Listening In

Passive Capture and Analysis of Oracle Network Traffic

Jonah H. Harris myYearbook.com

About Me

- Sr. DBA at myYearbook.com
- Oracle DBA and developer since Oracle7
- Research Oracle Internals
- Speaker at IOUG, VOUG, NYOUG
- Technical Reviewer for IOUG SELECT
- Blog about Oracle technology

You're asking... what's in it for me?

- Learn how to detect network-related issues.
- Diagnose and solve network-related issues.
- Gain a better understanding of the Oracle Network Protocol

Disclaimer

This is my hobby

- I've never been an Oracle insider
- The material in this presentation has been based on years of researching Oracle internals as well as analyzing network traffic and trace files.
 - In addition to similar research from Ian Redfern, the majority of this paper is based primarily on my own personal research and discussions with Tanel Põder
 - Do your own research!
- Use at your own risk!

A Common User Question

Question

- Why is the database sooooo slow?
- The sarcastic response you're considering...
 - The edition of Oracle we're using lacks the ALTER SYSTEM SPEEDUP DATABASE option.

Answer

- I don't know…
- It's not the database, it's the application...
- I'll look into it…
- How do you know it's a database issue?

Troubleshooting the Issue

- Check Session Waits
- Check for a Long Running Query
- Check Session Performance Counters
- Check X, Y, Z...

Check Session Wait Events

- V\$SESSION
- V\$SESSION_WAIT
- V\$SESSION_EVENT
- V\$SESS_TIME_MODEL

Nope, nothing there...

Check Long Running Queries...

- V\$SQL
- V\$SESSION_LONGOPS

Hmm, looks like short queries...

Check Session Counters

V\$SESSTAT

Counters aren't increasing, ...

Troubleshooting the Issue

- Check Session Waits; zero.
- Check for a Long Running Query; zip.
- Check Session Performance Counters; zilch.
- Check X, Y, Z; nada.

All looks good from within Oracle... what next?

Check the Operating System

- Check Process CPU Usage and State
 - Determine whether it's doing anything...
- Dump Call Stack
 - Get a list of all the function calls made by Oracle as well as the call we're currently in...

Check the OS—CPU

UNIX/Linux

- nmon, top, glance, …
- Windows
 - More difficult due to threads-based model...

Examine the Process State

Output from top

Check the OS—Call Stack

UNIX/Linux

pstack, procstack, gdb, dbx, …

Windows

More difficult...

Examine the Call Stack

- Represents the program's function calls
- Stack data structure
- Top entry is the current function

Top of the Stack—read(), write()

- Operating System calls (syscalls)
- Used to read/write data from a file descriptor (socket).

Trace Client/Server?

SQLNET.ORA
 CLIENT_TRACE_LEVEL
 SERVER_TRACE_LEVEL
 LISTENER.ORA
 TRACE_FILE_LISTENER

Trace Client/Server? Uh, no.

Pros

It works [for some things]

Cons

- Is not passive; Tracing/Logging has overhead
- Difficult to find valuable information
- Difficult to use for more than one connection

Oracle Network Architecture

- Layered
 - Based on the Open Systems Interconnect (OSI) model

Oracle Net Components

- Oracle Protocol Support
- Oracle Net Foundation Layer
- Two Task Common Layer
- Application & RDBMS Layer

Oracle Protocol Support

Maps TNS to underlying network transport

Oracle Net Foundation Layer

Handles connections and messagingTransparent Network Substrate (TNS)

Two Task Common Layer

Performs client/server character set conversion.

Application & RDBMS Layer

- Application (Client) Interface
 - UPI

 - JDBC
 - .NET
- RDBMS (Server) Interface
 - OPI (Oracle Programmatic Interface)

- Transparent Network Substrate (TNS)
- Note:1007807.6, SQL*NET PACKET STRUCTURE: NS PACKET HEADER
- Every TNS packet has a header

TNS Packet Types

- Connect
- Accept
- Acknowledge
- Refuse
- Redirect
- Data
- Null
- Abort
- Resend
- Marker
- Attention
- Control Information

Translating TNS Packets to Code

Packet Header

Code

struct ns {	phd	
ub2	nsphdlen;	<pre>/* Packet Length (in bytes) */</pre>
ub2	nsphdpsm;	/* Packet Checksum */
ub1	nsphdtyp;	/* Packet Type */
ub1	nsphdrsv;	<pre>/* Reserved for Future Use? */</pre>
ub2	nsphdhsm;	<pre>/* Packet Header Checksum */</pre>
};		

TNS Connect Packet

Performs a connection to an Oracle server.

	struct nsp	ocn	
	{		
	ub2	nspcnvsn;	/* Packet Version */
	ub2	nspcnlov;	<pre>/* Lowest Compatible Version */</pre>
	ub2	nspcnopt;	<pre>/* Supports Global Service Options */</pre>
	ub2	nspcnsdu;	/* Session Data Unit Size (in bytes) */
	ub2	nspcntdu;	/* Transport Data Unit Size (in bytes) */
	ub2	nspcnntc;	<pre>/* NT Protocol Characteristics */</pre>
	ub2	nspcntna;	/* Line Turnaround Value */
	ub2	nspcnone;	<pre>/* The number 1 in Host Byte Order */</pre>
	ub2	nspcnlen;	<pre>/* Length of Connect Data (in bytes) */</pre>
	ub2	nspcnoff;	<pre>/* Byte Offset to Connect Data */</pre>
-	ub4	nspcnmxc;	/* Maximum Connect Data */
	ub1	nspcnf10;	/* Connect Flags 0 */
	ub1	nspcnfl1;	/* Connect Flags 1 */
	ub4	nspcncf1;	<pre>/* cross facility item 1 */</pre>
	ub4	nspcncf2;	<pre>/* cross facility item 2 */</pre>
	text	nspcncid[8];	<pre>/* unique connection id */</pre>
	text	nspcncix[8];	<pre>/* unique connection id */</pre>
	text	*nspcndat;	/* Connect Data */
	3.		

TNS Accept Packet

Server's response to a connection request.

struct ns	pac	
۱ ub2	nspacvsn;	/* Version that this connection is to run at */
ub2	nspacopt;	/* Global service options */
ub2	nspacsdu;	/* Session Data Unit Size (in bytes) */
ub2	nspactdu;	/* Transport Data Unit Size (in bytes) */
ub2	nspacone;	<pre>/* The value '1' in host byte order */</pre>
ub2	nspaclen;	<pre>/* Length of connect data */</pre>
ub2	<pre>nspacoff;</pre>	<pre>/* Offset to start of connect data */</pre>
ub1	nspacf10;	/* Connect Flags 0 */
ub1	nspacfl1;	/* Connect Flags 1 */
text	<pre>*nspacdat;</pre>	/* Connect Data */
};		

TNS Refuse Packet

A denied connection request by the server.

struct ns	prf	
{	-	
ub1	nsprfurs;	<pre>/* User (application) reason for refusal */</pre>
ub1	nsprfsrs;	<pre>/* System (NS) reason for refusal */</pre>
ub2	nsprflen;	<pre>/* Length of refuse data */</pre>
text	<pre>*nsprfdat;</pre>	<pre>/* Start of connect data */</pre>

TNS	Red	lirect	Pac	ket

Server asks client to performs connection redirection.

str {	uct ns <u>r</u>	prd		
	ub2	nsprdlen;	<pre>/* Length of redirect data */</pre>	
	text	*nsprddat;	<pre>/* Start of connect data */</pre>	
};				

TNS Resend Packet

- Server requests the client to resend the packet.
- Packet is the standard TNS header with packet type NSPTRS.

TNS Null Packet

- Generally used for keep-alive.
- Packet is the standard TNS header with packet type NSPTNL.

TNS	Data	Pacl	ket

The most commonly used packet.

Encapsulates TTI/TTC Subpackets

str	uct	nsp	da
-----	-----	-----	----

ub2 nspdaflg; text *nspdadat; /* Data Flags */
/* start of data */

};

ł

Issue #1: Slow Connections

Connecting to server is slow

Establishing a Connection

- Connect to Server
- Negotiate Additional Network Options
- Negotiate Protocol Version
- Negotiate Data Types
- Authenticate

Code (Upon Request)

oconnect.c

Making the Connection

- Client requests a connection to TNS entry ORCL.
- Network Naming attempts each directory_path method in order
- Network Naming parses TNSNAMES.ORA looking for the ORCL entry.
- Client builds and sends a TNS Connect Packet (NSPTCN) to the appropriate listener.
- The Listener responds with a TNS Resend (NSPTRS) or Redirect [to another port] (NSPTRD) packet.
- Client responds accordingly.
- Server responds with an Accept (NSPTAC) or Refuse (NSPTRF) packet

Negotiating Additional Options

- Additional Services
 - Authentication
 - Encryption
 - Data Integrity
 - Supervisor

Negotiating Protocol Versions

- TTI Protocol Packet
 - What versions are acceptable?
 - **4**, 5, 6
 - Server replies with info

Negotiating Data Types

TTI Data Type Packet

- Client character conversions
- Server replies with its own representations

Authentication

Client sends server basic information

- User Name
- Terminal Name
- Machine Name
- Program Name

....

Server responds with challenge/response...

Why can it be slow?

- Parsing large TNSNAMES.ORA files
- Network Connectivity (Firewall/VPN)
- Overloaded Server

Large TNSNAMES.ORA

Reason

Increases parse time

How to detect

Oracle Net Tracing
Time between loading TNSNAMES.ORA and finding the appropriate entry.

How to fix

Use different TNONAMES OD A files

- Use different TNSNAMES.ORA files
- Use EZCONNECT or a different directory method

Network Connectivity

Reason

Network latency slows down packet transfer.

How to detect

- Inside Oracle
 - SQL*Net message to client with high wait times
- Wire-level Monitoring
 - Look for delays in TCP ACK
- Client/Server Oracle Net Tracing (least-preferred)
 - Look at time between send/recv from NS and NT
- How to fix
 - Fix the network.

Overloaded Server

Reason

Server is CPU-bound and has a high load

How to detect

- Wire-level Monitoring (Server-side)
 - Calculate time between receiving a TNS packet and sending a response.
- Server-side Listener Tracing (least-preferred)

How to fix

- Find cause of load
 - Buy new hardware
 - Tune queries

Issue #2: Slow Queries

Simple queries take a long time to return...

Querying the Database

- Open a cursor
- Parse the query
- Execute the query
- Fetch the data
- Cancel the cursor
 - Close the cursor

Code (Upon Request)

oquery.c

TTC Open (OOPEN)

Opens a statement

Protocol

- Client requests OOPEN
- Server replies with cursor #

Parse/Execute the Query

TTC (OALL7/8)

- Supports several options
 - Parse
 - Bind
 - Execute
 - Fetch
 - Cancel
 - Commit
 - Exact Fetch
 - Send Vector
 - No PL/SQL
- Protocol
 - Client sends OALL packet with cursor #, SQL statement, and flags (Parse, No PL/SQL, Execute), then requesting column/data type info.
 - Server replies with Success/Fail

Fetch Data

- OALL7/8 Packet
 Options
 - Options
 - No PL/SQL
 - Fetch

Protocol

- Client sends OALL packet with No PL/SQL and Fetch options
- Server replies with data.

Why can it be slow?

- Network Connectivity (Firewall/VPN)
- Overloaded Server
- Underlying Network Protocol Settings
- Fetching method used by an application

Underlying Network Protocol

Reason

Oracle NT/NS relies on fast UNP

How to detect

- Wire-level Monitoring (UNP Fragmentation)
- Inside Oracle (SDU/UNP Issues)
 - SQL*Net message to client/more data to client

How to fix

- Tune OS-level protocols using best practices
- Make sure Oracle Net matches UNP (SDU==MTU) in listener.ora and tnsnames.ora

Fetch Method

Reason

- One-at-a-time fetching means one-roundtripper-fetch.
- How to detect
 - Wire-level Monitoring (lots of fetch packets)
 - Inside Oracle
 - Look for a lack of SQL*Net more data to client

How to fix

- Use Array-based Fetching
 - OCI (prefetching)
- Tune Explicit Fetch Sizes

Wire-level Monitoring Tools for Oracle

- Oracle Itself
- Wireshark
- WireCache SQL Query Analyzer
- SCAPE for Oracle (SCAPE4O)

Oracle Network Monitoring

Pros

- The simplest method
- Cons
 - Not manageable for large-scale systems

Wireshark

Pros

Free

Dissects TNS packets

Records Conversations

Can be used with stored packet captures

Cons

Does not decode TTI/TTC packets (yet)

WireCache SQL Query Analyzer

Pros

Dissects TNS packets

- Dissects TTI/TTC Packets
- Records Conversations
- Can be used with stored packet captures
- Cons
 - Commercial Product

WireCache SQL Query Analyzer

SQL Summary						
=-=	= = = =	-=-=-=-=-=-=-=- TIME		COUNT		-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
%TI	ME	FIRST	FOLLOW	FIRST	FOLLOW	STMT
100	0.0	18826.34	123.25	146052	7 17596	 7 <= TOTAL
84	1.8	15983.94	80.36	1353843	3 154003	3 SELECT
11	L.5	2171.89	0.00	14800	0	UPDATE
2.	. 7	459.78	42.89	26977	21964	INSERT
0.	. 6	104.81	0.00	33130	0	COMMIT/ROLLBACK
0.	. 5	86.71	0.00	2823	0	DELETE
0.	.1	18.77	0.00	28108	0	PL-SQL
0.	. 0	0.43				ALTER/CREATE
28	3.4	5385.38		3386		SELECT CC_FIRST_CASE_DT FROM PS_RF_INST
10).4	1972.57	0.00	626	0	UPDATE PS_RF_INST_PROD SET CC_FIRST_CAS
8	3.2	1544.53	0.00	1104	0	SELECT INST_PROD_ID FROM PS_RF_INST_PRO
7	7.5	1427.12	0.00	48816	0	SELECT DISTINCT SC.CC_CAUSE_ID, C.DESCR
4	1. 0	749.77	0.00	474	0	SELECT INST.PRODUCT_ID,INST.CC_RECALL_F
3	3.6	673.29	0.00	474	0	SELECT INST.CC_POP_FLG, PROD.CC_POP_GRA
3	3.5	667.75	0.00	1498	0	SELECT PRODUCT_ID FROM PS_RF_INST_PROD
2	2.7	516.45	0.00	84	0	SELECT DISTINCT BO_ID,BO_TYPE_ID,BO_NAM
2	2.2	416.79	0.00	154	0	SELECT TO_CHAR(BO_ID) FROM PS_BO WHERE
1	L.9	368.44	0.00	10	0	SELECT CM_ID, COUNTRY_CODE, PHONE, EXTE

SCAPE for Oracle (SCAPE4O)

- SQL Capture and Analysis by Passive Evaluation
- Pros
 - Free
 - Dissects TNS packets
 - Dissects TTI/TTC Packets
 - Records Conversations
 - Can be used with stored packet captures
- Cons
 - Alpha-quality

SCAPE for Oracle (SCAPE4O)

SCAPE40 0.7.2 - CLIENT (jhh-laptop)

Items Learned in this Session

- How to detect network-related issues.
- How to diagnose and solve network-related issues.
- Gained a better understanding of the Oracle Network Protocol

Questions?

Thank You

- Fill out evaluation
 - Jonah H. Harris
 - Listening In: Passive Capture and Analysis of Oracle Network Traffic
 - Session 381
- Further Information
 - jonah.harris@gmail.com
 - http://www.oracle-internals.com/