
Copyright © 2008 Feuerstein and Associates

Automated Testing Options for PL/SQL

Steven Feuerstein
PL/SQL Evangelist, Quest Software
www.quest.com steven.feuerstein@quest.com

Copyright © 2008 Steven Feuerstein Page 1

How to benefit most from this session
• Concentrate on concepts, not details. Afterwards....
• Download and use any of my the training materials,

available at my "cyber home" on Toad World, a
portal for Toad Users and PL/SQL developers:

• You have my permission to use all these materials to
do internal trainings and build your own applications.
– But they should not considered production ready.
– You must test them and modify them to fit your

needs.

filename_from_demo_zip.sql

• Download and use any of my scripts (examples,
performance scripts, reusable code) from the
demo.zip, available from the same place.

http://www.ToadWorld.com/SFPL/SQL Obsession

Copyright © 2008 Steven Feuerstein Page 2

What makes an application successful?
• Seems like we should know and it should be

obvious....but is it?

• It must be CORRECT.
– Meet user requirements, be as free of bugs as

possible.
• It must be FAST.

– If it is too slow, user frustration will doom the
application.

• It must be MAINTAINABLE.
– Must be easy to understand and maintain.

Otherwise, ROI on the application is reduced.

Copyright © 2008 Steven Feuerstein Page 3

How do we achieve CORRECT, FAST and
MAINTAINABLE?

• CORRECT
– Only one way to verify correctness: test. Test the

backend code, test the UI, test everything!
• FAST

– Identify performance bottlenecks (stress test) and
then adjust the code as needed.

• MAINTAINABLE
– Follow coding standards and review code.
– Run regression tests, after every change, to verify

that all programs still work.

Copyright © 2008 Steven Feuerstein Page 4

Lots of different kinds of tests
• Functional or application level testing

– Usually performed by QA and users
• Stress and performance testing

– Mostly a DBA job, but also for developers
• Unit (code) testing

– The responsibility of developers.
– Before we can say a program is finished, we (are

supposed to) test it to prove that it works.
• But how responsible are we?
• Let's face it: very few of us adequately test

our software.

Copyright © 2008 Steven Feuerstein Page 5

Why don't we test more thoroughly?

• Testing is hard, in any and every
language.
– For thorough testing, you should expect to have to

write at least 10 lines of test code for every line of
application code that needs testing!

• Testing is boring.
– You are not creating code or writing interesting

algorithms.
• Testing finds bugs (!).

– We don't really want to find bugs in our code. We
have "gotten by" for years doing what we do.

Copyright © 2008 Steven Feuerstein Page 6

• We usually just "try" a few things.
– Testing is incomplete; mostly we are reassuring

ourselves that the program is not obviously broken.
• We can't repeat our tests.

– We all too often do "throw away" testing, with the silent
assumption that we will only have to do this once.

• We manually verify results.
– Takes way too much time and I can easily get it wrong.

• We start testing too late in the process.
– If I wait till I am "done" writing my program, I will run

out of time.

What's wrong with the way we test?

betwnstr.sf
betwnstr.tst

Copyright © 2008 Steven Feuerstein Page 7

How can we improve our testing?
• Manual testing is a dead end.

– It will never offer more than "band-aid" testing.
• There is really only one practical solution:

to automate code testing as fully as
possible.

• Automation is key to....
– Practical, effective regression testing
– Giving us the time to test
– Increasing the coverage of tests
– Integrating testing into the development process.

Copyright © 2008 Steven Feuerstein Page 8

Options for automated testing of PL/SQL
• utPLSQL and its variants

– Open-source framework, part of the xUnit family
– You must write the test code yourself.
– PL/Unit: a light version of utPLSQL
– PLUTO: an object type-based version of utPLSQL

• dbFit
– Based on the Fit platform, a tabular scripting approach,

implemented in Java.
• Quest Code Tester for Oracle

– Robust, integrated test environment
– Commercial product

Copyright © 2008 Steven Feuerstein Page 9

About utPLSQL and its variants
• I built the original utPLSQL back in 1999

or so. I discovered Extreme Programming
and its unit testing principle:
– "If testing is good, then everyone should test

all the time." From there, I learned about Junit.
• It is a "cooperative paradigm."

– You "cooperate" by calling utAssert programs
to verify test results. utPLSQL "pays you back"
by automatically running your test package
and displaying the results.

• Unfortunately, you still must write the test
code yourself.

ut_betwnstr.pks
ut_betwnstr.pkb

Copyright © 2008 Steven Feuerstein Page 10

More complete test automation with
Quest Code Tester for Oracle

• Describe the tests you need through a
graphical interface.

• Save your descriptions in a test repository,
available for reporting and analysis.

• Generate the test code (a PL/SQL package)
based on your descriptions.

• Run the test and view the red light, green
light results.

Let's build a test definition for the betwnstr function
using Quest Code Tester.

Copyright © 2008 Steven Feuerstein

Integrating testing into development

• As long as we see testing as something
we do after we are "done" writing our
code, we are in serious trouble.

• We write our best code if we test as we
proceed through development.
1. Make a change.
2. Run your test.
3. Verify that no bugs have been introduced.
4. Confirm that the new feature works as desired.

• Yeah, well, how can you do that?

Page 11

Copyright © 2008 Steven Feuerstein Page 12

You prepare for each new program
• Hold off on writing the cool and

challenging algorithms.
– First take four steps:

Validate
Requirements

1
Construct

Header

2 Define
Expected
Behavior

3
Build

Test Code

4

Confirm
what you are
supposed to
build, then

identify
assumptions

Think about the
interface, not

the
implementation
How will it be

used?

In other
words, how

will you know
when you

have finished
the program?

Establish a
baseline

before you
write the

code, then
compile it

against stub.

Yes! Think about testing before coding.

Copyright © 2008 Steven Feuerstein Page 13

Crafting successful applications through
automated testing

• Stop separating development from testing.
– They are two sides of the same coin.

• Rely on a predefined, standard testing
framework that automates as much of the
work as possible.

• Automated testing with a framework allows
you to...
– Help you stay focused on critical, required

functionality.
– Greatly reduce the number of bugs.
– Produce a regression test suite that makes safe

evolution and maintenance possible.

	Automated Testing Options for PL/SQL
	How to benefit most from this session
	What makes an application successful?
	How do we achieve CORRECT, FAST and MAINTAINABLE?
	Lots of different kinds of tests
	Why don't we test more thoroughly?
	What's wrong with the way we test?
	How can we improve our testing?
	Options for automated testing of PL/SQL
	About utPLSQL and its variants
	More complete test automation with � Quest Code Tester for Oracle
	Integrating testing into development
	You prepare for each new program
	Crafting successful applications through automated testing

