
1

Performance Tuning
Web Applications

Dr. Paul Dorsey & Michael Rosenblum
Dulcian, Inc.

www.dulcian.com

NYC Metro Area
Oracle Users Group Meeting
September 10, 2008

2

Why Performance Tuning Fails

We are solving the wrong problem.
Tuning:

Usually makes the database run better.
Focuses on poorly running SQL.

Web applications are frequently unaffected by
these performance improvement approaches.
Need to examine the entire system, not just the
database.

3

Web Application
Architecture

3. Application
Server

2. Send data from
Client to app server

5. Database

6. Return Data from
database to app server

1. Client

4. Send data from
app server to database

7. Data in
Application Server

8. Return data from
app server to client

9. Data in
client

4

Unlikely source of problems.
Should not be dismissed entirely.
Using AJAX architectures, it is possible to place so
much code in the client that a significant amount of
time is required before the request is transmitted to
the application server.

Beware of underpowered client machines with
inadequate memory and slow processors.

Steps 1 & 9 - Client

1. Client

9. Data in
client

5

Step 2 - Client to
Application Server

Less common cause of performance problems
Transmitting large amounts of information over
the Internet may cause problems.

Uploading large files
Transmitting a large block of data

2. Send data from
Client to App Server

6

Processing can be resource-intensive.
Java programmers minimize database application logic
in the middle tier.
Complex data manipulation can be handled much more
efficiently with database code.

Thick database approach is the key to efficiently performing
web applications.

Steps 3 & 7 Application Server
Processing Performance

Problems3. Application
Server

7. Data in
Application Server

7

Step 4 - Application Server
to Database

Not instantaneous (but really fast)
High number of transmission requests are the #1 cause
of performance problems
Database-independence is not a good idea.

Single request from a client may require many requests from
the application server to the database in order to fulfill.

Examine and measure the number of round-trips from
application server to database.

4. Send data from
App Server to Database

8

Step 5 - Database
Performance Problems

Use traditional tuning.
Beware of stateless implementation.

Information pertaining to a particular session must be
retrieved at the beginning of every request and
persistently stored at the end of every request.
Single table may generate massive I/O

Redo logs
Block contention

5.
Database

9

Step 6 - Database to Application
Server Transmission Problems

Rare problem
Beware of unnecessary data movement.

One record is needed and the whole table is sent

6. Return Data from
DB to App Server

10

Step 8 - Application Server to
Client Transmission Problems

#2 cause of performance problems
Keep pages small.

Not too many fields
Not too much AJAX or JavaScript
Not too big a tree
Not too much data in a scrolling block
No images, or other unnecessary information

Measure size of page

8. Return data from
App Server to client

11

Locating Slow
Performance Causes

Embed timers into a system to detect where in
the nine possible steps the application
performance is degrading.
Strategically placed timers will indicate how
much time is spent at any one of the steps in the
total process.

12

Common Causes of
Performance Problems

The most common causes of slow system
performance are:

1. Excessive round-trips from the application server
to the database
2. Large pages sent to the client
3. Performing operations in the application server
that should be done in the database
4. Poorly written SQL and PL/SQL routines

Measuring Performance

14

Timing Language Elements

Command: Atomic part of the process (any command
on any tier)
Step: Complete processing cycle in one direction
(always one-way)

Can either be a communication step between one tier and
another, or a set of steps within the same tier.
Step consists of a number of commands.

Request: Action consisting of a number of steps. A
request is passed between different processing tiers.
Round-trip: Complete cycle from the moment the
request leaves the tier to the point when it comes back
with some response information.

15

System Tuning for 3-tier Application
(with numbers!)

9-step or
5 round-

trip
structure

80 sec
100 sec

75 sec
50 sec
40 sec

40 sec

4 sec

6 sec

15 sec

10 sec

2 sec

3 sec

5 sec

15 sec

Client App
server DATABASE

Client App
server DATABASE

16

Actions in
5 Round-Trip Structure

Client Level
1. From request
initiation to end of
processing

User clicks button
Response is
displayed

2. From request to
application server
to response receipt

Start of servlet call
End of servlet call

Application Level
3. From request
acceptance to
moment it is sent
back

Start of processing
in servlet
End of processing
in servlet

4. From request
sent to database

Start of JDBC call
End of JDBC call

Database Level
5. From request
acceptance to
sending back the
response

Start block
End of block

Review

Topics Covered
1. Steps in web

application process
2. Places where

performance can
suffer

3. Measuring
performance

Still to discuss
1. SQL tuning
2. Application server /

database
communication
tuning

3. Managing persistent
layer

18

SQL Tuning: REMEMBER!!!

1. Use bind variables.
2. Use bind variables.
3. Use bind variables.
4. Use bind variables.
5. Use bind variables.
6. Use bind variables.
7. Use bind variables.

© Tom Kyte

1. Don’t build SQL in JAVA.
2. Don’t build SQL in JAVA.
3. Don’t build SQL in JAVA.
4. Don’t build SQL in JAVA.
5. Don’t build SQL in JAVA.
6. Don’t build SQL in JAVA.
7. Don’t build SQL in JAVA.

© M. Rosenblum

19

The problem:
Value lists are explicitly hard-coded across the
system

Difficult to determine what exactly is used
Hard to maintain
Data-dependent (cannot be cached)

The solution – single point of tuning!
Universal Value List Builder

Simple Case

20

Universal Value List (1)

Specify exactly what is needed as output
and declare the corresponding collection:

Create type lov_oty is object
(id_nr NUMBER,
display_tx VARCHAR2(256));

Create type lov_nt
as table of lov_oty;

21

Universal Value List (2)
Write a PL/SQL function to hide all required logic:

function f_getLov_nt
(i_table_tx,i_id_tx,i_display_tx,i_order_tx)

return lov_nt is
v_out_nt lov_nt := lov_nt();

begin
execute immediate
'select lov_oty('

||i_id_tx||','||i_display_tx||
')'||

' from '||i_table_tx||
' order by '||i_order_tx

bulk collect into v_out_nt;
return v_out_nt;

end;

22

Universal Value List (3)
Test SQL statement with the following code:

select id_nr, display_tx
from table(

cast(f_getLov_nt
(:1, -- 'emp'
:2, -- 'empno'
:3, --'ename||''-''||job'
:4 -- 'ename‘

)
as lov_nt)
)

23

Complex Case
The problem:

Users upload CSV-files
Name of file defines type
Column headers map directly to table columns
One row of file could mean multiple inserts

Wrong solution
Parse file in the middle-tier and build inserts

Right solution:
Load file to the database as CLOB
Build all inserts in the database

24

Build Inserts
Declare
type integer_tt is table of integer;

v_cur_tt integer_tt;
Begin
for r in v_groupRow_tt.first..v_groupRow_tt.last loop

v_cur_tt(r):=DBMS_SQL.OPEN_CURSOR;
for c in c_cols(v_mapRows_tt(r)) loop
for i in v_header_tt.first..v_header_tt.last loop
if v_header_tt(i).text=c.name_tx then
v_col_tt(i):=c;
v_col_tx:=v_col_tx||','||v_col_tt(i).viewcol_tx;
v_val_tx:=v_val_tx||',:'||v_col_tt(i).viewcol_tx;

end if;
end loop;

end loop;
v_sql_tx:='insert into '||v_map_rec.view_tx||

'('||v_col_tx||') values('||v_value_tx||')';
DBMS_SQL.PARSE(v_cur_tt(r),v_sql_tx,DBMS_SQL.NATIVE);

end loop;

25

Process Data
for i in 2..v_row_tt.count
loop

for r in
v_groupRow_tt.first..v_groupRow_tt.last
loop
for c in v_col_tt.first..v_col_tt.last
loop
if v_col_tt(c).id = v_mapRows_tt(r) then
DBMS_SQL.BIND_VARIABLE(v_cur_tt(r),
':'||v_col_tt(c).viewcol_tx,
v_data_tt(c).text);

end if;
end loop;
v_nr:=dbms_sql.execute(v_cur_tt(r));

end loop;
end loop;

26

Application Server / Database
Critical success factor – managing database sessions:

Almost impossible to have one session per connection
Cost of opening/closing sessions is high

Opportunity:
Total number of physical sessions at any point in time is fairly
small.

Good idea:
Create connection pool with a fixed number of connections
(using Autoextend option)
Serve them to incoming requests as needed

Problems:
A single physical session can serve requests from different
logical sessions at different points in time.
Cannot trust ANYTHING defined at the session level.

27

Connection Pooling (1)

Packaged variables cleanup

begin
dbms_session.reset_package;
dbms_session.free_unused_user_memory;

end;

28

Connection Pooling (2)
Temporary tables cleanup

procedure p_truncate is
v_exist_yn varchar2(1);

Begin
select 'Y' into v_exist_yn
from v$session s, v$tempseg_usage u
where s.audsid = SYS_CONTEXT('USERENV','SESSIONID')
and s.saddr = u.session_addr
and u.segtype = 'DATA'
and rownum = 1;
for c in (select table_name from user_table

where temporary = 'Y‘
and duration = 'SYS$SESSION') loop

execute immediate 'truncate table '||c.table_name;
end loop;

end;

29

Managing Persistent Layer

Client/Server
Temporary table with
supporting information
(one row per session)
Read - from support area.
Write – via the engine:

Get action from the
application
Modify support area
Send response to the
application

Reason
Eliminates about 75% of
repeated requests

Web - idea
Create persistent table

Add session ID
Estimate system could
slow down 3-5%

Web - real life
50%-200% slower
(only at peak times)
Workload limit after which
the whole system started to
fall apart

30

Why is performance affected? (1)

Database running in ARCHIVELOG
All DML against SUPPORT table recorded
Filled up about 85% of all logs!

All support changes must be persistent.
Extra COMMITS occurred
LOG FILE SYNC wait event count skyrocketed

Table had primary key (ID from a sequence)
Due to DML activity from hundreds of sessions, every
15 minutes, the database logged a deadlock
Very high contention on some index blocks

31

Cumulative heavy I/O load
Individual requests take more time.
Sessions were not released from connection pool fast enough.
Total number of simultaneous sessions is 4 times more than
estimated.

Each session used more memory, more temporary
segments, etc.

Slowed down the system even more
Especially true for I/O operations (since there were more
simultaneous requests).
Quickly spirals into a slow-down and eventual stoppage of the
system

Why is performance affected? (2)

32

Database resources quickly became over-utilized
just by making a table persistent with a session
key.
Two core issues:

1. How to decrease I/O?
2. How to resolve index contention?

Why is performance affected? (3)

33

Solution

Create a separate database instance
New instance runs in NOARCHIVELOG mode
New instance has only one schema.
That schema contains only one table: SUPPORT INFO
SUPPORT INFO table is hash-partitioned by session ID (1024
partitions)
All indexes are local.

Main schema has a database link and synonym
Everything appears as though nothing has changed.
All requests to the support table must include session ID (to use
local indexes).
Some rewrite was required to enforce this rule.

34

Result

System ran as fast as originally predicted
Extra waits caused by data cases via DBLink were negligible
(less than 0.01/request - average of 3000 requests/hour).
No time lost writing logs
Less I/O less sessions less resources used less waits

faster response less sessions …
Using a large number of partitions, less chances of
creating a “hot block”, since all indexes were local.
Lessons learned:

In the Oracle environment, everything is linked together.
Any changes can lead to a “domino effect”

35

Conclusions

Keep all nine of the potential areas for
encountering performance problems in mind.
Investigate each one carefully to discover ways
in which performance can be improved.
It is not just the database.

36

Share your Knowledge:
Call for Articles/Presentations

Submit articles, questions, … to

IOUG – The SELECT Journal ODTUG – Technical Journal
select@ioug.org pubs@odtug.com

Reviewers wanted

Dulcian’s BRIM® Environment

Full business rules-based development
environment
Includes FREE license for BRIM Web 3.0
For Demo

Write “BRIM” on business card

38

Contact Information
Dr. Paul Dorsey – paul_dorsey@dulcian.com
Michael Rosenblum – mrosenblum@dulcian.com
Dulcian website - www.dulcian.com

Developer Advanced
Forms & Reports
Developer Advanced
Forms & Reports Designer

Handbook
Designer
Handbook

Latest book:
Oracle PL/SQL for Dummies

Design Using UML
Object Modeling
Design Using UML
Object Modeling

	Performance Tuning �Web Applications
	Why Performance Tuning Fails
	Web Application �Architecture
	Steps 1 & 9 - Client
	Step 2 - Client to� Application Server
	Steps 3 & 7 Application Server Processing Performance Problems
	Step 4 - Application Server �to Database
	Step 5 - Database Performance Problems
	Step 6 - Database to Application Server Transmission Problems
	Step 8 - Application Server to Client Transmission Problems
	Locating Slow �Performance Causes
	Common Causes of Performance Problems
	Timing Language Elements
	System Tuning for 3-tier Application�(with numbers!)
	Actions in �5 Round-Trip Structure
	Review
	SQL Tuning: REMEMBER!!!
	Simple Case
	Universal Value List (1)
	Universal Value List (2)
	Universal Value List (3)
	Complex Case
	Build Inserts
	Process Data
	Application Server / Database
	Connection Pooling (1)
	Connection Pooling (2)
	Managing Persistent Layer
	Why is performance affected? (1)
	Solution
	Result
	Conclusions
	Share your Knowledge:�Call for Articles/Presentations
	Dulcian’s BRIM® Environment
	Contact Information

