data (e.g., text comments)
- transactions data (e.g., purchases), etc.

IF (Mortgage_Amount > $500K AND House_Own = 2 or more AND Age = >42)
THEN Probability(Lifetime Customer Value is “VERY HIGH” = 77%, Support = 15%
“Essentially, all models are wrong, but some are useful.”

- George Box

(one of the most influential statisticians of the 20th century and a pioneer in the areas of quality control, time series analysis, design of experiments and Bayesian inference.)
Oracle Data Mining
Overview (Classification)

Cases

<table>
<thead>
<tr>
<th>Name</th>
<th>Income</th>
<th>Age</th>
<th>Respond?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones</td>
<td>30,000</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>Smith</td>
<td>55,000</td>
<td>67</td>
<td>1</td>
</tr>
<tr>
<td>Lee</td>
<td>25,000</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>Rogers</td>
<td>50,000</td>
<td>44</td>
<td>0</td>
</tr>
</tbody>
</table>

Historic Data

<table>
<thead>
<tr>
<th>Name</th>
<th>Income</th>
<th>Age</th>
<th>Respond?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campos</td>
<td>40,500</td>
<td>52</td>
<td>?</td>
</tr>
<tr>
<td>Horn</td>
<td>37,000</td>
<td>73</td>
<td>?</td>
</tr>
<tr>
<td>Habers</td>
<td>57,200</td>
<td>32</td>
<td>?</td>
</tr>
<tr>
<td>Berger</td>
<td>95,600</td>
<td>34</td>
<td>?</td>
</tr>
</tbody>
</table>

Model

Functional Relationship:

\[Y = F(X_1, X_2, \ldots, X_m) \]

Input Attributes

Target

Prediction Confidence

New Data

<table>
<thead>
<tr>
<th>Name</th>
<th>Income</th>
<th>Age</th>
<th>Respond?</th>
<th>Prediction</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campos</td>
<td>40,500</td>
<td>52</td>
<td>?</td>
<td>1</td>
<td>.85</td>
</tr>
<tr>
<td>Horn</td>
<td>37,000</td>
<td>73</td>
<td>?</td>
<td>0</td>
<td>.74</td>
</tr>
<tr>
<td>Habers</td>
<td>57,200</td>
<td>32</td>
<td>?</td>
<td>0</td>
<td>.93</td>
</tr>
<tr>
<td>Berger</td>
<td>95,600</td>
<td>34</td>
<td>?</td>
<td>1</td>
<td>.65</td>
</tr>
<tr>
<td>Problem</td>
<td>Algorithm</td>
<td>Applicability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classification</td>
<td>Logistic Regression (GLM)</td>
<td>Classical statistical technique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decision Trees</td>
<td>Popular / Rules / transparency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naïve Bayes</td>
<td>Embedded app</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Support Vector Machine</td>
<td>Wide / narrow data / text</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression</td>
<td>Multiple Regression (GLM)</td>
<td>Classical statistical technique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Support Vector Machine</td>
<td>Wide / narrow data / text</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anomaly Detection</td>
<td>One Class SVM</td>
<td>Lack examples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribute Importance</td>
<td>Minimum Description Length (MDL)</td>
<td>Attribute reduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identify useful data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduce data noise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Association Rules</td>
<td>Apriori</td>
<td>Market basket analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Link analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clustering</td>
<td>Hierarchical K-Means</td>
<td>Product grouping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hierarchical O-Cluster</td>
<td>Text mining</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gene and protein analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature Extraction</td>
<td>NMF</td>
<td>Text analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feature reduction</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Traditional Analytics (SAS) Environment

- SAS environment requires:
 - Data movement
 - Data duplication
 - Loss of security
Oracle Architecture

Source Data
(Oracle, DB2, SQL Server, TeraData, Ext. Tables, etc.)

• Oracle environment:
 • Eliminates data movement
 • Eliminates data duplication
 • Preserves security
In-Database Data Mining

Traditional Analytics

Data Import

Data Mining Model “Scoring”

Data Preparation and Transformation

Data Mining Model Building

Data Prep & Transformation

Data Extraction

Oracle Data Mining

Results

• Faster time for “Data” to “Insights”
• Lower TCO—Eliminates
 • Data Movement
 • Data Duplication
• Maintains Security

Savings

Model “Scoring”

Data remains in the Database

Embedded data preparation

Cutting edge machine learning algorithms inside the SQL kernel of Database

SQL—Most powerful language for data preparation and transformation

Data remains in the Database

Oracle Data Mining

Copyright © 2009 Oracle Corporation
In-Database Data Mining

Advantages

• ODM architecture provides greater
 • Performance, scalability, and data security
• Data remains in the database
 • Fewer moving parts; shorter information latency
• Straightforward inclusion within interesting and arbitrarily complex queries
 • “SELECT Customers WHERE Income > 100K, AND Probability(Buy Product A) > .85;”
• Real-world scalability—available for mission critical appls
• Enables pipelining of results without costly materialization
• Performant and scalable:
 • Fast scoring: 2.5 million records scored in 6 seconds on a single CPU system
 • Real-time scoring: 100 models on a single CPU: 0.085 seconds
HP Oracle Database Machine & ODM

- Integrated data warehouse solution
- Extreme Performance
 - 10-100X faster than conventional DW systems
- Scalability to Petabytes
- Enterprise-Ready
 - Complete data warehouse functionality
 - Enterprise-level availability and security
- Scoring of Oracle Data Mining models
 - Blazingly fast performance
 - For example, find the US customers likely to churn:

```sql
select cust_id
from customers
where region = 'US'
and prediction_probability(churnmod, 'Y' using *) > 0.8;
```
“If I had one hour to save the world, I would spend fifty-five minutes defining the problem and only five minutes finding the solution”

- Albert Einstein

(see also http://www.wikihow.com/Define-a-Problem)
Oracle Data Mining and Unstructured Data

- Oracle Data Mining mines unstructured i.e. "text" data
- Include free text and comments in ODM models
- Cluster and Classify documents
- Oracle Text used to preprocess unstructured text
Example: Simple, Predictive SQL

- Select customers who are more than 85% likely to be HIGH VALUE customers & display their AGE & MORTGAGE_AMOUNT

```sql
SELECT * from(
  SELECT A.CUSTOMER_ID, A.AGE, MORTGAGE_AMOUNT, PREDICTION_PROBABILITY(INSUR_CUST_LT27754_DT, 'VERY HIGH' USING A.*) prob
  FROM CBERGER.INSUR_CUST_LTV A)
WHERE prob > 0.85;
```
Fraud Prediction Demo

drop table CLAIMS_SET;
exec dbms_data_mining.drop_model('CLAIMSMODEL');
create table CLAIMS_SET (setting_name varchar2(30), setting_value varchar2(4000));
insert into CLAIMS_SET values
('ALGO_NAME', 'ALGO_SUPPORT_VECTOR_MACHINES');
insert into CLAIMS_SET values ('PREP_AUTO', 'ON');
commit;
begin
 dbms_data_mining.create_model('CLAIMSMODEL', 'CLASSIFICATION', 'CLAIMS', 'POLICYNUMBER', null, 'CLAIMS_SET');
end;
/

-- Top 5 most suspicious fraud policy holder claims
select * from
(select POLICYNUMBER, round(prob_fraud*100,2) percent_fraud,
 rank() over (order by prob_fraud desc) rnk from
(select POLICYNUMBER, prediction_probability(CLAIMSMODEL, '0' using *) prob_fraud
 from CLAIMS
 where PASTNUMBEROFCLAIMS in ('2 to 4', 'more than 4'))
where rnk <= 5
order by percent_fraud desc;
Oracle Data Mining 11g

- Data Mining Functions (Server)
 - PL/SQL & Java APIs
 - Develop & deploy predictive analytics applications
- Wide range of DM algorithms (12)
 - Classification & regression
 - Clustering
 - Anomaly detection
 - Attribute importance
 - Feature extraction (NMF)
 - Association rules (Market Basket analysis)
 - Structured & unstructured data (text mining)
- Oracle Data Miner (GUI)
 - Simplified, guided data mining using wizards
- Predictive Analytics
 - “1-click data mining” from a spreadsheet
Analytical Database Changes *Everything*

It boils down to this:

Less data movement = **faster** analytics, and faster analytics = **better** BI throughout the enterprise
Integration with Oracle BI EE

Oracle BI EE defines results for end user presentation

Oracle Data Mining results available to Oracle BI EE administrators
Example

Better Information for OBI EE Reports and Dashboards

ODM’s predictions & probabilities are available in the Database for reporting using Oracle BI EE and other tools.
Oracle SQL Statistical Functions
(Free in Every Oracle Database)
11g Statistics & SQL Analytics

• Ranking functions
 • `rank`, `dense_rank`, `cume_dist`, `percent_rank`, `ntile`

• Window Aggregate functions
 (moving and cumulative)
 • `Avg`, `sum`, `min`, `max`, `count`, `variance`, `stddev`, `first_value`, `last_value`

• LAG/LEAD functions
 • Direct inter-row reference using offsets

• Reporting Aggregate functions
 • `Sum`, `avg`, `min`, `max`, `variance`, `stddev`, `count`, `ratio_to_report`

• Statistical Aggregates
 • Correlation, linear regression family, covariance

• Linear regression
 • Fitting of an ordinary-least-squares regression line to a set of number pairs.
 • Frequently combined with the `COVAR_POP`, `COVAR_SAMP`, and `CORR` functions

Descriptive Statistics

• DBMS_STAT_FUNCS: summarizes numerical columns of a table and returns count, `min`, `max`, `range`, `mean`, `stats_mode`, `variance`, `standard deviation`, `median`, `quantile values`, `+- n sigma values, top/bottom 5 values`

• Correlations
 • Pearson's correlation coefficients, Spearman's and Kendall's (both nonparametric).

• Cross Tabs
 • Enhanced with % statistics: chi squared, phi coefficient, Cramer's V, contingency coefficient, Cohen's kappa

• Hypothesis Testing
 • Student t-test, F-test, Binomial test, Wilcoxon Signed Ranks test, Chi-square, Mann Whitney test, Kolmogorov-Smirnov test, One-way ANOVA

• Distribution Fitting
 • Kolmogorov-Smirnov Test, Anderson-Darling Test, Chi-Squared Test, Normal, Uniform, Weibull, Exponential

Note: Statistics and SQL Analytics are included in Oracle Database Standard Edition

Copyright © 2009 Oracle Corporation
Descriptive Statistics

- **MEDIAN & MODE**
 - Median: takes numeric or datatype values and returns the middle value
 - Mode: returns the most common value

A. `SELECT STATS_MODE(AGE) FROM LYMPHOMA;`

B. `SELECT MEDIAN(AGE) FROM LYMPHOMA;`

C. `SELECT TREATMENT_PLAN, STATS_MODE(LYMPH_TYPE) FROM lymphoma GROUP BY TREATMENT_PLAN;`

D. `SELECT LYMPH_TYPE, MEDIAN(SIZE_REDUCTION) FROM LYMPHOMA GROUP BY LYMPH_TYPE ORDER BY MEDIAN(SIZE_REDUCTION) ASC;`
Split Lot A/B Offer testing

• Offer “A” to one population and “B” to another
• Over time period “t” calculate median purchase amounts of customers receiving offer A & B
• Perform t-test to compare
• If statistically significantly better results achieved from one offer over another, offer everyone higher performing offer
Independent Samples T-Test (Pooled Variances)

• Query compares the mean of AMOUNT_SOLD between MEN and WOMEN within CUST_INCOME_LEVEL ranges

```sql
SELECT substr(cust_income_level,1,22) income_level,
       avg(decode(cust_gender,'M',amount_sold,null)) sold_to_men,
       avg(decode(cust_gender,'F',amount_sold,null)) sold_to_women,
       stats_t_test_indep(cust_gender, amount_sold, 'STATISTIC','F') t_observed,
       stats_t_test_indep(cust_gender, amount_sold) two_sided_p_value
FROM sh.customers c, sh.sales s
WHERE c.cust_id=s.cust_id
GROUP BY rollup(cust_income_level)
ORDER BY 1;
```

SQL Worksheet
Correlation Functions

- The CORR_S and CORR_K functions support nonparametric or rank correlation (finding correlations between expressions that are ordinal scaled).
- Correlation coefficients take on a value ranging from −1 to 1, where:
 - 1 indicates a perfect relationship
 - −1 indicates a perfect inverse relationship
 - 0 indicates no relationship
- The following query determines whether there is a correlation between the AGE and WEIGHT of people, using Spearman's correlation:

```sql
select CORR_S(AGE, WEIGHT) coefficient,
       CORR_S(AGE, WEIGHT, 'TWO_SIDED_SIG') p_value,
       substr(TREATMENT_PLAN, 1,15) as TREATMENT_PLAN
from CBERGER.LYMPHOMA
GROUP BY TREATMENT_PLAN;
```
1. **In-Database Analytics Engine**
 - Basic Statistics *(Free)*
 - Data Mining
 - Text Mining

2. **Costs** *(ODM: $23K cpu)*
 - Simplified environment
 - Single server
 - Security

3. **IT Platform**
 - SQL *(standard)*
 - Java *(standard)*

1. **External Analytical Engine**
 - Basic Statistics
 - Data Mining
 - Text Mining *(separate: SAS EM for Text)*
 - Advanced Statistics

2. **Costs** *(SAS EM: $150K/5 users)*
 - Duplicates data
 - Annual Renewal Fee (AUF)
 (~45% each year)

3. **IT Platform**
 - SAS Code *(proprietary)*
1. **In-Database** Analytics Engine
 - Basic Statistics *(Free)*
 - Data Mining
 - Text Mining

2. Costs *(ODM: $23K cpu)*
 - Simplified environment
 - Single server
 - Security

3. IT Platform
 - SQL *(standard)*
 - Java *(standard)*

1. **External** Analytical Engine
 - Basic Statistics
 - Data Mining
 - Text Mining *(separate: SAS EM for Text)*
 - Advanced Statistics

2. Costs *(SAS EM: $150K/5 users)*
 - Duplicates data
 - Annual Renewal Fee (AUF)
 (~45% each year)

3. IT Platform
 - SAS Code *(proprietary)*
“The goal of the SAS In-Database initiative is … to achieve deeper technical integration with database providers..

..., the SAS engine often must load and extract data over a network to and from the DBMS. This presents a series of challenges:

• …Network bottlenecks between SAS and the DBMS constrain access to large volumes of data

• … the results of the SAS processing must be transferred back to the DBMS for final storage, which further increases the cost.
Brief Demonstrations

1. Oracle Data Mining
2. Oracle Business Intelligence EE
3. CRM Sales Prospector
Oracle Data Mining + OBI EE
Quick Demo: Oracle Data Mining

- Scenario: Insurance Company
- Business problem(s):
 1. Better understand the business by looking at graphs of the data
 2. Identify the factors (attributes) most associated with Customer who BUY_INSURANCE
 3. Target Best Customers
 a. Build a predictive model to understand who will be a VERY_HIGH VALUE Customer …. And WHY (IF… THEN.. Rules that can describe them)
 b. Predict who is likely to be a VERY_HIGH VALUE Customer in the future
 c. View results in an OBI EE Dashboard
 • Including other business problems e.g. Fraud, Cross-Sell, etc.
 • (Entire process can be automated w/ PL/SQL and/or Java APIs)
Oracle Data Mining + OBI EE
Understand the Data

Oracle Data Mining helps to visualize the data.
Oracle Data Mining + OBI EE
Target the Right Customers

Oracle Data Miner guides the analyst through the data mining process.
Oracle Data Mining builds a model that differentiates HI_VALUE_CUSTOMERS from others.
Oracle Data Mining creates a prioritized list of customers who are likely to be high value.
Integration with Oracle BI EE

Oracle Data Mining provides more information and better insight.
Oracle Data Mining
Know More, Do More, Spend Less

<table>
<thead>
<tr>
<th>Business Decision Makers</th>
<th>Data Analysts</th>
<th>Integrators and IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Make Better Decisions</td>
<td>• Get Results Faster</td>
<td>• Create More Value for Your Organization</td>
</tr>
<tr>
<td>• Extract More Value from Your Data</td>
<td>• Get More Results</td>
<td>• Make Your Work Easier</td>
</tr>
<tr>
<td>• Lower Your Total Cost of Ownership</td>
<td>• Easy to Use</td>
<td>• Transform IT from a Cost to a Profit Center</td>
</tr>
</tbody>
</table>

Copyright © 2009 Oracle Corporation
Oracle Data Mining (SQL & Java) APIs
HCM Prediction Demo

drop table HCM_SET;
exec dbms_data_mining.drop_model('HCMMODEL');

create table HCM_SET (setting_name varchar2(30), setting_value varchar2(4000));
insert into HCM_SET values ('ALGO_NAME','ALGO_SUPPORT_VECTOR_MACHINES');
insert into HCM_SET values ('PREP_AUTO','ON');
commit;

begin
 dbms_data_mining.create_model('HCMMODEL', 'CLASSIFICATION', 'EMPL_DATA', 'EMPL_ID', 'CURR_EMPL', 'HCM_SET');
end;
/

-- accuracy (per-class and overall)
col actual format a6
select actual, round(corr*100/total,2) percent, corr, total-corr incorr, total from
(select actual, sum(decode(actual,predicted,1,0)) corr, count(*) total from
(select CURR_EMPL actual, prediction(HCMMODEL using *) predicted
from EMPL_DATA_JUNE07) group by rollup(actual));

-- top 5 very high value, current employees most likely to leave
select * from
(select empl_id, round(prob_leave*100,2) percent_leave,
 rank() over (order by prob_leave desc) rnk from
(select empl_id, prediction_probability(HCMMODEL, 'NO' using *) prob_leave
from EMPL_DATA_JUNE07
where CURR_EMPL = 'YES' and LTV_BIN = 'VERY HIGH'))
where rnk <= 5
order by percent_leave desc;

ACTUAL PERCENT CORR INCORR TOTAL
------------ ---------- ---------- ---------- ----------
NO 84.04 3133 595 3728
YES 80.61 8159 1963 10122
 81.53 11292 2558 13850
Elapsed: 00:00:01.51
SQL>

EMPL_ID PERCENT_LEAVE RNK
---------- ------------- ----------
772858 96.84 1
775441 95.65 2
777992 92.1 3
773473 91.51 4
771813 90.21 5
Elapsed: 00:00:00.29
SQL>
Predictive Analytics Use Case

• The cast:
 • Peter: a data mining analyst
 • Sally: a marketing manager
• Peter builds a decision tree classification model, tree_model
• Peter grants the ability to view/score the tree model to Sally

 GRANT SELECT MODEL ON tree_model TO Sally;

• Sally inspects the model, likes it, and wants it deployed
• Sally scores the customer database using the new model and his understanding of the cost of contacting a customer and sends the new contact list to the head of the sales department

 CREATE TABLE AS SELECT cust_name, cust_phone FROM customers
 WHERE prediction(Peter.tree_model cost matrix (0,5,1,0) using *) = 'responder';
Real-time Prediction

with
records as (select
 78000 SALARY,
 250000 MORTGAGE_AMOUNT,
 6 TIME_AS_CUSTOMER,
 12 MONTHLY_CHECKS_WRITTEN,
 55 AGE,
 423 BANK_FUNDS,
 'Married' MARITAL_STATUS,
 'Nurse' PROFESSION,
 'M' SEX,
 4000 CREDIT_CARD_LIMITS,
 2 N_OF_DEPENDENTS,
 1 HOUSE_OWNERSHIP from dual)
select s.prediction prediction, s.probability probability
from (select PREDICTION_SET(INSUR_CUST_LT68054_DT, 1 USING *) pset
from records) t, TABLE(t.pset) s;

On-the-fly, single record apply with new data (e.g. from call center)

<table>
<thead>
<tr>
<th>PREDICTION</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH</td>
<td>0.65123504736232096</td>
</tr>
</tbody>
</table>
Prediction Multiple Models/Optimization

with records as (select
178255 ANNUAL_INCOME,
30 AGE,
'Bach.' EDUCATION,
'Married' MARITAL_STATUS,
'Male' SEX,
70 HOURS_PER_WEEK,
98 PAYROLL_DEDUCTION from dual)

select t.*
from (select 'CAR_MODEL' MODEL, s1.prediction prediction, s1.probability probability, s1.probability*25000 as expected_revenue from (select PREDICTION_SET(NBMODEL_JDM, 1 USING *) pset from records) t1, TABLE(t1.pset) s1
UNION
select 'MOTOCYCLE_MODEL' MODEL, s2.prediction prediction, s2.probability probability, s1.probability*2000 as expected_revenue from (select PREDICTION_SET(ABNMODEL_JDM, 1 USING *) pset from records) t2, TABLE(t2.pset) s2
UNION
select 'TRICYCLE_MODEL' MODEL, s3.prediction prediction, s3.probability probability, s1.probability*50 as expected_revenue from (select PREDICTION_SET(TREEMODEL_JDM, 1 USING *) pset from records) t3, TABLE(t3.pset) s3
UNION
select 'BICYCLE_MODEL' MODEL, s4.prediction prediction, s4.probability probability, s1.probability*200 as expected_revenue from (select PREDICTION_SET(SVMCMODEL_JDM, 1 USING *) pset from records) t4, TABLE(t4.pset) s4
) t

order by t.expected_revenue desc;

On-the-fly, multiple models; then sort by expected revenues
Oracle Sales Prospector
• Announces Fusion Edge CRM On-Demand Hosted Application with integrated data mining to mine customer database
How Can I Sell More?

- Which types of customers are buying which products?
- Which prospects most resemble those customers?
- Which references can I use to help me close my deals?

Sales Rep
Oracle Data Mining = the Science of Selling

Oracle Sales Prospector

ODM Predictions exposed via Social CRM Dashboards

Oracle Database 11G

Social CRM schema ships with Oracle Database EE 11g + Data Mining Option
Oracle Data Mining predicts likelihood of purchases

Oracle Data Mining recommends products customer is likely to buy

Oracle Data Mining suggests likely references
Oracle Data Mining Summary

• Powers Next-Generation Predictive Applications
 • Rapidly Build Applications that Automatically Mine Data
 • Code Once, Run Anywhere
 • Parallel and Distributed Processing
 • Industry Standard SQL and Java APIs

• Industry Leader in In-Database Data Mining
 • Option to the Industry Leading RDBMS—Oracle Database
 • Classification, Regression, Attribute Importance
 • Clustering, Market Basket Analysis, Anomaly Detection, Feature Extraction
 • Cutting Edge Algorithms: SVM, One-Class SVM, NMF, Scalable GLM

Copyright © 2009 Oracle Corporation
Oracle Data Mining Summary

• More Information from More Data
 • Easy to use Oracle Data Miner Graphical User Interface
 • Wide Range of In-Database Data Mining Algorithms and Statistics
 • Mine Text, Transactional, and Star Schema Data
 • Mine XML, Semantic RDF, Spatial, and OLAP Data

• Eliminate Barriers Between Analysts and IT
 • Quickly Disseminate Analytical Results and Models Throughout the Organization
 • Include Real-Time Predictive Models and New Insights in SQL queries
 • Eliminate Data Movement, Maximize Security
Getting Started
Data Mining Projects

• “The vast majority of BI professionals are excited about the prospects of data mining, but are fully mystified about where to begin or even how to prepare”
• “Of those who did initiate a modeling initiative, …51% of data mining projects either never left the ground, did not realize value or the ultimate results were not measurable”
• “In most cases, those who attempted an implementation ended up building excellent predictive models that answer the wrong questions”
• “For any organization with annual revenues more than $50 million, employing data mining technology is not a matter of whether, but when”
Getting Started with Oracle Data Mining

• You can download a free evaluation copy of Oracle Data Mining and try it out on your own computer. See the Oracle Data Mining Administrators Guide, which tells how to install a database and set up a user account. Download the Oracle Database Enterprise Edition (10gR2 or 11g) from the Oracle Technology Network. The Oracle Data Mining Option is installed by default with Oracle Database EE. For data analysts or those new to data mining, you will also want to download and install Oracle Data Miner, the free, optional graphical user interface. A summary of algorithms supported by ODM with links to the documentation is posted here.

• To get started quickly, Part I of ODM Concepts introduces you to the features and terminology of Oracle Data Mining. Then, use the Oracle Data Mining Tutorial to provide step-by-step guidance for using the Oracle Data Miner graphical interface. … You can use the Oracle Data Miner (Data --> Import...) to import your own data in .csv text files and begin mining.

• For application developers, the ODM Application Developer's Guide along with the Oracle Data Mining sample programs gets you started writing SQL- or Java-based data mining applications.

• Some additional datasets for learning Oracle Data Mining include:
 - CUST_INSUR_LTV (dmp file), CD_BUYERS (dmp file), EMPL_DATA (dmp file), LYMPHOMA (dmp file)

• Application developers can integrate predictive analytics into any report or enterprise application using ODM’s server-based PL/SQL or Java APIs. See ODM Sample Programs for demo sample code.

• Oracle Data Mining Education through Oracle University
 - Installing Data Miner (Oracle By Example)
 - Solving Business Problems with Data Mining (Oracle By Example)

Copyright © 2009 Oracle Corporation
More Information:

Oracle Data Mining 11g
- oracle.com/technology/products/bi/odm/index.html

Oracle Statistical Functions

Oracle Business Intelligence Solutions
- oracle.com/bi

http://search.oracle.com

Contact Information: Email: Charlie.berger@oracle.com

Oracle is the Information Company
Oracle BIWA Overview

Oracle BI, Warehousing and Analytics SIG

- Worldwide association of professionals interested in Oracle Database-centric Business Intelligence, Data Warehousing, and Analytical products, features and options.

- Web site: www.OracleBIWA.org

- Founded in late 2006
 - Rapidly growing (2,000+) members

- BIWA Summit Conferences
 - 2007: Oracle, Reston, VA
 - 2008: Oracle HQ Conference Center
 - April 2010: BIWA Summit at Collaborate 2010 in Las Vegas

- Wednesday BIWA TechCast Series
Oracle BIWA Summit 2008 is a forum for business intelligence, warehousing and analytics professionals to exchange information, experiences and best practices. Gain the knowledge and information critical for success in your work.
Wednesday TechCast Series

- Any Oracle user or professional may submit abstracts for (45 min) webcasts to IOUG Oracle BIWA SIG Community (Visit: www.oraclebiwa.org)
- BIWA Wednesday TechCasts audience is technical. Presenters are encouraged to include a significant amount of technical detail. Live demos are strongly encouraged
- Each BIWA TechCast will be recorded and posted on the BIWA website (www.oraclebiwa.org) for on-demand viewing
- This will be BIWA primary vehicle for exchanging information until our next (3rd) BIWA Summit
- **Selection Criteria:** TechCasts will be selected based on appropriateness, anticipated level of interest, novelty and interest level for community, public success stories, and usefulness
- **Scheduling:** If your abstract is selected, you will be contacted and invited to present on a Wednesday BIWA TechCast at 12 EDT that is convenient to your schedule
Wednesday TechCast Series

- Example topics of particular interest to BIWA community include, but are not limited to the following:

 - **Data Access and Data Integration**
 - Data quality
 - Extract, transform, load (ETL)
 - Accessing distributed data
 - SOA integration

 - **Data Warehouses**
 - Data Governance
 - Master Data Management
 - Partitioning
 - Tuning warehouse for performance
 - Faster cubes for faster information
 - Managing images

 - **Reporting and BI Dashboards**
 - Better reports & better information
 - Custom BI environments
 - Real-time analytics
 - Interactive dashboards & EPM
 - Essbase and OBI EE & Oracle Database

 - **Advanced Analytics**
 - Predictive analytics
 - Data mining and text mining
 - SQL Statistical functions
 - Fraud detection
 - Market basket analysis
 - Churn prevention
 - OLAP - building & using “cubes”
 - What if? analysis
 - Leveraging spatial data
 - Time series and forecasting
 - Harvesting more insight from data

 - **“Best practices”**

 - **Case Studies**

 - **Tips & Tricks**
“This presentation is for informational purposes only and may not be incorporated into a contract or agreement.”