Performance Tuning
Web Applications

NYC Metro Area
Oracle Users Group Meeting
September 10, 2008

Dr. Paul Dorsey & Michael Rosenblum
Dulcian, Inc.
www.dulcian.com

el ~ Why Performance Tuning Fails

¢ We are solving the wrong problem.
¢ Tuning:
» Usually makes the database run better.
» Focuses on poorly running SQL.

¢ Web applications are frequently unaffected by
these performance improvement approaches.

¢ Need to examine the entire system, not just the
database.

PA5~DULCIAN: Web Application
Architecture

3. Application

Server
4. Send data from

2. Send data from app server to database

Client to app server
1. Client E—)>
Chi S W5 Database
I—)>
_ ﬂ_}
L———\ (——

8. Return data from

9 Datai app server to client 6. Return Data from
' a ain database to app server
client /. Data In

Application Server

y 1) " Steps 1 & 9 - Client
il CImnt’_»H] —
P —
9. Data in
client

¢ Unlikely source of problems.
» Should not be dismissed entirely.

» Using AJAX architectures, it Is possible to place so
much code in the client that a significant amount of
time is required before the request Is transmitted to
the application server.

¢ Beware of underpowered client machines with
Inadequate memory and slow processors. 4

2. Send data from
Client to App Server

——
——

Step 2 - Client to
Application Server

/<=i

¢ Less common cause of performance problems
¢ Transmitting large amounts of information over

the Internet may cause problems.

» Uploading large files

» Transmitting a large block of data

= _OuULcIaAN: Steps 3 & 7 Application Server

=P Processing Performance
3. Application Problems
Server
——— C—
~I—] =8

7. Data in
Application Server

¢ Processing can be resource-intensive.

< Java programmers minimize database application logic
In the middle tier.

¢ Complex data manipulation can be handled much more
efficiently with database code.

» Thick database approach is the key to efficiently performing
web applications. 6

Pap—DbuL - Step 4 - Application Server
to Database

4. Send data from
App Server to Database

’—> —

—
:_‘ \ « - :|<=-
¢ Not instantaneous (but really fast)

¢ High number of transmission requests are the #1 cause
of performance problems
¢ Database-independence Is not a good Idea.

» Single request from a client may require many requests from
the application server to the database in order to fulfill.

¢ Examine and measure the number of round-trips from
application server to database. 7

CapuL : Step 5 - Database
Performance Problems

@!_ H j g Database

N —

< Use traditional tuning.

¢ Beware of stateless implementation.

> Information pertaining to a particular session must be
retrieved at the beginning of every request and
persistently stored at the end of every request.

» Single table may generate massive 1/0
= Redo logs
= Block contention 8

4

JrULCIANS step 6 - Database to Application
Server Transmission Problems

’—» =
b———'4
- H=-

6. Return Data from
DB to App Server

¢ Rare problem

¢ Beware of unnecessary data movement.
» One record Is needed and the whole table is sent

JrULLIANS - step 8 - Application Server to
Client Transmission Problems

’—» —g
———'3

8. Return data from
App Server to client

& #2 cause of performance problems

¢ Keep pages small.
» Not too many fields
» Not too much AJAX or JavaScript
> Not too big a tree
» Not too much data in a scrolling block
» NO Images, or other unnecessary information

¢ Measure size of page

10

z=p. * Locating Slow
Performance Causes

¢ Embed timers Into a system to detect where In
the nine possible steps the application
performance Is degrading.

¢ Strategically placed timers will indicate how
much time Is spent at any one of the steps in the

g

total process.

11

) -

Common Causes of
Performance Problems

¢ The most common causes of slow system
performance are:

» 1. Excessive round-trips from the application server
to the database

» 2. Large pages sent to the client

» 3. Performing operations in the application server
that should be done in the database

> 4. Poorly written SQL and PL/SQL routines w

12

Timing Language Elements

¢ Command: Atomic part of the process (any command
on any tier)

¢ Step: Complete processing cycle in one direction
(always one-way)

> Can either be a communication step between one tier and
another, or a set of steps within the same tier.

» Step consists of a number of commands.

Request: Action consisting of a number of steps. A
request Is passed between different processing tiers.

Round-trip: Complete cycle from the moment the
request leaves the tier to the point when it comes back
with some response information.

14

Al System Tuning for 3-tier Application
(with numbers!)
O-step or
5 round-
trip

structure

15

™

Actions In

5 Round-Tri

0 Structure

Client Level

¢ 1. From request
Initiation to end of
processing
» User clicks button
> Response is
displayed
¢ 2. From request to
application server
to response receipt
» Start of servlet call
» End of servlet call

Application Level

¢ 3. From request
acceptance to
moment It IS sent
back

» Start of processing
In servlet

» End of processing
In servlet
¢ 4. From request
sent to database
> Start of JDBC call
> End of JDBC call

Database Level

¢ 5. From request
acceptance to
sending back the
response
» Start block
» End of block

3

-

-

<

Review
Topics Covered Still to discuss
1. Steps in web 1. SQL tuning
application process ||, Application server /
2. Places where database
performance can communication
suffer tuning
3. Measuring 3. Managing persistent
performance layer

- SQL Tuning: REMEMBER!!!
¢ 1. Use bind variables. || ¢ 1. Don’t build SQL in JAVA.
¢ 2. Use bind variables. || ¢ 2. Don’t build SQL in JAVA.
¢ 3. Use bind variables. || ¢ 3. Don’t build SQL in JAVA.
¢ 4. Use bind variables. || ¢ 4. Don’t build SQL in JAVA.
¢ 5. Use bind variables. || ¢ 5. Don’t build SQL in JAVA.
¢ 6. Use bind variables. || ¢ 6. Don’t build SQL in JAVA.
¢ 7. Use bind variables. || ¢ 7. Don’t build SQL in JAVA.

© Tom Kyte © M. Rosenblum

18

: : e

2l . Simple Case

¢ The problem:

> Value lists are explicitly hard-coded across the
YA
= Difficult to determine what exactly is used
= Hard to maintain
= Data-dependent (cannot be cached)

¢ The solution — single point of tuning!
» Universal Value List Builder

ol Universal Value List (1)

¢ Specify exactly what Is needed as output

and declare the corresponding collection:

Create type lov oty 1Is object
(1d_nr NUMBER,
display tx VARCHAR2(256));

Create type lov nt
as table of lov oty;

20

Universal Value List (2)
¢ Write a PL/SQL function to hide all required logic:

function T getLov nt
(1_table tx,1 _1d tx,1 _display tx,1_order_ tx)
return lov _nt 1s
v_out nt lov nt := lov _nt();
begin
execute 1mmediate
"select lov oty("
||i_id_tx|!;:;=|i_display_tx||
" from "] |i1_table tx]]
" order by "||1_order tx
bulk collect 1Into v_out nt;
return v_out nt;
end; 21

/"". —
¢ Test SQL statement with the following code:

Universal Value List (3)

select 1d nr, display tx
from table(
cast(f getLov nt

(:1, -- "emp*”
22, ——- "empno-
-3, ——-"ename]|""-""]|job"
4 -- “ename”

),

as lov _nt)

) 22

o

:

7 . Complex Case
¢ The problem: éﬁ .
» Users upload CSV-files %@
- Name of file defines type §I\% { //%

= Column headers map directly to table columns
= One row of file could mean multiple inserts

¢ \Wrong solution
> Parse file in the middle-tier and build inserts

< Right solution:
> Load file to the database as CLOB
> Build all inserts in the database

23

dh Build Inserts

Declare
type integer_tt is table of iInteger;

V_cur_tt integer_ tt;
Begin
for r I1n v_groupRow _tt.first..v _groupRow tt.last loop
v_cur_tt(r):=DBMS_SQL.OPEN_ CURSOR;
for ¢ 1n c_cols(v_mapRows tt(r)) loop
for 1 In v_header_tt.first..v _header _tt.last loop
IT v _header_tt(1).text=c.name_tx then
v_col _tt(r):=c;
v_col _tx:=v_col _t]||","|]v_col _tt(r).viewcol tx;
v_val tx:=v_ val t]||",:"]]v_col _tt(r).viewcol tx;
end 1f;
end loop;
end loop;
v_sql _tx:="iInsert into "||v_map rec.view tx]]|
"("|lv_col _t%]|]|") values("]]v_value t©&]|")";
DBMS SOQL .PARSE(v_cur_tt(r),v_sqgql tx,DBMS SQL.NATIVE);

end loop;
24

o

d

A Process Data
for 1 In 2..v_row_tt.count

loop
for r 1In
V_groupRow_ tt.first..v _groupRow tt.last
loop
for ¢ In v_col _tt.first..v _col tt.last
loop
iIT v col tt(c).1d = v_mapRows tt(r) then
DBMS SQL.BIND VARIABLE(v_ cur_tt(r),
":"]]v_col _tt(c).viewcol tx,
v_data_ tt(c).text);
end 1f;
end loop;
v_nr:=dbms_sqgl .execute(v_cur_tt(r));
end loop;

end loop; 25

-ﬂ

Zan ~ Application Server / Database

Critical success factor — managing database sessions:
» Almost impossible to have one session per connection
» Cost of opening/closing sessions iIs high

¢ Opportunity:

» Total number of physical sessions at any point in time is fairly
small.

¢ Good i1dea:

> Create connection pool with a fixed number of connections
(using Autoextend option) :

» Serve them to iIncoming requests as needed

¢ Problems:

> A single physical session can serve requests from dlfferent
logical sessions at different points in time.

> Cannot trust ANYTHING defined at the session level.

26

A

L. T Connection Pooling (1)

¢ Packaged variables cleanup

begin
dbms session.reset package;
dbms session.free unused user_memory;

end;

27

-ﬂ

p o ' Connection Pooling (2)
¢ Temporary tables cleanup

procedure p_ truncate 1s
v_exist_yn varchar2(l);
Begin
select "Y" 1Into v_exist yn
from v$session s, v$tempseg usage u
where s.audsid = SYS CONTEXT("USERENV®, "SESSIONID")
and s.saddr = u.session_addr
and u.segtype = "DATA-"
and rownum = 1;
for c 1In (select table name from user_ table
where temporary = "Y*
and duration = "SYS$SESSION®) loop
execute 1mmediate "truncate table "||c-table name
end loop;
end;

28

Managing Persistent Layer

¢ Client/Server

» Temporary table with
supporting information
(one row per session)

» Write — via the engine:

= Get action from the
application

= Modify support area

= Send response to the
application

¢ Reason

» Eliminates about 75% of
repeated requests

» Read - from support area.

¢ Web - 1dea

» Create persistent table
= Add session ID

» Estimate system could
slow down 3-5%
¢ Web - real life

> 50%-200% slower
(only at peak times)

» Workload limit after which
the whole system started to
fall apart

Is I

<

- Why Is performance affected? (1)

¢ Database running in ARCHIVELOG
» All DML against SUPPORT table recorded

> Filleo

¢ All sup

> EXtra
> LOG

up about 85% of all logs!

port changes must be persistent. |
COMMITS occurred ‘?V
FILE SYNC wait event count skyrocketed

¢ Table had primary key (ID from a sequence)

» Due to DML activity from hundreds of sessions, every
15 minutes, the database logged a deadlock

» Very high contention on some index blocks

30

—

A,

Why Is performance affected? (2)

o

¢ Cumulative heavy 1/O load ’ P
» Individual requests take more time. -
» Sessions were not released from connection pool fast enough.
» Total number of simultaneous sessions is 4 times more than

estimated.
¢ Each session used more memory, more temporary
segments, etc.

» Slowed down the system even more

» Especially true for I/O operations (since there were more
simultaneous requests).

» Quickly spirals into a slow-down and eventual stoppage of the

system
y 31

p - y * Why Is performance affected? (3)

¢ Database resources quickly became over-utilized
just by making a table persistent with a session
key.
¢ Two core ISsues:
» 1. How to decrease 1/0?
» 2. How to resolve index contention?

32

-ﬂ

aiZ Solution

¢ Create a separate database instance
» New Instance runs in NOARCHIVELOG mode
» New instance has only one schema.
» That schema contains only one table: SUPPORT INFO

» SUPPORT INFO table is hash-partitioned by session ID (1024
partitions)

» All indexes are local.
¢ Main schema has a database link and synonym

» Everything appears as though nothing has changed.

» All requests to the support table must include session ID (to use
local indexes).

» Some rewrite was required to enforce this rule.

33

o

-d

A P Result

¢ System ran as fast as originally predicted

» Extra walits caused by data cases via DBLink were negligible
(less than 0.01/request - average of 3000 requests/hour).

» No time lost writing logs

> Less I/O = less sessions = less resources used = less walts
—> faster response - less sessions ...

¢ Using a large number of partitions, less chances of
creating a “hot block”, since all indexes were local.

¢ Lessons learned:
» In the Oracle environment, everything is linked together.
» Any changes can lead to a “domino effect "‘Q /

s 34

2P Conclusions

¢ Keep all nine of the potential areas for
encountering performance problems in mind.

¢ Investigate each one carefully to discover ways
In which performance can be improved.

¢ It Is not just the database.

35

—

A,

Share your Knowledge:
Call for Articles/Presentations

¢ Submit articles, questions, ... to

IOUG — The SELECT Journal ODTUG — Technical Journal
select@ioug.org pubs@odtug.com

Reviewers wanted
Oliacle
D ment

_Tools @ML

36

A

amp. Dulcian’s BRIM® Environment

Full business rules-based development
environment

¢ Includes FREE license for BRIM Web 3.0

¢ For Demo
> Write “BRIM” on business card

fA5-DULCIAN: Contact Information

¢ Dr. Paul Dorsey — paul_dorsey@dulcian.com
¢ Michael Rosenblum — mrosenblum@dulcian.com
¢ Dulcian website - www.dulcian.com

Design Using UM Developer Advanced _
fForms & Reports DeSigner ORACLEY: Oracle JDeveloper 10g

Handbook
Hand JDeveloper e ; _
: , Handbogk . .

e bk
proinmminl

----------- . e -
Frscls s oy

Caaid—s ®

Oracle PL/SQL
DUMMIES

|_atest book:
Oracle PL/SQL for Dummies

	Performance Tuning �Web Applications
	Why Performance Tuning Fails
	Web Application �Architecture
	Steps 1 & 9 - Client
	Step 2 - Client to� Application Server
	Steps 3 & 7 Application Server Processing Performance Problems
	Step 4 - Application Server �to Database
	Step 5 - Database Performance Problems
	Step 6 - Database to Application Server Transmission Problems
	Step 8 - Application Server to Client Transmission Problems
	Locating Slow �Performance Causes
	Common Causes of Performance Problems
	Timing Language Elements
	System Tuning for 3-tier Application�(with numbers!)
	Actions in �5 Round-Trip Structure
	Review
	SQL Tuning: REMEMBER!!!
	Simple Case
	Universal Value List (1)
	Universal Value List (2)
	Universal Value List (3)
	Complex Case
	Build Inserts
	Process Data
	Application Server / Database
	Connection Pooling (1)
	Connection Pooling (2)
	Managing Persistent Layer
	Why is performance affected? (1)
	Solution
	Result
	Conclusions
	Share your Knowledge:�Call for Articles/Presentations
	Dulcian’s BRIM® Environment
	Contact Information

