

ORACLE

Take the Guesswork out of SQL Performance with SPA

Mughees A. Minhas Director of Product Management Database and Systems Management

- Motivation
- Overview
- Use Cases
- Real-world Deployments
- Conclusion

Motivation

- Businesses want systems that are performant and meet SLA's
- SQL performance regressions are #1 cause of poor system performance
- Solution for proactively detecting <u>all</u> SQL regressions resulting from changes not available
- DBA's use ineffective and time-consuming manual scripts to identify problems

SPA identifies all changes in SQL performance before end-users can be impacted

SQL Performance Analyzer (SPA)

- Test impact of change on SQL query performance
- Capture SQL workload in production including statistics & bind variables
- Re-execute SQL queries in test environment
- Automatically remediate regressed SQL
 - Integrated with SQL Plan Baselines and SQL Tuning Advisor to provide end-to-end solution

SPA: Supported Changes

SQL Performance Analyzer

Upgrading from Oracle Database 9.2 to 10.2

Capture from 9.2 or higher Test in 10.2 or higher Clients 11.1 10.2 Send SQL to execute **Mid-Tier + + +** Send execution stats 9.2 Store Storag Storac Copy to **Remote Execute** Capture Compare Performance Test SQL (SQL*Trace) ORACLE

Step 1: Capture SQL Workload

- Capture workload using
 - SQL*Trace (Oracle 9i or 10.1)
 - SQL Tuning Set (Oracle 10.2 or 11.1)
- Covert SQL*Trace workload into STS (SQL Tuning Set)
- Incremental capture used to populate STS from cursor cache over a time period
- STS includes:
 - SQL Text
 - Bind variables
 - Execution plans
 - Execution statistics
- STS's filtering and ranking capabilities filters out undesirable SQL

Step 2: Move SQL Workload to Test System

- Copy SQL*Trace file(s) to test system and convert into STS
- Copy STS to staging table ("pack")
- Transport staging table to test system (datapump, db link, etc.)
- Copy STS from staging table ("unpack")

Step 3: Execute SQL Before Making Change

- Establishes SQL workload performance baseline
- SQL execution plan and statistics captured
- SQL executed serially (no concurrency)
- Each SQL executed only once
- DDL/DML skipped
- Option to do Explain Plan only analysis
- SQL*Trace capture does not require this step as the trace file has the necessary execution stats

Step 4: Execute SQL After Making Change

- Manually implement the planned change
 - Database upgrade, patches
 - Optimizer statistics refresh
 - Schema changes
 - Database parameter changes
 - Tuning actions, e.g., SQL Profile creation

Re-execute SQL after change

Gathers new SQL execution plans
 and statistics

Step 5: Compare & Analyze Performance

SQL Performance Analyzer

- Compare performance using different metrics, e.g.,
 - Elapsed Time
 - CPU Time
 - Optimizer Cost
 - Buffer Gets
- SPA Report shows impact of change for each SQL
 - Improved SQL
 - Regressed SQL
 - Unchanged SQL
- Fix regressed SQL using SQL Tuning Advisor or SQL Plan Baselines

SPA Report

SPA Report

Regressed SQL Statements

Regressed SQL Statements									
	Net Impact on	Buffer Ge	ts	Net	Impact on	% of W	orkload Pla	an	
SOL ID	Workload (%)	10g data	11a data		SOL (%)	10a data	11a data Ch	anged	
n 2ny751aat2yd9	-0.82012	973 052 000 13 4	40 825 000		-3 610	22 850	30 530 Y	<u>-</u>	
	0.750 12,	575,052.000 15,	10,025.000		5.010	22.050	50.550 1		_
	-0.750 12,	SQL Details: 2hy		ст	Eve	ution Fraguen	ov 1	Schedule SOL T	uning Advisor
				_51	Liec	ution Frequent	cy I		
		► SQL Text							
		Single Execution S	tatistics		Execution	Statistic			
		Execution	Net T	npact on	Collec	ted	Net Impact on	% of W	orkload
		Statistic Nam	e Work	oad (%)	10g_data	11g_data	SQL (%)	10g_data	11g_dat
		👴 Elapsed Time		-4.340	70.518	89.593	-27.050	16.060	24.17
		👴 Parse Time		-13.830	0.207	0.312	-50.720	27.270	32.47
		👴 CPU Time		-5.700	64.704	85.188	-31.660	18.010	24.20
Plan (Comparison	♣ Buffer Gets		-0.820	12,973,052.000 1	.3,440,825.000	-3.610	22.850	30.53
10)n data	☆ Optimizer Cost		0.170	982.000	658.000	32.990	0.530	0.36
	Plan Hash Value 393503022	☆ Disk Reads ∧ Direct Writes		10.800	6 968 000	0.000	99.930	10.810	1.85
		Bows Processed		0.000	111.000	111.000	0.000	0.000	0.00
Ð	(pand All Collapse All		•	0.000	111.000	111.000	0.000	0.000	0.000
0	neration		Line	Object			Powe	e Cost	
3			0	object			KUW	1 067	
			1					1 967	
			2	EACT PD	OUT ITM 202			1 066	
			2	FACT FD	001 111 293			1 066	
			3					1 220	
			4					1 215	
			6	ADM PC			90	1 2	
		DC	7	ADM PG	FEATOREVALUE			2 214	

Use Cases

Scenario 1:

I have heard premier DB support for 9.2 has ended, I want to upgrade 10.2 database release. How can I use 11g SPA functionality to accomplish the upgrade?

Goal:

Assess impact of upgrade on SQL workload performance on a test system using SPA so that there are no surprises after upgrade.

Scenario 1: Database Upgrade: 9.2/10.1 → 10.2 System Setup

Metalink Note: 560977.1

Scenario 1: Database Upgrade: $9.2/10.1 \rightarrow 10.2$ SPA Enhancements

Scenario 1: Database Upgrade: $9.2/10.1 \rightarrow 10.2$

.

Scenario 1: Database Upgrade: $9.2/10.1 \rightarrow 10.2$

Scenario 1: Database Upgrade: 9.2/10.1 →10.2

Step 1: Capture SQL workload using SQL Trace

- Identify all interesting workloads such as month-end, daily peak, etc.
- Capture SQL trace for the workload, few sessions at a time
- Use dbms_support/dbms_monitor package, these support
 - bind value capture
 - tracing other running sessions
- SQL trace considerations
 - time_statistics=true: Important for performance data
 - user_dump_dest
 - max_dump_file_size
 - trace_file_identifier
 - Performance overhead: 10-15% for traced sessions

Scenario 1: Database Upgrade: 9.2/10.1 →10.2

Step 1: Capture SQL workload using SQL Trace (contd.)

- SQL Trace files only have object identifiers
- Create mapping table to map object identifiers in trace files to schema names

* SQL in Note pages/OTN

Scenario 1: Database Upgrade: $9.2/10.1 \rightarrow 10.2$

Step 2: Transport Workload and Create STS

- Transport SQL trace files, mapping table using ftp/expdp/impdp.., etc.
- Create STS from trace files using dbms_sqltune API (SQL in Notes page/OTN)
 - Specify directory object containing trace files, mapping table, STS name as input

Scenario 1: Database Upgrade: 9.2/10.1 → 10.2 Step 3a: Create SPA Task

Create SPA task on 11g SPA System

Databa	se Instance: v11gk > Advisor Central > SQL Performance Analyzer >		Logged	in As SYS
Guid	led Workflow			
	Page Refreshed Sep 12, 2008 3:47:34 Rea	PM PDT R	efresh) V econd R	iew Data Refresh 🔽
The f	ollowing guided workflow contains the sequence of steps necessar rial SQL Performance Analyzer test.	y to execute	a succe	ssful
Note: Be sure that the Trial environment matches the tests you want to conduct.				
Step	Description	Excecuted	Status	Execute
1	Create SQL Performance Analyzer Task based on SQL Tuning Set			
2	Replay SQL Tuning Set in Initial Environment			
3	Replay SQL Tuning Set in Changed Environment			
4	Compare Step 2 and Step 3			
5	View Trial Comparison Report			

Scenario 1: Database Upgrade: 9.2/10.1 → 10.2 Step 3a:

Create SPA Task

Scenario 1: Database Upgrade: $9.2/10.1 \rightarrow 10.2$ Step 3b: Establish "Before Change" Trial

 Trial Creation Method: Select "Build From SQL Tuning Set" option to use plans and statistics from 9i

Database Instance: v11gk > Advisor Centra	I > SQL Performance Analyzer > Guided Workflow:		
Create SQL Trial			
SQL Trials capture execution performance of the SQL Tuning Set under given optimizer environment.			
SQL Performance Analyzer Task SYS.UPGRADE_TEST			
SQL Tuning Set APPS.HR_WORKLOAD			
* SQL Trial Name	BEFORE_TRIAL		
SQL Trial Description	9i TRIAL		
Creation Method	Build From SQL Tuning Set 🔽		
	Execute SQLs Locally		
Schedule	Execute SQLs Remotely		
Time Zone America/Los_Ange	Generate Plans Remotely		
 Immediately 	Build From SQL Tuning Set		

Scenario 1: Database Upgrade: $9.2/10.1 \rightarrow 10.2$

Step 4: Establish "After Change" Trial

Guide	d Workflow: SYS.UPGRADE TEST			
	Create SQL Trial			
The fol	SQL Trials capture execution performance of the SQL Tuning Set under a given optimizer			
Perforn	environment.			
Note: F	SQL Performance Analyzer Task SYS.T2			
0. 0	SQL Tuning Set APPS.HR_WORKLOAD			
Step L	* SQL Trial Name AFTER_TRIAL_UPGRADE_10204			
1 C	COL Trial Departmention Trial after upgrade to 10204			
2 R				
3 R	Creation Method Execute SQLs Remotely			
4 C	Per-SQL Time Limit Unlimited 🔽			
5 V	TIP Time limit is on elapsed time of test execution of SQL.			
	* Database Link DBLINK_10204 《 Create Database Link			
	^𝞯 TIP Provide a PUBLIC database link connecting to a remote user with privileges to execute the Tuning Set SQL.			

Scenario 1: Database Upgrade: $9.2/10.1 \rightarrow 10.2$

Scenario 1: Database Upgrade: $9.2/10.1 \rightarrow 10.2$ Step 5: Compare and Generate Report

- Compare Pre-Change and After-Change Trials based on a performance metric
 - Oracle recommends using CPU_TIME and BUFFER_GETS metrics
 - Use multiple metrics that provide repeatable and comprehensive statistics

Fixing Regressed SQL

- Systematic problems
 - Check un-analyzed tables, PGA memory, statistics collection, system statistics
 - Refer "Upgrading from Oracle 9i to 10g: What to expect from the Optimizer" on OTN
- For statements suffering from isolated problems use one of the following fixes
 - SQL Profiles: Implement Profiles recommended by SQL Tuning Advisor (STA)
 - Stored Outlines**: If no profile was recommended by STA, then capture Stored Outlines in 9i for the targeted SQL statements. Import stored outline into 10g.

Database Upgrade: $10.2.0.x \rightarrow 10.2.0.y$

Scenario 2:

One of the database I'm managing is on 10.2.0.2. How can I use 11g SPA functionality to accomplish an 10.2.0.4 patchset upgrade?

Goal:

Assess impact of upgrade on SQL workload performance using SPA so that there are no surprises after upgrade.

Scenario 2: Database Upgrade: $10.2.0.x \rightarrow 10.2.0.y$ System Setup

Metalink Note: 560977.1

Scenario 1: Database Upgrade: 10.2.0.x → 10.2.0.y Workflow

Scenario 3: Using SPA Functionality for 9i/10g \rightarrow 11g Upgrades

- Similar workflow as Scenario 2
- Use 11g SPA system and test execute on 10g/11g source and destination target databases
 - Stores results of experiments separately
 - Allows use of latest releases for 11g SPA system

Evaluating Optimizer Statistics Refresh

Scenario 4:

Can I use SPA to check if any SQL statements regressed due to optimizer statistics refresh on my 10.2 production databases. If so, how can I evaluate the refreshed optimizer statistics?

Goal:

Assess impact of optimizer statistics gathering on SQL workload performance on production system & make sure are no negative effects of the change

Evaluating Optimizer Statistics Refresh

- Assumptions
 - Optimizer has already gathered statistics on the database
 - Statistics refreshed periodically
 - No prod copy is available on test
- Use "11g SPA system" to evaluate optimizer statistics on 10.2 production database
 - Remote test execute before/after statistics refresh
- Analyze SPA report and take appropriate action
 - Overall improvement but few SQL regressions
 - Solution: Use SQL Profiles for regressed SQL
 - No improvement and many regressions
 - Solution: Revert to old statistics: Use optimizer statistics retention/history feature
 - For Oracle Database 11g, use publish pending statistics feature to publish statistics after evaluation of statistics

Evaluating Optimizer Statistics Refresh for 10.2

Real-World Deployments

Large International Hotel Chain

Challenge	 Upgrade critical customer-facing application providing rates for room reservations from Oracle Database 10.2.0.4 to 11.1 Highly volatile data where plan stability is critical Unsuccessfully used synthetic queries to test previous upgrades
Solution Approach	 SQL Performance Analyzer to identify SQL regressions SQL Profiles to tune SQL transparently SQL Plan Baselines for plan stability
Benefit	 Very successful upgrade. No surprises! Predictable performance and SLAs Reduced testing time from 5 months to 10 days

E-Business Suite (EBS) Certification and Testing

Challenge	 Certify EBS release 11i, R12 against Oracle Database 11g Complex & large workload: More than <u>650K</u> unique SQL statements need to be validated Ensure application optimized for Oracle Database 11g Difficult to perform realistic and efficient testing with previous
Solution Approach	 (home-grown) tools SQL Performance Analyzer to run regression tests and identify performance deviations Regressions reported to base development for fixes
Benefit	 Reduced testing time from 21 to 2 days for each release Faster and higher quality testing Faster adoption and certification of newer features

Real Application Testing Applicable for Pre-11g Database Releases

Feature	Capture From	Test Changes In
	9 <i>i</i> R2	10g R2 or 11g
SQL Performance Analyzer	10 <i>g</i> R1	10g R2 or 11g
	10 <i>g</i> R2	10g R2 or 11g
	9 <i>i</i> R2	11 <i>g</i>
Database Replay	10g R2	11 <i>g</i>

SQL Performance Analyzer

- Capture on 9i, 10.1, 10.2 database releases
- Test changes in 10.2 & above
- Database Replay
 - Capture on 9i, 10.2 database releases
 - Test changes in 11.1 & above

