Comprehensive Approach to Database Security

Ajoy S. Kumar

asota@hotmail.com

NYOUG
2008
What will I discuss today

- Identify Threats, Vulnerabilities and Risk to Databases
- Analyze the drivers for Database Security
- Identify security solutions for Database
- Analyze use of point solutions to achieve Comprehensive Database Security
- Understand that there are no single solution to achieve complete database security
- Reduce risk to acceptable level by deploying layered defense strategy
Comprehensive Database Security

- Introduction to Security
- Introduction to Databases
- Threat, Vulnerabilities and Risk on Databases
- Threat Trend
- Drivers for Database Security
- Attacks on Databases
- Solutions for Database Security
- Comprehensive Database Security
- Intrusion Detection
- Encryption in Real Life
- Conclusion
Comprehensive Database Security

- Introduction to Security
- Introduction to Databases
- Threat, Vulnerabilities and Risk on Databases
- Threat Trend
- Drivers for Database Security
- Attacks on Databases
- Solutions for Database Security
- Comprehensive Database Security
- Intrusion Detection
- Encryption in Real Life
- Conclusion
Introduction to Security

- Security is based on 3 pillars
 - Confidentiality
 - Integrity
 - Availability
- Security Services
 - Access Control
 - Authentication
 - Authorization
- Services built around
 - People
 - Process and
 - Technology
Comprehensive Database Security

- Introduction to Security
- Introduction to Databases
- Threat, Vulnerabilities and Risk on Databases
- Threat Trend
- Drivers for Database Security
- Attacks on Databases
- Solutions for Database Security
- Comprehensive Database Security
- Intrusion Detection
- Encryption in Real Life
- Conclusion
Relational Database Management Systems (RDBMS)

• RDBMS engine interact with clients, servers using operating system files, processes, memory, inter-process communication etc… making a complex system work seamless.

• RDBMS have revolutionized the information usage, they offer:
 – Orderly Storage of data
 – Efficient retrieval of data
 – Offer rich features of Primary key and Foreign key for Integrity
 – Offer Normalization of data
 – SQL, and feature rich APIs hide the complexity of operations
 – Easy Management features for Administrators (performance, storage management, backups for continuity and availability)
 – Offer Security features
 – Offer rich features for Web Integration e.g.: Oracle RDBMS executes Java machine within the database engine

• Internet has brought world wide networks closer, protection boundaries are blurred, Databases are much closer to the internet then perceived
Comprehensive Database Security

- Introduction to Security
- Introduction to Databases
- Threat, Vulnerabilities and Risk on Databases
- Threat Trend
- Drivers for Database Security
- Attacks on Databases
- Solutions for Database Security
- Comprehensive Database Security
- Intrusion Detection
- Encryption in Real Life
- Conclusion
Database Threats

Threat: “A Security violation or attack that can happen any time because of security vulnerability”
Database Vulnerabilities

Vulnerability: “A weakness in any of the information system components that can be exploited to violate the integrity, confidentiality, or accessibility of the system.”
Database Risks

Risk: “The level of impact on organizational operations (including mission, functions, image, or reputation), organizational assets, or individuals resulting from the operation of an information system given the potential impact of a threat and the likelihood of that threat occurring.”
Managing Risk

- Risk Management
- Analyze Risk
 - Asset Information (Business Criticality and Sensitivity)
 - Analyze Threat
 - Analyze Controls
 - Analyze vulnerabilities
 - Analyze Likely hood and Impact
 - Cost Benefit Analysis for Controls

- Manage Risk
 - Transfer Risk
 - Mitigate Risk
 - Eliminate Threat
 - Eliminate Vulnerability
 - Terminate Activity
 - Reduce to Acceptable Level
Comprehensive Database Security

- Introduction to Security
- Introduction to Databases
- Threat, Vulnerabilities and Risk on Databases
- Threat Trend
- Drivers for Database Security
- Attacks on Databases
- Solutions for Database Security
- Comprehensive Database Security
- Intrusion Detection
- Encryption in Real Life
- Conclusion
Threat Trend for Databases

Industry Facts:
- Over 20% companies acknowledged that they had suffered a loss, theft or breach of customer data in previous year
- 81% of respondents say that the threat of data breaches is influencing their security initiatives.
- 62.5% agree that IT Security and Executive Leadership will continually improve overall security strategy for safeguarding data
- 44% respondents agree that passage of national data breach notification law will help in their corporate security efforts to protect customer and other data.

Categorizing the Database Security Threat Trend

- SQL Injection is among Top threat
- Database Rootkits
- Denial of Service
 - Spida worm
 - Slammer worm
- Loss of Tapes
- New SQL Injection worm
Comprehensive Database Security

- Introduction to Security
- Introduction to Databases
- Threat, Vulnerabilities and Risk on Databases
- Threat Trend
- Drivers for Database Security
- Attacks on Databases
- Solutions for Database Security
- Comprehensive Database Security
- Intrusion Detection
- Encryption in Real Life
- Conclusion
Drivers for Data Security

- Government Regulations
- Corporate Brand and Financial
- Knowledge of Data
- Lack of comprehensive security solutions for databases
- Standards Implementation
- Multi-Tier Complexity
- Patching Problem
Government Regulations

Key Regulations:

- GLBA
- SOX
- FISMA
- PATRIOT
- PCI
- FFIEC
- HIPPA
- Safe Harbor
- Privacy Act 1974
- EU
- BASEL II
- UN

- Payment Card Industry (PCI) requires extensive checks on database authentication, encryption and separation of duty.

ISTPA* research confirms:

- 10 US and EU regulations require organizations to be accountable for - “Organization must be sure to include safeguards to prevent loss, misuse, unauthorized access, disclosure, alteration, and destruction of data.”

- 5 US and EU regulations require organizations to be accountable for - “Accountability of Organization for applicable privacy policy”

ISTPA - International Security Trust and Privacy Alliance
Government Regulations cont…

- 79% respondents of TJX survey confirm regulations is one of the key driver for security
- 39 states have state laws for Privacy Protection
- Legislation for “National Data Law” failed again last year – no doubt it will come back again
- Executives are directly being held accountable for non-compliance with some of these regulations
- There is more pressure on some vertical markets in comparison to others
Corporate Brand and Financial

Reputation Loss:

- TJX Breach incidence resulted in loss of over 90 Million credit cards
- Harvard University lost information of 10,000 applicants and 6,600 student (that could have SSN). The databases were posted to “The Pirate Bay”
- PrivacyRights.org reports – There are to a close to 200 breaches this year*
- PrivacyRights.org reports – Between Jan 2005 and June 15, 2008 - 229,441,775 records containing sensitive personal information were involved in security breaches

Source: http://www.privacyrights.org/ar/ChronDataBreaches.htm#2008
Corporate Brand and Financial cont…

Financial Loss:

- TJX increased pre-tax charges for security compromise to $216 Million from initial estimate of $168M
- 3 States (MA, CT, ME) filed a Class Action lawsuit against TJX to recover costs of damage “totaling tens of millions of dollars”
- 45% respondents of executive board demand compliance*
- 40% respondents say profit loss is the driver for their business*

Knowledge of Data

- Understanding the business value of information is paramount for:
 - Sensitivity (Classification) of data
 - Business Criticality
- Enterprises continuously create, update, modify, and destroy data
- Criticality and Sensitivity at the time of any of above operations is key
- Users, Developers, Custodians, and even owners (at times) miss defining Criticality and Classification
- Results in lack of controls
- There is no ‘Data Lifecycles defined in companies’
Knowledge of Data cont…

• With the amount of structured and unstructured data created in enterprises – in the absence of “Data Lifecycle” there is limited opportunity for controls
• This is not a Technology issue, controls can be:
 • Administrative
 • Technical or
 • Logical
• Controls must be identified upon data creation or modification
Lack of Comprehensive Security solutions for databases

- Database products lack end to end protection solution
- If the solutions are available, other factors prevent the deployment of appropriate controls. E.g. If you want to audit DML (Select, Insert, Update and Delete) – performance of database can significantly degrade
- Some Databases offer encryption for confidentiality, however, number of COTS products do not support the changes to meta data (as a result of encryption)
- Lack of solution for privileged user monitoring
- 3rd party solutions may not support all database technology
Standards Implementation

- SQL-92, SQL-99 and SQL-2003 standards are not fully implemented
- No standardized SYNTAX for various features
- This complicates development of 3rd party solutions
- Home grown solutions expensive to maintain
- Databases are getting feature rich, standards needs quicker ratification
 - Hybrid environment gets complex to manage
 - Compliance to standards lags, Securing database gets tougher
 - Issues in interoperability causes issues with Operational Security
Multi-Tier Complexity

Comprehensive Database Security
Ajoy S. Kumar

Sep 2008
Patching Problem

• Patching Problem-
 • Weakness in SDLC
 • New Features (goodness, but lack of controls makes it bad)
 • New Security Fixes
 • Time to test
 • Number of Platforms to patch
• Oracle has quarterly patch release, Microsoft has Patch Tuesday, IBM – DB2, Sybase, MySQL release patches at specific frequency
Comprehensive Database Security

- Introduction to Security
- Introduction to Databases
- Threat, Vulnerabilities and Risk on Databases
- Threat Trend
- Drivers for Database Security
- Attacks on Databases
- Solutions for Database Security
- Comprehensive Database Security
- Intrusion Detection
- Encryption in Real Life
- Conclusion
Popular attacks on Databases

- SQL Injection
 - Input validation (lack) attack
 - Top List of OWASP – categorized as “Injection Flaw”
 - Top list of WASC – categorized as “Command Execution”
 - Used for:
 - Authorization bypass
 - Information Stealing
 - Denial of Service
 - Attacking the integrity of information
Popular attacks on Databases cont…

- DB Rootkits
- Rootkits are hard to discover, DB rootkits are extremely hard to discover
- Research conducted by Alexander Kornburst
- Hacker presence is stealth
- Trojans are hidden in the database by manipulating Database ‘internals’
- Best discovered accidently
- All database technologies are prone to this powerful attack
Comprehensive Database Security

- Introduction to Security
- Introduction to Databases
- Threat, Vulnerabilities and Risk on Databases
- Threat Trend
- Drivers for Database Security
- Attacks on Databases
- Solutions for Database Security
- Comprehensive Database Security
- Intrusion Detection
- Encryption in Real Life
- Conclusion
Solutions for Database Security

- Identity
- Authentication
- Access Control
- Audits
- Masking
- Compliance to Baseline settings
- Event monitoring
- Case for Privilege User monitoring
- Encryption for Data Protection
Solutions for Database Security

Identity
Authentication

• Native
• Integration with OS
• Adaptive
• Password and Profiles
• Complexity, Aging, Usage managed from inside database
• Limiting the time of using, usage of resources enforced by Profiles
• Integrate with Biometrics
Solutions for Database Security

Access Control
- Mandatory Access Control
 - DB2 (Multi Level Security)
 - Oracle (Trusted Oracle)
- Discretionary Access Control
 - All Technologies
- Role Based Access Control
- Offers flexibility of DAC, and some features of MAC
 - Most popular model for enforcing
 - Principle of Least Privilege and
 - Separation of Duty
Solutions for Database Security

Role Based Access Control

Users → Groups → Roles → Resources

Comprehensive Database Security
Ajoy S. Kumar
Security Audit and Audit Trails

Security Audit

- Penetration Test
- Gaps in Configuration settings
 - Static
 - Check for default accounts
 - Check for default passwords
 - Dynamic
 - Focused on access patterns
 - Focused on usage (timings, frequency)
Security Audit and Audit Trails cont…

Audit Trail

• Audit actions carried out on the databases
• Required by HIPPA, PCI, CAL, BASEL II

Key Categories for auditing:
• Logon/Logoff
• Audit DDL
• Audit DML (for sensitive data)
• Audit Database Errors
• Audit Stored Procedures
• Audit changes to privileges, user/logins
Masking

Data Masking

• Home grown
• Industry solutions
• Focus on strengthening the process
Database Monitoring – Baseline and Compliance

Asset Inventory
- Risk Model
 - Data Classification
 - Business Criticality
 - Location in enterprise infrastructure (plays a role)

Define Baseline
- Security Audits
- Best Practices enforcement

Monitor the Compliance
- Continuous monitoring process
- Address gaps
Real Time Monitoring

• Information on who, when, where (to and from) and what

• Collection of events from
 • Databases
 • Servers
 • Network
 • Applications
 • Storage
Intrusion Detection

“Many trees move. He is approaching. Birds rise up. He is concealing himself” – Sun Tzu

• Aggregate and Correlate events
 • Behavior analysis
 • Transaction analysis
• Anomaly detection
• Include “Changes to Meta Data” in monitoring program – offers identification of “rootkits”
• Keep secure hashes of Database engine and Operating System
Database Monitoring – Event Monitoring (Intrusion Detection)

- Events from Applications
- Events from Databases
- Events from Network
- Events from Storage
- Events from Host

Log Aggregation and Correlation

Signature and Behavior Analysis

Forensics and Archiving

To Alerting and Notification System
Case for Privilege User monitoring

- Database does not have features to protect data from DBAs
- Category of users with legitimate access to “Sensitive” data
 - Database Administrators (DBA)
 - System Administrators (including Tape Operators)
- Capability to browse, alter, create sensitive data, while hiding the tracks (stop auditing, delete audit trails)
- Capability to restore “Sensitive” data tapes to “Test” environments – have full range of access
- Complex problem
 - Process - Separation of duty (Role of Security Administrator)
 - Technology offers some help (encryption)
 - IBM has designed a Label Based Access Control (LBAC) for protecting rows and columns from DBAs
Encryption for Information Protection

- Sensitive information is formed by combination of data elements. These elements include:
 - Name, Social Security number, Credit card number, Date of Birth, Medical records, Intellectual Property, elements of personnel information, Trade Secrets etc.
 - Infowave study of 2007 identifies - prime reason for compromise was not “Hacking”, it was lack of Internal controls

<table>
<thead>
<tr>
<th>Foley Group Estimate</th>
<th>Y 2007 – 79 Million records (ID) compromised</th>
<th>Y 2006 – 20 Million records (ID) compromised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attrition.org Estimates</td>
<td>Y 2007 – 162 Million IDs compromised in US and overseas</td>
<td>Y 2006 – 45 Million IDs compromised</td>
</tr>
</tbody>
</table>
Encryption for Information Protection

- It is a business problem
- Business: Loose competitive advantage with loss of sensitive data.
 - Veterans Department – Loss of unencrypted tapes
- Regulations: Certain regulations explicitly specify need to protect sensitive information
 - PCI requires sensitive fields encrypted
- Need to Follow Data: Data gets created, altered, improved, backed up tapes, restored on Test Systems, replicated.
 - Encrypt at source of creation, alteration may offer some control
Encryption for Information Protection

Protect the confidentiality

- Data at Rest
- Data in Transit

Database technology vendors offer native encryption:

- Solutions offered for
 - Table Level Protection
 - Storage Level

Advantages

Preventative Control
Works better with in-house applications
Standardization in choice of algorithms
Effective Control for Privileged User
Easily adaptable technology

Disadvantages

COTS product support issue
Performance implications
Extra Storage requirements
KEY MANAGEMENT
Issues with Recoverability

- Not a Golden bullet, implement with appropriate process
Conclusion and Future Direction

• Database Security is a business problem
• Database Security can only be achieved with layered defenses
• Data Security is not a one time problem, it is constant journey
• Database and 3rd party vendors offer point solutions
• Use of point solutions helps institute key controls
• Data Governance program will help areas of focus
• Government is regulating, however, it is insufficient, enactment of “National Data Law” has failed in congress, but with rise in breaches, momentum is shifting
• Standards development and enforcement will help solve the problem in long
• This study was more focused on Technology solution for Information Protection, there is a great need to research and develop “Information Management Lifecycle” that includes security as one of the key driver
• Solutions must integrate People, Process and Technology