
Fast High Volume Reporting

Lessons Learned From 
the Collation-Script 
Solution



The Ideal Reporting Platform

Flexible Report Design
– It should be able to do anything!

Rapid Development
– Make it easy to code and easy to maintain.

High Performance
– That means limited DB hits, pipelining and parallelization.

How Do I Build It?



XML from the Database

Because it’s SOA compatible

Because it works with publishing tools like 
XSLT/FO and Dopefo

The real reason



Structure

SQL result sets are tabular.

Reports are most often hierarchical or have a nested 
structure.

Even reports that use tables often organize the 
tables into hierarchies.

A simple example: Imagine a town …



The SQL results looks like this:

Valley High Jack Johnson Reading B 

Valley High Jack Johnson Writing B 

Valley High Jack Johnson Arithmetic C 

Valley High Sam Samuels Reading A 

Valley High Sam Samuels Writing C 

Valley High Sam Samuels Arithmetic D 

Central High Bill Williams Reading B 

Central High Bill Williams Writing B 

Central High Bill Williams Arithmetic B 

Central High Dana Daniels Reading A 

Central High Dana Daniels Writing C 

Central High Dana Daniels Arithmetic B 



But the report we want to produce 
looks more like this:
Valley High 

Jack Johnson    
Reading       B 
Writing       B 
Arithmetic    C 

Sam Samuels 
Reading       A 
Writing       C 
Arithmetic    D 

Central High

Bill Williams
Reading       B 
Writing       B 
Arithmetic    B 

Dana Daniels
Reading       A 
Writing       C 
Arithmetic    B 



How do we create nested data?

SQL can’t help us.

Dozens of nested JDBC (or other DB API) 
calls aren’t an option.

Caching data in the application is a waste.



This doesn’t scale.

for school in db.execute('select name, id from 
school'):

print school.name

for student in db.execute('select name, id from 
student where school_id = %s'%school.id):
print ' ',student.name

for grade in db.execute('select subject, letter 
from grade where student_id = %s'%student.id):

print '  ', grade.subject, grade.letter



This scales better, but ... Yuck!
for school in ORMSchools:
print school.name

for student in 
ORMStudents_by_school[school.id]:

print ' ',student.name

for grade in 
ORMGrades_by_student[student.id]:

print '  ', grade.subject, grade.letter



The Simple Solution

Execute this code in the database.

If you create nested structure in the DB, you 
must return next structure from the DB.

XML is the obvious answer.



XML Query Showdown
XQuery Collation-Script
for $dist in $district/row 

return

<district>

<name>{$dist/name}</name>

{       

for $sch in $school/row                                 <school>{name}</school>

where $sch/district_id =

$dist/district_id

return

<school>{$sch/name}</school>

}

</district> 

<col:for-each type="district">

<district>

<name>{name}</name>

<col:for-each type="school">

</col:for-each>  

</district>

</col:for-each> 



What is Collation-Script?

It’s a query language.

It’s a reporting platform.

It’s a report-stream definition language.

But can it make julienne fries?



Structure: The Next Level

Define where one document ends and 
another begins.

Define which documents go into which files 
and in what order.

Structure the fulfillment via printer workflow. 



Print Vendor Support

Shipping Units

Slip Sheets

Addresses and Mailing Labels



Central High 

R.F.D. 3

Sunnyvale, RI 02893

00087

Shipping Unit 87

Shipping Unit 87



<col:for-each type="district">
<col:file path="D_{district_id}.fo" processor=“dopefo.exe">

<col:for-each type="school" orderby="school_id">
<col:shipping-unit address="{address} {city}, {state} {zip}">

<col:for-each type="student" orderby="last, first">
<col:document doctype="st_report" stylesheet="sr.xsl">

<student-name>{last}, {first}</student-name>
<district>{district.name}</district>
<school>{school.name}</school>

... More student report data ...

Let’s Write a Collation-Script



Let’s Write a Collation-Script
<col:for-each type="district">

<col:file path="D_{district_id}.fo" post-processor=“dopefo.exe">
<col:for-each type="school" orderby="school_id">
<col:shipping-unit address="{address} {city} {state} {zip}">
<col:for-each type="student" orderby="last_name, first_name">
<col:document doctype="student_report" stylesheet="sr.xsl">
<student-name>{last_name}, {first_name}</student-name>
<district>{district.name}</district>
<school>{school.name}</school>
... More student report data ...

</col:document>
</col:for-each>  

</col:shipping-unit>
</col:for-each>  

</col:file>
</col:for-each> 



Performance

XSLT is Slow

Supercomputers Are Expensive

Clusters Are Complicated

Parallelize the Easy Way



Let the compiler do it.

Just rewrite this:
<col:for-each type="district">

<col:file path="D_{district_id}.fo">

<col:for-each type="school">

... etc...

as this: 
<col:file path="D_{district_id}.fo">

<col:for-each type="school">

... etc...

and you’re halfway there.



Meta-Reporting

Planning

Quality Control

Accounting



Conclusion

XML from the DB eliminates extra code and 
performance bottle necks.

Creating a complete reporting platform becomes 
easier when you’ve got a ‘report stream definition 
language’ rather than just a ‘query language’.

Computer programming is language design.


	Fast High Volume Reporting
	The Ideal Reporting Platform	
	XML from the Database
	Structure	
	The SQL results looks like this:
	But the report we want to produce looks more like this:	
	How do we create nested data?	
	This doesn’t scale.
	This scales better, but ... Yuck!
	The Simple Solution
	XML Query Showdown
	What is Collation-Script?
	Structure: The Next Level
	Print Vendor Support	
	
	Let’s Write a Collation-Script
	Performance
	Let the compiler do it.
	Meta-Reporting
	Conclusion

