

Storage Architectures for Oracle RAC

Matthew Zito, Chief Scientist GridApp Systems

Agenda

- Oracle RAC Introduction
- Storage Foundations
- Storage and RAC
- Raw Devices
- Clustered Filesystems
- Oracle ASM
- Network File Systems
- Recommended Configuration
- Conclusions/Q&A

Oracle RAC Introduction

- Oracle RAC adoption rates are increasing
- DBAs have come to grips with:
 - Basic changes
 - OS best practices
- Storage in RAC continues to be complex because:
 - Complex support matrix
 - Multitude of different options
 - Storage typically isn't in a DBA's background

Storage Foundations

- Traditional database model
 - One server, one set of disks
- Active/passive model
 - N servers,
 - one set of disks

Standalone DB Environment Active-passive DB Environment

Storage Foundations – Oracle RAC

www.gridapp.com

- Oracle RAC requires *shared* disk access
- N servers, all with concurrent access to the storage

Oracle RAC Environment

Shared Disk Access

- Requires some sort of networked storage
 - iSCSI
 - Fibre Channel/SCSI
 - NFS
- Typical Network Technologies
 - Ethernet
 - Fibre Channel
- Networked Storage
 - Centralized pool
 - Storage admins allocate it out
 - Designed for scale efficiencies
 - Block- or file-based

Block Storage

- Fundamentals
 - Traditional disk devices
 - Operates at a low-level
- Internals
 - Below the filesystem
 - Basic IO primitives read, write, "how big is the device"
 - Provides a generic way to access block storage, abstracts underlying tech
 - Fibre Channel, SCSI, iSCSI

File-based Storage

- Fundamentals
 - Higher up the stack at an OS level
 - More intelligence resides in the OS
- Internals
 - NFS and CIFS (CIFS not Oracle-supported!)
 - Metadata lives within the protocol
 - Creation, access time
 - File sizes, owners, permissions
 - Much richer set of semantics:
 - opendir, read, write, stat
 - File locking

Storage and RAC

- RAC clusters have access to a shared set of storage
 - problematic because:
 - Not as common a configuration
 - Traditional technologies are not compatible with shared storage access
 - Specialty storage technologies are required
- Four general classes of RAC-suitable solutions for storage on RAC:
 - Raw devices
 - Clustered filesystems
 - ASM
 - NFS

Raw Devices

- Fundamentals
 - A disk or partition where all I/O operations to that device bypass any OS-level caches or buffers and are delivered immediately to the driver subsystem
 - Examples: /dev/raw/raw1, /dev/rdsk/c0t0d0s0, /dev/sda1 when opened with O_DIRECT

[root@rh44-ma-012 tmp]# raw /dev/raw/raw1 /dev/sda1 /dev/raw/raw1: bound to major 8, minor 1 [root@rh44-ma-012 tmp]# Is -I /dev/sda1 brw-rw---- 1 root disk 8, 1 Jul 7 08:38 /dev/sda1 [root@rh44-ma-012 tmp]# Is -I /dev/raw/raw1 crw-rw---- 1 root disk 162, 1 Sep 8 14:17 /dev/raw/raw1

- Advantages:
 - Removes double-buffering problem
 - Guaranteed writes
 - Minimal OS overhead from performance perspective

Raw Devices - continued

- Disadvantages
 - Oracle treats each raw device or raw partition as one file – can result in many many raw devices required
 - There's no way to get an accurate picture at an OS level of how much disk space is in use no df, find, Is
 -I
 - Backup and recovery solutions that do backups at an OS level are unaware of raw devices
 - Can only support database files ocr, voting, dbf files, redo logs, etc.
 - As of 12g, raw devices are no longer supported by Oracle

Clustered Filesystem Basics

- Fundamentals
 - Most familiar environment; resembles the traditional filesystems used in non-RAC environments
 - Emulates a traditional filesystem with extra intelligence to handle shared negotiation of metadata, etc.
- Advantages:
 - Simplified day-to-day administration, all existing tools, scripts work as before
 - Simplified storage configuration
 - Can be used to store non-database files
- Disadvantages:
 - Additional initial configuration complexity
 - Adds another product/solution to the database stack
 - Can add performance overhead

Clustered Filesystems & Oracle

- Multitude of Oracle-supported cluster filesystems
 - Specific support matrix
 - ALL CFS solutions require an additional clustering technology to run on the system
- Except for Linux, all of the clustered filesystem options are provided by a third-party vendor
- On Linux, Oracle has written its own CFS, OCFS2 (Oracle Clustered Filesystem version 2)
 - Supports datafiles, ORACLE_HOME, and general purpose file storage
 - Integrated into the mainline Linux kernel
 - OCFS2 is lacking in online scalability compared to some third-party vendors

Clustered Filesystem RAC Configurations

- Shared ORACLE_HOME:
 - Some CFS architectures support sharing ORACLE_HOME installs across nodes
 - Reduces total disk space requires, and number of homes to manage across nodes
 - Creates SPOFs and increases patch complexity (impossible to patch one home without patching all)
- Oracle files on CFS:
 - Datafiles, ocr, voting, all on CFS
 - Reduces number of disk devices
 - May run into limitations on the CFS concerning sizing, scaling, etc.
- Logs, admin directories, scripts:
 - Useful to put on a CFS for centralization purposes
 - CDSL an option, but more complex better to name directories based on node name

Oracle ASM

- ASM is a stripped down Oracle instance or RAC database
- ASM's concept of volume management is very simplistic compared to "traditional" volume managers
 - Disks are grouped together as named "disk groups"
 - Disks can be added to disk groups online
 - No concept of plexes, snapshots, subdisks
- Primary advantages of ASM over raw devices are
 - It removes the "one disk, one datafile" requirement
 - Adds limited support for RAID
- ASM is cross-platform works with all OS vendors on 10g+

- Oracle 11g Enhancements:
 - Now with ASM mirroring, Oracle does not need to completely rebuild all of the data on that disk if it fails
 - Addition of the "sysasm" group separates out administrative overhead
- Future releases of Oracle are expected to extend the ability of ASM to hold non-database files
- 10g and 11g Standard Edition *require* ASM

- Network File System (NFS)
 - Started by Sun Microsystems as a generic fileserver solution
 - Originally UNIX-only, some windows support available today
 - In the database world, generally dismissed as slow and unreliable
- In NFS environments, the NFS server or array acts as a CFS, arbitrating access, locks, and metadata updates
 - Think of it like a CFS with the cluster and intelligence running on the storage array
 - Frees the server to focus on driving IO to the storage
 - NFS servers sometimes have additional functional capabilities over traditional block storage arrays

NFS Continued

- NFS & RAC
 - Looks like a clustered filesystems
 - All database components can live on NFS, but only certain OS and NAS array configurations are supported – check Metalink
 - Specific mount options are required
- Disadvantages:
 - Per MB, NFS storage is often more expensive than Fibre Channel or iSCSI
 - Certain workloads may not scale well on NFS platforms, though most will.

Recommended Configuration

- Certainly, no one size fits all
- However, GridApp has seen one configuration consistently offer a blend of manageability, scalability, and performance
- Three core components in use:
 - Local disks of the servers
 - Clustered Filesystem (OCFS2)
 - ASM

Recommended Configuration

- Local disks:
 - ORACLE_HOME separate per-node, and per database
- OCFS2:
 - OCR
 - Voting
 - (optionally) archive_log_dest
- ASM:
 - Local disks of the servers
 - Clustered Filesystem
 - ASM

Recommended Configuration

- Advantages:
 - Minimum of disk devices required
 - Allows scripts, etc. to be centrally shared
 - ASM provides storage and capacity growth
- Disadvantages:
 - Multiple moving parts
 - Additional complexity

Conclusions

- Oracle RAC dramatically increases the infrastructure complexity surrounding its configuration
- With storage, there is a particular concern due to the breadth of options available
- Raw devices, NFS, CFS, and ASM all have particular advantages and disadvantages
- A recommended storage infrastructure uses all of these technologies

www.gridapp.com

Q & A

