

Oracle Data Mining Overview and Demo

Charlie Berger

Sr. Director Product Management, Data Mining Technologies Oracle Corporation charlie.berger@oracle.com

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle's products remains at the sole discretion of Oracle.

Outline

- Today's BI must go beyond simple reporting
- To succeed, companies must
 - Eliminate data movement
 - Collapse information latency
 - Deliver better BI through analytics
- ODM makes the Database an "Analytical Database"
 - Enables applications "Powered by Oracle Data Mining"
- Brief demonstrations
 - 1. Oracle Data Mining
 - 2. OBI EE Dashboards with ODM Results
 - 3. Oracle Sales Prospector with embedded ODM

Analytics: Strategic and Mission Critical

- Competing on Analytics, by Tom Davenport
 - "Some companies have built their very businesses" on their ability to collect, analyze, and act on data."
 - "Although numerous organizations are embracing analytics, only a handful have achieved this level of proficiency. But analytics competitors are the leaders in their varied fields—consumer products finance, retail, and travel and entertainment among them."
 - "Organizations are moving beyond query and reporting" IDC 2006
- Super Crunchers, by Ian Ayers
 - "In the past, one could get by on intuition and experience. Times have changed. Today, the name of the game is data." -Steven D. Levitt. author of Freakonomics
 - "Data-mining and statistical analysis have suddenly become cool.... Dissecting marketing, politics, and even sports, stuff th complex and important shouldn't be this much fun to read."-Wired

Competing on

Analytics

king ... Not only is it fun to read, it just may change the way you thin -STEVEN D. LEVITT, coauthor of Free

THINKING - BY - N

Competitive Advantage

Degree of Intelligence

Source: Competing on Analytics, by T. Davenport & J. Harris

Competitive Advantage

Copyright © 2009 Oracle Corporation

ORACLE

Oracle Data Mining Option

What is Data Mining?

- Automatically sifts through data to find hidden patterns, discover new insights, and make predictions
- Data Mining can provide valuable results:
 - Predict customer behavior (Classification)
 - Predict or estimate a value (Regression)
 - Segment a population (Clustering)
 - Identify factors more associated with a business problem (Attribute Importance)
 - Find profiles of targeted people or items (*Decision Trees*)
 - Determine important relationships and "market baskets" within the population (Associations)
 - Find fraudulent or "rare events" (Anomaly Detection)

SAN

Oracle Data Mining Example Use Cases

Retail

- Customer segmentation
- Response modeling
- Recommend next likely product
- Profile high value customers

Banking

- Credit scoring
- Probability of default
- Customer profitability
- Customer targeting

Insurance

- · Risk factor identification
- · Claims fraud
- Policy bundling
- Employee retention

Higher Education

- Alumni donations
- Student acquisition
- Student retention
- · At-risk student identification

Healthcare

- Patient procedure recommendation
- · Patient outcome prediction
- Fraud detection
- · Doctor & nurse note analysis

Life Sciences

- Drug discovery & interaction
- Common factors in (un)healthy patients
- Cancer cell classification
- Drug safety surveillance

Telecommunications

- · Customer churn
- · Identify cross-sell
- opportunities
- Network intrusion detection
- Public Sector
 - · Taxation fraud & anomalies
 - · Crime analysis
 - Pattern recognition in military surveillance

Manufacturing

- Root cause analysis of defects
- · Warranty analysis
- · Reliability analysis
- · Yield analysis
- Automotive
 - Feature bundling for customer segments
 - · Supplier quality analysis
 - Problem diagnosis
- Chemical
 - New compound discovery
 - Molecule clustering
 - · Product yield analysis
- Utilities
 - Predict power line / equipment failure
 - Product bundling
 - · Consumer fraud detection

Data Mining Provides Better Information, Valuable Insights and Predictions

Source: Inspired from Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management by Michael J. A. Berry, Gordon S. Linoff ORACLE Copyright © 2009 Oracle Corporation

Predicting High LTV Customers Using a Decision Tree Model

IF (Mortgage_Amount > \$500K AND House_Own = 2 or more AND Age = >42) THEN Probability(Lifetime Customer Value is "VERY HIGH" = 77%, Support = 15%

ORACLE

"Essentially, all models are wrong, but some are useful."

- George Box

(one of the most influential statisticians of the 20th century and a pioneer in the areas of quality control, time series analysis, design of experiments and Bayesian inference.)

Prediction Confidence

ORACLE

Oracle Data Mining

Algorithm Summary 11g

Problem	Algorithm	Applicability
Classification	Logistic Regression (GLM) Decision Trees Naïve Bayes Support Vector Machine	Classical statistical technique Popular / Rules / transparency Embedded app Wide / narrow data / text
Regression	Multiple Regression (GLM) Support Vector Machine	Classical statistical technique Wide / narrow data / text
Anomaly Detection	One Class SVM	Lack examples
Attribute	Minimum Description Length (MDL)	Attribute reduction Identify useful data Reduce data noise
Association Rules	Apriori	Market basket analysis Link analysis
Clustering	Hierarchical K-Means	Product grouping Text mining
	Hierarchical O-Cluster	Gene and protein analysis
Feature ••••••••••••••••••••••••••••••••••••	NMF	Text analysis Feature reduction

Copyright © 2009 Oracle Corporation

ORACLE

Traditional Analytics (SAS) Environment

- SAS environment requires:
 - Data movement
 - Data duplication
 - Loss of security

Oracle Architecture

- Oracle environment:
 - Eliminates data movement
 - Eliminates data duplication
 - Preserves security

In-Database Data Mining

Copyright © 2009 Oracle Corporation

ORACLE

In-Database Data Mining Advantages

- ODM architecture provides greater
 - Performance, scalability, and data security
- Data remains in the database
 - Fewer moving parts; shorter information latency
- Straightforward inclusion within interesting and arbitrarily complex queries
 - "SELECT Customers WHERE Income > 100K, AND Probability(Buy Product A) > .85;"
- Real-world scalability—available for mission critical appls
- Enables pipelining of results without costly materialization
- Performant and scalable:
 - Fast scoring: 2.5 million records scored in 6 seconds on a single CPU system
 - Real-time scoring: 100 models on a single CPU: 0.085 seconds

ORACLE

HP Oracle Database Machine & ODM

- Extreme Performance
 - 10-100X faster than conventional DW systems
- Scalability to Petabytes
- Enterprise-Ready

Ø

- Complete data warehouse functionality
- Enterprise-level availability and security
- Scoring of Oracle Data Mining models
 - Blazingly fast performance
 - For example, find the US customers likely to churn:

```
select cust_id
from customers
where region = 'US'
and prediction_probability(churnmod, 'Y' using *) > 0.8;
```


"If I had one hour to save the world, I would spend fifty-five minutes defining the problem and only five minutes finding the solution"

- Albert Einstein

(see also http://www.wikihow.com/Define-a-Problem)

Oracle Data Mining and Unstructured Data

101 101 101

- Oracle Data Mining mines unstructured i.e. "text" data
- Include free text and comments in **ODM** models
- Cluster and Classify documents
- Oracle Text used to preprocess unstructured text

Structur	e Dat	a					
Fetch Si <u>z</u> e	: 100	F	etch <u>N</u>	lext	Refr	esh	
CUST_ID	AFFINIT	Y_C	ARD	AGE	CU.	. COMMENTS	CUST_MARI
101501	0		4	41	F	Shopping at your store is a hassle. I rarely shop there and usually forget to bring your new loyalty c	NeverM
101502	0			27	М	Affinity card is great. I think it is a hassle to have to remember to bring it in every time though.	NeverM
101503	0			20	F	I purchased a new computer recently, but the manuals weren't included. Could you ship them to me	NeverM
101504	1			45	M	Affinity card is great. I think it is a hassle to have to remember to bring it in every time though.	Married
101505	1			34	M	Why didn't you start a program like this before? Everyone else has been offering discounts like this f.,	NeverM
101506	0			38	M	Forget it. I'm not giving you all my personal information. I wish you'd give up and respect a customer	Married
101507	0			28	M	It is a good way to attract new shoppers. After shopping at your store for more than a month, I am r	Married
101508	0			19	М	I shop your store a lot. I love your weekly specials.	NeverM
101509	0		\$	52	M	Affinity card makese sense only for bulk purchases. For all others, driving so far is not worth the di	Married
101510	1			27	M	Could you send an Affinity Card to my mother in France? Let me know and I'll send you here address.	NeverM
101511	0			30	M	Shopping at your store is a hassle. I rarely shop there and usually forget to bring your new loyalty c	NeverM
101512	0			30	F	The new affinity card is great. Thank you. I do have to say that it is a hassle to remember to bring it	NeverM
101513	0			31	M	Thanks but even with your discounts, your products are too expensive. Sorry.	Married
101514	0			45	М	Affinity card is great. I think it is a hassle to have to remember to bring it in every time though.	NeverM
101515	0		:	36	F	I purchased the new mouse pads and love them. I also purchased one for my sister and one for my	NeverM
101516	0		:	33	M	Don't send me any more promotions. I get too much lousy junk mail already	Married
101517	0		:	38	F	Shopping at your store is a hassle. I rarely shop there and usually forget to bring your new loyalty c	NeverM
101518	0			22	M	Don't send me any more promotions. I get too much lousy junk mail already	NeverM
101519	0			46	F	Shopping at your store is a hassle. I rarely shop there and usually forget to bring your new loyalty c	Divorc.
101520	1		:	39	M	Affinity card is great. I think it is a hassle to have to remember to bring it in every time though.	Married
101521	0		6	61	M	I shop your store a lot. I love your weekly specials.	Married
101522	1			39	F	If I forget my affinity card, can I still shop here and get the discount?	NeverM
101523	0		1	22	М	A great program but I have to complain just a bit. Why do you need to know how many children I hav	Mabsent
101524	0			38	М	Thank you, But please remove my name from your list.	Married
101525	0			18	F	My brother uses the affinity card a lot. I think the competitor has better prices without it.	NeverM

Example: Simple, Predictive SQL

 Select customers who are more than 85% likely to be HIGH VALUE customers & display their AGE & MORTGAGE_AMOUNT

쭇 SQL Wor	ksheet				
<u>F</u> ile <u>H</u> elp					
-Enter SQL	Statement				SELECT ^ from(
SELECT A PREDIC USING A FROM CE	A.CUSTOM TION_PRO A.*) prob BERGER.IN prob > 0.85	ER ID, A.AGE, N BABILITY(INSUR ISUR_CUST_LTV	MORTGAGE / CUST_LT354 / A)	AMOUNT, 166_DT, VERY HIGH	SELECT A.CUSTOMER_ID, A.AGE, MORTGAGE_AMOUNT,PREDICTION_PROBABILITY (INSUR_CUST_LT27754_DT, 'VERY HIGH' USING A.*) prob FROM CBERGER.INSUR_CUST_LTV A) WHERE prob > 0.85;
		199999			
Results					
Fetch Si <u>z</u> e: 1	00 Feto	h <u>N</u> ext <u>R</u> efresh			
CUSTOMER	ID AGE	MORTGAGE	PROB		
CU1523	50	1158	9806451612		
CU1653	70	7000	9806451612		
CU1057	49	5000	9806451612	<u>- 223</u>	
CU1059	36	3500	9806451612		
CU1764	54	2800	9806451612		
CU1775	51	3000	9806451612		
CU1537	67	1500	9806451612		
CU2544	27	1150	9806451612		
CU1324	50	2000	9806451612		
CU1336	34	1300	.9806451612		
CU1338	78	1100	.9806451612		
CU1341	53	1200	.9806451612		
CU1686	35	1600	.9806451612		
CU3242	49	2187	.9806451612	-	

Fraud Prediction Demo

drop table CLAIMS_SET; exec dbms_data_mining.drop_model('CLAIMSMODEL'); create table CLAIMS_SET (setting_name varchar2(30), setting_value varchar2(4000)); insert into CLAIMS_SET values ('ALGO_NAME','ALGO_SUPPORT_VECTOR_MACHINES'); insert into CLAIMS_SET values ('PREP_AUTO','ON'); commit;	POLICYNUMBER 6532 2749 3440 654 12650	PERCENT_FRAUD 64.78 64.17 63.22 63.1 62.36	RNK 1 2 3 4 5
begin dbms_data_mining.create_model('CLAIMSMODEL', 'CLASSIFICATION', 'CLAIMS', 'POLICYNUMBER', null, 'CLAIMS_SET'); end; /			
Top 5 most suspicious fraud policy holder claims select * from			
<pre>(select POLICYNUMBER, round(prob_fraud*100,2) percent_fraud, rank() over (order by prob_fraud desc) rnk from (select POLICYNUMBER, prediction_probability(CLAIMSMODEL, '0' using *) prob_fraud from CLAIMS where PASTNUMBEROFCLAIMS in ('2 to 4', 'more than 4'))) where rnk <= 5 order by percent_fraud desc;</pre>			

Oracle Data Mining 11g

- Data Mining Functions (Server)
 - PL/SQL & Java APIs
 - Develop & deploy predictive analytics applications
- Wide range of DM algorithms (12)
 - Classification & regression
 - Clustering
 - Anomaly detection
 - Attribute importance
 - Feature extraction (NMF)
 - Association rules (Market Basket analysis)
 - Structured & unstructured data (text mining)
- Oracle Data Miner (GUI)
 - Simplified, guided data mining using wizards
- Predictive Analytics
 - "1-click data mining" from a spreadsheet

Analytical Database Changes * Everything*

It boils down to this:

Less data movement = **faster** analytics, and faster analytics = **better** BI throughout the enterprise

ORACLE

Integration with Oracle BI EE

Copyright © 2009 Oracle Corporation

ORACLE

Example

Better Information for OBI EE Reports and Dashboards

Oracle SQL Statistical Functions (Free in Every Oracle Database)

percent_rank, ntile numerical co count, min, r

11g Statistics & SQL Analytics

Window Aggregate functions (moving and cumulative)

rank, dense rank, cume dist,

- Avg, sum, min, max, count, variance, stddev, first_value, last_value
- LAG/LEAD functions

Ranking functions

- Direct inter-row reference using offsets
- Reporting Aggregate functions
 - Sum, avg, min, max, variance, stddev, count, ratio_to_report
- Statistical Aggregates
 - Correlation, linear regression family, covariance
- Linear regression
 - Fitting of an ordinary-least-squares regression line to a set of number pairs.
 - Frequently combined with the COVAR_POP, COVAR_SAMP, and CORR functions

Descriptive Statistics

- DBMS_STAT_FUNCS: summarizes numerical columns of a table and returns count, min, max, range, mean, stats_mode, variance, standard deviation, median, quantile values, +/- n sigma values, top/bottom 5 values
- Correlations
 - Pearson's correlation coefficients, Spearman's and Kendall's (both nonparametric).
- Cross Tabs
 - Enhanced with % statistics: chi squared, phi coefficient, Cramer's V, contingency coefficient, Cohen's kappa
- Hypothesis Testing
 - Student t-test, F-test, Binomial test, Wilcoxon Signed Ranks test, Chi-square, Mann Whitney test, Kolmogorov-Smirnov test, One-way ANOVA
- Distribution Fitting
 - Kolmogorov-Smirnov Test, Anderson-Darling Test, Chi-Squared Test, Normal, Uniform, Weibull, Exponential

Note: Statistics and SQL Analytics are included in Oracle Database Standard Edition

Descriptive Statistics

MEDIAN & MODE

> SQL

- Median: takes numeric or datetype values and returns the middle value
- Mode: returns the most common value
 - A. SELECT STATS_MODE(AGE) from LYMPHOMA;
 - B. SELECT MEDIAN(AGE) from LYMPHOMA;
 - C. SELECT TREATMENT_PLAN, STATS_MODE(LYMPH_TYPE) from lymphoma GROUP BY TREATMENT_PLAN;
 - D. SELECT LYMPH_TYPE, MEDIAN(SIZE_REDUCTION) from LYMPHOMA GROUP BY LYMPH_TYPE ORDER BY MEDIAN(SIZE_REDUCTION) ASC;

Split Lot A/B Offer testing

- Offer "A" to one population and "B" to another
- Over time period "t" calculate median purchase amounts

- of customers receiving offer A & B
- Perform t-test to compare
- If statistically significantly better results achieved from one offer over another, offer everyone higher performing offer

Independent Samples T-Test (Pooled Variances)

• Query compares the mean of AMOUNT_SOLD between MEN and WOMEN within CUST_INCOME_LEVEL ranges

SELECT substr(cust_income_level,1,22) income_level,

avg(decode(cust_gender,'M',amount_sold,null)) sold_to_men,

avg(decode(cust_gender,'F',amount_sold,null)) sold_to_women,

stats_t_test_indep(cust_gender, amount_sold, 'STATISTIC','F')
t_observed,

stats_t_test_indep(cust_gender, amount_sold) two_sided_p_value
FROM sh.customers c, sh.sales s

WHERE c.cust_id=s.cust_id

GROUP BY rollup(cust_income_level)

ORDER BY 1;

Correlation Functions

- The CORR_S and CORR_K functions support nonparametric or rank correlation (finding correlations between expressions that are ordinal scaled).
- Correlation coefficients take on a value ranging from –1 to 1, where:
 - 1 indicates a perfect relationship
 - –1 indicates a perfect inverse relationship
 - 0 indicates no relationship
- The following query determines whether there is a correlation between the AGE and WEIGHT of people, using Spearman's correlation:

select CORR_S(AGE, WEIGHT)
 coefficient,
 CORR_S(AGE, WEIGHT,
 'TWO_SIDED_SIG')
 p_value,
substr(TREATMENT_PLAN, 1,15)
as TREATMENT_PLAN
from CBERGER.LYMPHOMA
GROUP BY TREATMENT_PLAN;

COEFFICIENT	P_VALUE	TREATMENT_PLAN
.1862586290028	.019908367365	Chemo&Radiation
0575579915035	.072279268481	Chemo_only
0746488538574	.288631463930	Experimental
1254971583227	.000018140526	Radiation

ORACLE Analytics vs. Sas

- In-Database Analytics Engine Basic Statistics (Free) Data Mining Text Mining
- 2. Costs (ODM: **\$23K cpu**)

Simplified environment Single server Security

3. IT Platform

SQL (standard)

Java (standard)

1. <i>External</i> Analytical Engine
Basic Statistics
Data Mining
Text Mining (separate: SAS EM for Text)
Advanced Statistics
2. Costs (SAS EM: \$150K/5 users)
Duplicates data
Annual Renewal Fee (AUF) (~45% each year)
(,
3. IT Platform
SAS Code (proprietary)
sas.

ORACLE Analytics vs. SSas

- In-Database Analytics Engine Basic Statistics (Free) Data Mining Text Mining
- 2. Costs (ODM: **\$23K cpu**)

Simplified environment Single server Security

3. IT Platform

SQL (standard)

Java (standard)

1. External Analytical Engine
Basic Statistics
Data Mining
Text Mining (separate: SAS EM for Text)
Advanced Statistics
2. Costs (SAS EM: \$150K/5 users) Duplicates data
Annual Renewal Fee (AUF) (~45% each year)
3. IT Platform
SAS Code (proprietary)
Gracle 11g DB

SAS In-Database Processing 3-Year Road Map

Sas in	194 2004
	SAS® In-Database Processing
Technical Paper	
Technical Paper	A Roadmap for Deeper Technical Integration with Database Management Systems
Technical Paper	A Roadmap for Desper Technical Integration with Database Management Systems
Technical Paper	A Roadmap for Desper Technical Integration with Database Management Systems

- "The goal of the SAS In-Database initiative is ... to achieve deeper technical integration with database providers..
- ..., the SAS engine often must load and extract data over a network to and from the DBMS. This presents a series of challenges:
- ...Network bottlenecks between SAS and the DBMS constrain access to large volumes of data
- •... the results of the SAS processing must be transferred back to the DBMS for final storage, which further increases the cost.

IDC Worldwide Business Analytics Software

Notes

Size is the measure of a vendor's software revenue in the selected market.

Momentum is the size-adjusted annual software growth rate for the selected market.

Reliance is a vendor's dependence on selected software revenue.

Diversity is the measure of the breadth and depth of product offerings within the selected software market.

Source: IDC, 2007

http://www.oracle.com/corporate/analyst/reports/infrastructure/bi_dw/208699e.pdf

Brief Demonstrations

Oracle Data Mining
 Oracle Business Intelligence EE
 CRM Sales Prospector

Oracle Data Mining + OBI EE

Quick Demo: Oracle Data Mining

- Scenario: Insurance Company
- Business problem(s):
 - 1. Better understand the business by looking at graphs of the data
 - 2. Identify the factors (attributes) most associated with Customer who BUY_INSURANCE
 - 3. Target Best Customers
 - a. Build a predictive model to understand who will be a VERY_HIGH VALUE Customer And WHY (IF... THEN.. Rules that can describe them)
 - b. Predict who is likely to be a VERY_HIGH VALUE Customer in the future
 - c. View results in an OBI EE Dashboard
 - Including other business problems e.g. Fraud, Cross-Sell, etc.
 - (Entire process can be automated w/ PL/SQL and/or Java APIs)

Oracle Data Mining + OBI EE Understand the Data

ORACLE

Oracle Data Mining + OBI EE *Target the Right Customers*

🗇 New Activity Wizard - Step 3 of 4: Data Usage

Help

Review Data Usage Settings

Select the target column, and review the column settings. You can change the column settings to better match your understanding of the data. The default settings have been determined for each column based on the activity type and the characteristics of the data. The options of changing input and mining type vary based on the algorithm choosen. Click Help for more details. Oracle Data Miner guides the analyst through the data mining process

						Data Summ	<u>ary</u>
Name	Alias	Target	Input	Data Type	Mining Type	Sparsity	
□CBERGER.INSUR_C							
AGE	AGE	0	v	NUMBER	numerical		
BANK_FUNDS	BANK_FUNDS	0	V	NUMBER	numerical		
BUY_INSURANCE	BUY_INSURANCE	۲		VARCHAR2	categorical	Γ	
CAR_OWNERSHIP	CAR_OWNERSHIP	0	v	NUMBER	categorical		
CHECKING_AMOU	CHECKING_AMOU	0	V	NUMBER	numerical		000
CREDIT_BALANCE	CREDIT_BALANCE	0	V	NUMBER	numerical		
CREDIT_CARD_LI	CREDIT_CARD_LI	0	V	NUMBER	numerical		
CUSTOMER_ID	CUSTOMER_ID	0		VARCHAR2	categorical		
FIRST	FIRST	0		VARCHAR2	categorical		
HAS_CHILDREN	HAS_CHILDREN	0	V	NUMBER	categorical		
HOUSE_OWNERS	HOUSE_OWNERS	0	V	NUMBER	categorical		
LAST	LAST	0		VARCHAR2	categorical		
LTV	LTV	0	v	NUMBER	numerical		
LTV_BIN	LTV_BIN	0	V	VARCHAR2	categorical		
MARITAL_STATUS	MARITAL_STATUS	0	V	VARCHAR2	categorical		
MONEY_MONTLY	MONEY_MONTLY	0	V	NUMBER	numerical		
MONTHLY CHEC	MONTHLY CHEC	0	N	NUMBER	numerical		-
					Include All	Exclude A	
				< <u>B</u> ack	Next > Einis	h Ca	Ince

ORACLE

Oracle Data Mining + OBI EE *Targeting High Value Customers*

	TV833819485 BA			Oracie	Dala	IVIININ	ig du	lius a	
File View Data Activity Tools Help									
The view Data Activity Tools Telp				model	that d	itterei	ntiate	Sc	
Navigator	Name: INSUR CUST LTV833819485 B	BA		modol	that a		man		
	Type: Decision Tree Mining Activity			HI VA	LUE	7021	OIVI	ERS	
Hun Accession Pulse	Case Table: CBERGER.INSUR_CUST_LTV			···_·			•		
	Unique Identifier: CUSTOMER_ID			fromo	thora				
	Target: CBERGER.INSUR_CUST_LTV.LTV_BIN				uners				
	Comment:		00010405 04-0-					1	
	III Mining Data	Activity: INSUR_LUS1_L148	33819485_BA: Re	251					
		<u>File Publish H</u> elp							
PRAIN TIMORS TEXT SVM RA	A sticks Owner	Tree Results Build Settings	Task						
PRAIN TIMORS TEXTS00009256 PA	Activity Steps.								
CD DUVEDS547945905 DA		Target Attribute: LTV_BIN		-					
		Nodes Show Leave	s Only				Show Let	vels: 6 🗘 🕑 🗇 🧳	8
CD_DUYERS54/01509539152536_AA	Sample	Node ID	Predicate		Predicted Value	Confidence	Cases	Support	11
	U Sampie	En	true		HIGH	0.4849	8 722	1 0000	
	This step samples the mining data. Although not normally requ		MORTGAGE A	MOUNT <= 0.5	MEDIUM	0.5780	2.154	0.2470	
EMPL_DATA_TURNOVER2_AA		□ 21	MORTGAGE A	MOUNT > 0.5	HIGH	0.6200	6,568	0.7530	
EMPL_DATA_TURNOVER2_BA	i <u>Output Data</u>	⊟22	HOUSE_OWNE	ERSHIP is in 2	VERY HIGH	0.7921	433	0.0496	
EMPL_DATA566429249_BA		60	AGE <= 20.5		LOW	0.5000	12	0.0014	
EMPL_DATA566429249562459119_A4		□ 23	AGE > 20.5		VERY HIGH	0.8052	421	0.0483	
EMPL_DATA714067157_BA		= 24	N_OF_DEPENI	DENTS <= 3.5	VERY HIGH	0.8991	347	0.0398	
INSUR_CUST_BUY_INS80243043_AA		□ 25	AGE <= 26.5		HIGH	0.5263	38	0.0044	
INSUR_CUST_BUY_INSUR_TREE_BA		61	HAS_CHILDRE	N is in 0	VERY HIGH	1.0000	12	0.0014	
INSUR_CUST_LTVALL_VALUES_A/		62	HAS_CHILDRE	N is in 1	HIGH	0.7692	26	0.0030	
INSUR_CUST_LTV_HIGH_VALUE_BA	Split	63	AGE > 20.5		VERTHIGH	0.9515	309	0.0354	
	This transformation step splits the mining data into build and te		LOUGE OWNE	DENI 6 % 3.5 EPCUID is is 1		0.0351	6126	0.0085	
INSUR_CUST_LTV_MD_BA		E 27		DENTS <= 1.5	HIGH	0.0000	2,879	0.3301	
	Output Data	= 28	HAS CHILDRE	N is in 0	HIGH	0.6519	1.086	0.1245	
INSUR_CUST_LTV126395501_BA		= 29	SALARY <= 645	588.0	HIGH	0.8759	548	0.0628	
INSUR_CUST_LTV13308436_BA		65	TIME_AS_CUS	TOMER is in { 2 4 5 }	VERY HIGH	0.5875	80	0.0092	
6 INSUR_CUST_LTV1330924475007_AA		66	TIME_AS_CUS	TOMER is in 1	HIGH	0.9615	468	0.0537	
		□ 30	SALARY > 6458	38.0	VERY HIGH	0.5651	538	0.0617	וה
- 02 INSUR_CUST_LTV2013858285527_AA		67	AGE <= 23.5		HIGH	0.6250	16	0.0018	
- Cust_LTV235934724_BA		68	AGE > 23.5		VERY HIGH	0.5824	522	0.0598	
	🛛 🗹 Build	□ 31	HAS_CHILDRE	N is in 1	HIGH	0.8533	1,793	0.2056	
- 6 INSUR_CUST_LTV489680537_BA	This step builds the mining model. To complete this step mapue	⊟32	SALARY <= 799	19U.U	HIGH	0.8778	1,711	0.1962	
		59	DALARY <= 598	041.U 11.0	HIGH	0.0347	340	0.0397	
	🔢 Build Data 🕰 Result Model Name: INSUR_CUST_L	70	SALARY > 7000	1.0	VERYHIGH	0.9040	82	0.1505	
		⊟33	N OF DEPEN	DENTS > 1.5	HIGH	0.5375	3 256	0.3733	-
									-
		Predicted Target Value: VERY HIG	н						
• • • •		Support (%): 6.17							
Activity Tasks		Confidence (%): 56.51							
Name Status		Level: 5							
INSUR_CUST_LTV83381948 Success	📔 🗹 Test Metrics		-						
	This step creates a test matric result. To complete this step w	Split Rules: Full R 	ule 🔘 Surrogate						
	mis step creates a test metric result. To complete this step ma	MORTGAGE_AMOUNT > 0.5 AND							
	🔟 🛅 <u>Test Data</u> 🧱 <u>Result</u> Test Name: DM4J\$INSUR_CL	HOUSE_OWNERSHIP is in 1 AND							
		HAS CHILDREN is in 0 AND							
		SALARY > 64588.0							
Activities Server									
		Predicate Target Values							_

Oracle Data Mining huilde

ORACLE

Oracle Data Mining + OBI EE Targeting High Value Customers Oracle Data Mining creates

Activity: INSUR_CUST_LTV1330924475007_AA: Result Viewer: "INSUR_CUST_LTV_A15728619_A"

File Publish Help

Apply Output Apply Settings Task

Apply Output Table: INSUR_CUST_LTV_A15728619_A

reich size.											
DMR\$CAS	PREDICTION	PROBABILITY	COST	RANK	NODE	LAST	AGE1	MARITAL_STATUS1	N_MORTGAGE		<u>R</u> ule
CU3113	MEDIUM	0.9933	0.0067	1	48	HUMBERTO	38	SINGLE	0	_	
CU3116	HIGH	0.9648	0.0352	1	70	EUNA	39	DIVORCED	1		
CU3117	MEDIUM	0.9933	0.0067	1	48	HOYT	45	SINGLE	0		
CU3119	HIGH	0.9615	0.0385	1	66	LIZBETH	42	DIVORCED	1		
CU3121	HIGH	0.9615	0.0385	1	66	BORIS	46	DIVORCED	1		
CU3123	HIGH	1	0	1	52	DANA	52	SINGLE	0		
CU3125	MEDIUM	0.8722	0.1278	1	73	TIM	49	DIVORCED	1		
CU3126	HIGH	0.9648	0.0352	1	70	LASHAWN	61	DIVORCED	1		
CU3127	MEDIUM	0.8127	0.1873	1	49	BUCK	41	SINGLE	0		
CU3128	MEDILIM	0.8127	0 1 8 7 3	1	49	VA(ALTON	46	SINGLE	0		
CU3129	VERY HIGH	0.9515	0.0485	1	63	ALDEN	49	MARRIED	2		
CO3130	VERY HIGH	0.5824	0.4176	1	68	ANGELICA	41	DIVORCED	1		
CU3132	HIGH	0.9648	0.0352	1	70	LIZZETTE	34	DIVORCED	1		
CU3133	HIGH	0.9648	0.0352	1	70	ISABELLA	30	DIVORCED	1		
CU3134	HIGH	0.9648	0.0352	1	70	DELPHA	46	DIVORCED	1		
CU3136	LOW	1	0	1	39	GEORGE	0	SINGLE	0		
CU3137	HIGH	0.9648	0.0352	1	70	RAUL	39	MARRIED	1	222	
CU3138	VERY HIGH	0.5875	0.4125	1	65	ANGELO	44	DIVORCED	1	100	
CU3139	MEDIUM	0.9933	0.0067	1	48	GARRET	43	SINGLE	0		
CU3141	MEDIUM	0.9933	0.0067	1	48	BRYON	39	SINGLE	0		
CU3142	HIGH	0.9648	0.0352	1	70	TAMMI	52	DIVORCED	1		
CU3143	HIGH	0.9648	0.0352	1	70	LEEANN	46	DIVORCED	1	-	

a prioritized list of customer

who are likely to be high

value

Integration with Oracle BI EE

ORACLE' Interactive Dashboards

is My Dashboard

Oracle Data Mining *Know More, Do More, Spend Less*

Business Decision Makers	Data Analysts	Integrators and IT
 Make Better Decisions Extract More Value from Your Data Lower Your Total Cost of Ownership 	 Get Results Faster Get More Results Easy to Use 	 Create More Value for Your Organization Make Your Work Easier Transform IT from a Cost to a Profit Center

Oracle Data Mining (SQL & Java) APIS

HCM Prediction Demo

drop table HCM_SET; exec dbms_data_mining.drop_model('HCMMODEL'); create table HCM_SET (setting_name varchar2(30), setting_value varchar2(4000)); insert into HCM_SET values ('ALGO_NAME','ALGO_SUPPORT_VECTOR_MACHINES'); insert into HCM_SET values ('PREP_AUTO','ON'); commit;	ACTUAL NO YES Elapsed:	PERCENT 84.04 80.61 81.53 : 00:00:01.5	CORR 3133 8159 11292 1	INCOF 595 1963 2558	≀R -	TOTAL 3728 10122 13850
begin dbms_data_mining.create_model('HCMMODEL', 'CLASSIFICATION', 'EMPL_DATA', 'EMPL_ID', 'CURR_EMPL', 'HCM_SET'); end; /	EMPL_ 772858 775441	_ID PER 96.8 95.6	CENT_LI 4 5	EAVE	RNK 1 2	
accuracy (per-class and overall) col actual format a6 select actual, round(corr*100/total,2) percent, corr, total-corr incorr, total from (select actual, sum(decode(actual,predicted,1,0)) corr, count(*) total from (select CURR_EMPL actual, prediction(HCMMODEL using *) predicted from EMPL_DATA_JUNE07) group by rollup(actual));	777992 773473 771813 Elapse SQL>	2 92.1 3 91.5 3 90.2 d: 00:00:00.	1 1 29		3 4 5	
top 5 very high value, current employees most likely to leave select * from (select empl_id, round(prob_leave*100,2) percent_leave, rank() over (order by prob_leave desc) rnk from (select empl_id, prediction_probability(HCMMODEL, 'NO' using *) prob_leave from EMPL_DATA_JUNE07 where CURR_EMPL = 'YES' and LTV_BIN = 'VERY HIGH')) where rnk <= 5 order by percent_leave desc;						

ORACLE

Predictive Analytics Use Case

- The cast:
 - Peter: a data mining analyst
 - Sally: a marketing manager
- Peter builds a decision tree classification model, tree_model
- Peter grants the ability to view/score the tree model to Sally

GRANT SELECT MODEL ON tree_model TO Sally;

- Sally inspects the model, likes it, and wants it deployed
- Sally scores the customer database using the new model and his understanding of the cost of contacting a customer and sends the new contact list to the head of the sales department

CREATE TABLE AS SELECT cust_name, cust_phone FROM customers WHERE prediction(Peter.tree_model cost matrix (0,5,1,0) using *) = 'responder';

Real-time Prediction

with records as (select **On-the-fly, single record** 78000 SALARY. 250000 MORTGAGE AMOUNT, apply with new data (e.g. 6 TIME AS CUSTOMER, from call center) 12 MONTHLY CHECKS WRITTEN, 55 AGE. 423 BANK FUNDS, 'Married' MARITAL STATUS, 'Nurse' PROFESSION, 'M' SEX, 4000 CREDIT CARD LIMITS, 2 N OF DEPENDENTS. HOUSE OWNERSHIP from dual) 1 select s.prediction prediction, s.probability probability from (select PREDICTION_SET(INSUR_CUST_LT68054_DT, 1 USING *) pset from records) t, TABLE(t.pset) s;

PREDICTION PROBABILITY HIGH .65123504738232096

ORACLE

Prediction Multiple Models/Optimization

```
with records as (select
  178255 ANNUAL INCOME,
    30 AGE.
                                                 On-the-fly, multiple models;
    'Bach.' EDUCATION.
    'Married' MARITAL STATUS,
                                              then sort by expected revenues
    'Male' SEX.
    70 HOURS PER WEEK.
    98 PAYROLL DEDUCTION from dual)
  select t.*
  from (
   select 'CAR MODEL' MODEL, s1.prediction prediction, s1.probability probability, s1.probability*25000 as
expected revenue from (
    select PREDICTION SET(NBMODEL JDM. 1 USING *) pset
    from records ) t1, TABLE(t1.pset) s1
   UNION
   select 'MOTOCYCLE MODEL' MODEL, s2.prediction prediction, s2.probability probability, s1.probability*2000 as
expected revenue from (
    select PREDICTION_SET(ABNMODEL_JDM, 1 USING *) pset
    from records ) t2, TABLE(t2.pset) s2
   UNION
   select 'TRICYCLE MODEL' MODEL, s3.prediction prediction, s3.probability probability, s1.probability*50 as
expected revenue from (
    select PREDICTION_SET(TREEMODEL_JDM, 1 USING *) pset
    from records ) t3, TABLE(t3.pset) s3
   UNION
   select 'BICYCLE MODEL' MODEL, s4.prediction prediction, s4.probability probability, s1.probability*200 as
expected revenue from (
    select PREDICTION SET(SVMCMODEL JDM, 1 USING *) pset
    from records ) t4, TABLE(t4.pset) s4
   order by t.expected_revenue desc;
```

ORACLE

Oracle Sales Prospector

Larry Ellison Oracle Open World Keynote November 2007

 Announces Fusion Edge CRM On-Demand Hosted Application with integrated data mining to mine customer database

on SFA Applications

ent 1G SFA Applicat Oracle Data Mining

a Mines your customer database

What types of customers are buying what products? What prospects most resemble those customers?

siness Intelligence for Sales People

The science of selling more

With best-fit references

aS

How Can I Sell More?

Copyright © 2009 Oracle Corporation

ORACLE

Oracle Data Mining = the Science of Selling

ORACLE sales Prospector

welcome barry Home | Preferences | Change Password | Help | Logout

ORACLE

Oracle Data Mining Summary

- Powers Next-Generation Predictive Applications
 - Rapidly Build Applications that Automatically Mine Data
 - Code Once, Run Anywhere
 - Parallel and Distributed Processing
 - Industry Standard SQL and Java APIs
- Industry Leader in In-Database Data Mining
 - Option to the Industry Leading RDBMS—Oracle Database
 - Classification, Regression, Attribute Importance
 - Clustering, Market Basket Analysis, Anomaly Detection, Feature Extraction
 - Cutting Edge Algorithms: SVM, One-Class SVM, NMF, Scalable GLM

Oracle Data Mining Summary

- More Information from More Data
 - Easy to use Oracle Data Miner Graphical User Interface
 - Wide Range of In-Database Data Mining Algorithms and Statistics
 - Mine Text, Transactional, and Star Schema Data
 - Mine XML, Semantic RDF, Spatial, and OLAP Data
- Eliminate Barriers Between Analysts and IT
 - Quickly Disseminate Analytical Results and Models Throughout the Organization
 - Include Real-Time Predictive Models and New Insights in SQL queries
 - Eliminate Data Movement, Maximize Security

Getting Started

Data Mining Projects

- "The vast majority of BI professionals are excited about the prospects of data mining, but are fully mystified about where to begin or even how to prepare"
- "Of those who did initiate a modeling initiative,51% of data mining projects either never left the ground, did not realize value or the ultimate results were not measurable"
- "In most cases, those who attempted an implementation ended up building excellent predictive models that answer the wrong questions"
- "For any organization with annual revenues more than \$50 million, employing data mining technology is not a matter of whether, but when"

ORACLE

http://www.the-modeling-agency.com

Getting Started with Oracle Data Mining

- You can download a free evaluation copy of Oracle Data Mining and try it out on your own computer. See the Oracle Data Mining Administrators Guide, which tells how to install a database and set up a user account. Download the Oracle Database Enterprise Edition (10gR2 or 11g) from the Oracle Technology Network. The Oracle Data Mining Option is installed by default with Oracle Database EE. For data analysts or those new to data mining, you will also want to download and install Oracle Data Miner, the free, optional graphical user interface. A summary of algorithms supported by ODM with links to the documentation is posted here.
- To get started quickly, Part I of <u>ODM Concepts</u> introduces you to the features and terminology of Oracle Data Mining. Then, use the <u>Oracle Data Mining Tutorial</u> to provide step-by-step guidance for using the Oracle Data Miner graphical interface. ... You can use the Oracle Data Miner (*Data --> Import*...) to import your own data in .csv text files and begin mining.
- For application developers, the <u>ODM Application Developer's Guide</u> along with the Oracle Data Mining sample programs gets you started writing SQL- or Java-based data mining applications.
- Some additional datasets for learning Oracle Data Mining include: CUST_INSUR_LTV (dmp file), <u>CD_BUYERS (dmp file)</u>, <u>EMPL_DATA (dmp file)</u>, <u>LYMPHOMA (dmp file)</u>
- Application developers can integrate predictive analytics into any report or enterprise application using ODM's server-based PL/SQL or Java APIs. See <u>ODM Sample Programs</u> for demo sample code.
- Oracle Data Mining Education through Oracle University
 - Installing Data Miner (Oracle By Example)
 - <u>Solving Business Problems with Data Mining</u> (Oracle By Example)

TECHNOLOGY NETWORK

More Information:

Oracle Data Mining 11g

oracle.com/technology/products/bi/odm/index.html

Oracle Statistical Functions

•http://www.oracle.com/technology/products/bi/stats_fns/index.html

Oracle Business Intelligence Solutions

•oracle.com/bi

http://search.oracle.com

oracle data mining

Contact Information: Email: Charlie.berger@oracle.com

ORACLE IS THE INFORMATION COMPANY

Oracle BIWA Overview Oracle BI, Warehousing and Analytics SIG

• Worldwide association of professionals interested in

Oracle Database-centric Business Intelligence, Data Warehousing, and Analytical products, features and options.

- Web site: <u>www.OracleBIWA.org</u>
- Founded in late 2006
 - Rapidly growing (2,000+) members
- BIWA Summit Conferences
 - 2007: Oracle, Reston, VA
 - 2008: Oracle HQ Conference Center
 - April 2010: BIWA Summit at Collaborate 2010 in Las Vegas
- Wednesday BIWA TechCast Series

BIWA 2008 Summit

BIWA Summit, Dec 2-3, 2008, at Oracle's World HQ

<u>Oracle BIWA Summit 2008</u> is a forum for business intelligence, warehousing and analytics professionals to exchange information, experiences and best practices. Gain the knowledge and information critical for success in your work.

CLICK HERE FOR DETAILS	CLICK HERE TO REGISTER			
 Keynote Addresses Jeanne Harris - coauthor of bester <u>Competing on Analytics</u> Accente High Performance Business Usama Fayyad - former Chief Da Juan Loaiza - VP of Systems Tect Oracle Ray Roccaforte - VP of Data War Business Intelligence Platform, 0 	selling book ure Institute for ta Officer, Yahoo! <i>chnology Group,</i> rehousing and Pracle	Hands-On Workshops Warehouse Builder - both ETL and Data Quality Oracle BI EE BI Publisher Essbase, SmartView, Hyperion Visual Explorer OLAP Data Mining Text Mining Discoverer and more		
3 Tracks of Technical Talks ▶ Bl, Data Warehousing, and Anal ▶ More than 60 sessions running i rooms	ytics n 6 concurrent	Solution Showca	ase from multiple vendors	
Meet the Oracle Experts		Solution Provide	ers Sessions	
Analyst/User Panel Discussions		And Much Mor	e!	

Wednesday TechCast Series

 Any Oracle user or professional may submit abstracts for (45 min) webcasts to IOUG Oracle BIWA SIG Community (Visit: <u>www.oraclebiwa.org</u>)

- BIWA Wednesday TechCasts audience is technical. Presenters are encouraged to include a significant amount of technical detail. Live demos are strongly encouraged
- Each BIWA TechCast will be recorded and posted on the BIWA web site (<u>www.oraclebiwa.org</u>) for on-demand viewing
- This will be BIWA primary vehicle for exchanging information until our next (3rd) BIWA Summit
- <u>Selection Criteria</u>: TechCasts will selected based on appropriateness, anticipated level of interest, novelty and interest level for community, public success stories, and usefulness
- <u>Scheduling</u>: If your abstract is selected, you will be contacted and invited to present on a Wednesday BIWA TechCast at 12 EDT that is convenient to your schedule

Wednesday TechCast Series

• Example topics of particular interest to BIWA community include, but are not limited to the following:

Data Access and Data Integration

- Data quality
- Extract, transform, load (ETL)
- Accessing distributed data
- SOA integration

Data Warehouses

- Data Governance
- Master Data Management
- Partitioning
- Tuning warehouse for performance
- Faster cubes for faster information
- Managing images

Reporting and BI Dashboards

- Better reports & better information
- Custom BI environments
- Real-time analytics
- Interactive dashboards & EPM
- Essbase and OBI EE & Oracle Database

- Advanced Analytics
 - Predictive analytics
 - Data mining and text mining
 - SQL Statistical functions
 - Fraud detection
 - Market basket analysis
 - Churn prevention
 - OLAP building & using "cubes"
 - What if? analysis
 - Leveraging spatial data
 - Time series and forecasting
 - Harvesting more insight from data
- "Best practices"
- Case Studies
- Tips & Tricks

"This presentation is for informational purposes only and may not be incorporated into a contract or agreement."