e

The Path to Oracle Fusion Using
a Thick Database Approach

Dr. Paul Dorsey
Dulcian, Inc.
www.dulcian.com

NYC Metro Area Oracle Users Group Meeting
October 2, 2007

) § What you will get out of this
presentation

(This is NOT an Oracle approved message)

¢ All of the different things that “Fusion” means

What parts of Fusion are worth learning about
> DBMS, OAS, ADF BC, ADF Faces

¢ Which parts can be ignored
» BPEL, BAM, Oracle Business Rules

¢ Explanation of the "thick database™ approach
and Its benefits

7
[

-ﬂ

2 Background

¢ Fusion technology stack Is large and complex.

¢ Hard to make the transition into the J2EE
environment.

¢ Host of different tools, programming languages,
architectures, and technologies

Projects often have the illusion of progress.

< Building functioning, scalable production
software often becomes an impossible task. Q ? q
)

7’« b‘Z

o

a5

> PeopleSoft
» JD Edwards
> Siebel

> eBusiness
» None/other

¢ Web technology
> J2EE
> .Net
> Other

Survey
¢ Non-Oracle DBMS ¢ J2EE IDE
¢ Non-J2EE Application Server > JDeveloper
& Apps user > Eclipse
> Other

¢ J2EE persistence
» ADF
> EJB
> EJB3
» TopLink
» Hibernate

-ﬂ

=P ' Oracle Architecture

¢ First-rate Service Oriented Architecture (SOA)-centric
environment.

< Built from an OO developer’s perspective:

» Lacks much of the vision that would make Designer users
comfortable

» “Not-so-subtle” encouragement to place business rules
enforcement in the middle tier, coded as Java

» Can be used to articulate data-centric complex business
processes, using portions of the architecture

» Business Process Execution Language (BPEL)

= Can lead to applications with poor performance because of the number
of round trips needed between the middle tier and the database.

o

P, oINS Fusion: What is it?

< In addition to e-Business, Oracle has purchased:
» PeopleSoft (previously bought JD Edwards)
> Slebel
» Retek

> AND..

Aglle Bharosa, Bridgestream, Netsure Telecom, TimesTen, Context
Media, G-Log, Oblix, TripleHop, ProfitLogic, |flex Innobase Thor
Technologies, TempoSoft, OctetString, 360Commerce, Sleepycat,
HotSip, Portal Software, Demantra, Net4Call, Telephony@Work,
Signma Dynamics, Sunopsis, MetaSolv Software, Stellent, Hyperion,
AppForge, SPL WorldGroup, Tangosol, LODESTAR

¢ Collectively > 200,000 database tables
¢ 500,000 million lines of code

Now what?

-ﬂ

g Oracle Fusion

& WIll be based on the e-Business data model

& Features of other packages will be migrated into
e-Business.

¢ Migration path from PeopleSoft, JD Edwards, Siebel
» Impossible to automate

> Very expensive E& ﬂ

» Ultimately essential
¢ Oracle cannot maintain all product stacks indefinitely.

¢ Fusion — V1 release scheduled for 2008

» WIill include the next major release of the e-Business suite
using Fusion Middleware

-ﬂ

4P Fusion Middleware Definition

Marketing term for “All products under development management”
Includes lots of stuff you should not care about at ALL!!

¢ Fusion
> OAS
» JDeveloper

> Developer
= Forms
= Reports

> Designer

> XML Publisher

> BPEL

> BAM

> Business Rules Engine

¢ Non-Fusion
» Application Express
» PL/SQL
> SQL

¢ Recently everything related
to development is Fusion
Middleware
» TopLink/Swing Integration
> EJB3

e ™

A2 - Two Goals of Fusion Middleware
1. Support Oracle Fusion 2. Support all J2EE
¢ Clear development path development

Market driven
Lots of pieces
Speculative
[11-defined scope

Tactical focus
Strategic support

HAS to work
Limited scope

® 6 o6 o
® 6 o6 o

Pieces in support of Fusion are safe.

Pieces in support of marketing are market-driven.

Getting there: Fusion

¢ Count on a significant conversion effort
sometime within the next 5 years.

& New modules should be e-Business

¢ Move to Oracle DBMS
» Server-side PL/SQL
» Oracle Business Rules engine is in the DBMS.

¢ Move to Oracle Application Server
» Probably make life much easier

GHACLE FUSIDN

y fo

http://www.oracle.com/applications/project-fusion.html

A7,

“Fusion Development
Technology” (FDT)

¢ Not an Oracle term (but it should be)
> Subset of Fusion Middleware

¢ The technology used in Oracle Fusion

¢ For the first time in Oracle’s history, development is THE critical
success factor.

¢ At Collaborate ‘06, Charles Phillips’ keynote was “Fusion.”
» He never even mentioned the DBMS.

¢ Oracle is betting the farm on FDT.

¢ FDT is already good, and has all of the resources that it needs to
become great.

¢ Will have a blank check for years to come
¢ This is what you really need to know.

11

Fusion Development
Technology Parts

¢ OAS

» J2EE application server
> First-rate product
> Mature

¢ Application Development
Framework — Business
Components (ADF BC)
> Persistence layer
> First-rate product
> Recently revamped

¢ ADF Faces
> Next generation UIX
» Somewhat proprietary
> Feels “new”

» Hard to go beyond framework

¢ BPEL

> Recent addition

> Hot standard for inter-
system process

> Not sure where It fits

& Oracle Business Rules

> No 1dea what to do with
this

¢ DBMS, PL/SQL, SOL

12

) -

Oracle Application Server
(OAS)

¢ J2EE application server

¢ Does not play well with MS Application Server
» No application server tech stacks interact well.

¢ Fusion will support other J2EE application servers.

¢ JDeveloper-to-OAS has single button deployment.

» Deploying to other J2EE application servers is
annoying.

¢ Your life will be MUCH easier with OAS.
» Especially if doing custom deployment

13

Getting There:
The Oracle Application Server

¢ Not such a big deal — can be avoided
» Unless you are using MS Application Server

¢ Better integration than other application servers

& Lowest

» No finger pointing
» Lower deployment costs

CO

14

4

¢ Persistence interface for Fusion
¢ Oracle alternatives

> TopLink
¢ Non-Oracle alternatives

» Hibernate — open source
> EJB
» EJB3 — supported in JDeveloper

¢ Very high-quality
¢ Proprietary framework
¢ Very little penetration outside of Oracle

‘
.

?/\"1

?

15

A

AP =T Why use ADF BC?

¢ Lower probability of project failure
< Very rich product

¢ \Very mature
> BC4J — V1 released in 2001
> Rewritten several times

& Fusion will use It.

& Leading causes of J2EE project failure are hand-
written persistence interfaces

16

s | Getting There: ADF BC

& Start now
¢ High learning curve
¢ Easy to misuse ——

¢ Oracle JDeveloper 10g Handbook [,
> (Roy-Faderman, Koletzke, Dorsey) L=

¢ Oracle JDeveloper 10g for Forms & PL/SQL

Developers & !
|
RACLE | v W i
for Forms & PL/SQL
Developers

> (Koletzke, Mills)

2N | BPEL
(Business Process Execution Language)

¢ Emerging standard
¢ Oracle implementation Is very nice.
¢ Middle tier process flow language

¢ SOA Inspired

» Makes great sense for inter-system flows
» Makes no sense for complex, local process flow

: : e

L Getting There: BPEL

¢ Wait and see.

¢ How will Oracle really use this?
» SOA: You may not even need it unless you are big.
» Process Flow: You have some time.

19

o

=P B ADF Faces

¢ Rich (sort of) user interface

¢ Standards-based
> JavaServer Faces
> Proprietary extension of Faces

¢ Next generation UIX

¢ Not really mature
» Some quirks
» Evolving fast

¢ Just another tag library

¢ Hard to extend
> WYGIWYG (“What you get is what you get”)

¢ Still evolving

20

4

=P B Getting

¢ Start now

¢ Long learning curve

¢ Use with ADF

< Build a small project (or 3)

\ * ‘&' \

here: Faces

21

=P, Getting There:
Oracle Business Rules

¢ \Walit and see.
& Not sure where this fits
& Focus resources elsewhere for now.

22

N . i

). Non-Apps —

Why should | care?

¢ Since I’m not an Oracle Applications customer,
why should | care?

¢ This will be the best development platform on

the planet. f”’
» Great Oracle integration \ V

> ADF BC Is too good to ignore. ‘ g

» Fusion will be a force in the industry and dominant
within the Oracle development community.

-_.

A7,

Fusion Middleware -
Conclusions

¢ A great (or will be soon) development environment
< Still evolving - all parts are not totally civilized.

¢ Seems weak for architects (but | am biased)

¢ Too good and big to ignore

¢ Will be the standard for all Oracle Applications
(eBusiness, PeopleSoft, JD Edwards)

¢ Still evolving, so use “thick database” approach

S

) - “Thick Database” Defined (1)

¢ Micro-Service-Oriented-Architecture (M-SOA) approach

¢ Division between the database and user interface (Ul)
portions.

¢ Two key features involved in "thick database thinking":

» Nothing in the Ul ever directly interacts with a database table.
All interaction is accomplished through database views or APIs.

> Nearly all application behavior (including screen navigation) is
handled in the database.

¢ Thick database does not simply mean stuffing everythmg

Into the database and hoping for the best.

A5

“Thick Database” defined (2)

¢ Creating a thick database makes your application
Ul technology-independent.

» Creates reusable, Ul technology-independent views

and APls.
» Reduces t
» Database
» Reduces t

ne complexity of Ul development.
orovides needed objects.

ne burden on the Ul developer

gy ‘ Database vs. Ul Technology
Stack-Independence

Database Ul Technology Stack
¢ Oracle will add features. ¢ Java EE or .Net?
¢ DBMS will not internally > AppPEX
refactor. > FLEX
¢ Existing stack “works.” ¢ All environments change

» Redesign assured

¢ Every year BRIM® has
been rebuilt.

¢ Huge DBA learning curve
¢ Huge cost of switching

27

-‘A

el Benefit 1. Better Performance

¢ Improved overall throughput

¢ Caused by combined effect of: m

» Fewer roundtrips
> Less network traffic
> Better database access

¢ Test: Average improvement in performance?

> a) 10%
> b) 100%
» C) 10x
> d) 100x
> €) 500x

Answer: ¢) 10x

28

a1l Benefit 2. Fewer Round Trips

¢ Requires many fewer round trips from the
application server to the database.

¢ Each screen should be 1-3 round trips

¢ Test: OO developers can write screens that
require this many database round trips:
> a) dozens
» b) hundreds
» C) thousands
> d) millions

Answer: | have seen a, b and c.
The record was 6000 roundtrips.

29

-ﬂ

ol ~ Benefit 2. Less Code Required

¢ Less PL/SQL code is needed to perform data centric
operations than Java.

¢ PL/SQL has more data tricks.

¢ Database-intensive code will always be more efficiently
written in the database.

¢ Test: Average reduction in the amount of code needed is:
> a) 10%
> b) 25%

SOt Answer: ¢) 50%
> d) 90%

—

A7,

Benefit 3. Less Development

Time Needed

¢ Less code means less coding time.

¢ Simpler architecture

» Separate user interface and logic
» Building two smaller applications is easier than building one large one.

¢ Ul is trivial.

» Can be shown to users right away.
» Faster feedback to the development team

> Helps to identify design errors much earlier in the process

¢ Test: Using a thick database approach can reduce development

time by

> a) 10%
> b) 33%
> C) 50%
> d) 66%

Answer: d) 66%

@

RA
ld

31

amp. Benefit 4. Easier to Maintain

¢ Application being built is divided into two parts
» Each has less code to maintain.

¢ Application is clearly partitioned.

» When a business rule changes, only need to look
through half of the code to find it.
¢ As the number of lines of code in an application

doubles, the complexity increases by a factor of
I

four. P
&

4

32

< . Benefit 5. Easier to Refactor

¢ Ul technology stack changes are common.
¢ .Net Java EE battle rages on.

——

s

& \\eb architecture 1s more volatile than the é
database platform.

¢ Defense against the chaos of a rapidly evolving
standaro

& Test: What Is the probability that your web Ul
standards will be the same in 18 months?

Answer 0%

33

) <{ Benefit 6. Better Use of
Different Talent Levels

¢ With minimal additional training, skilled SQL
and PL/SQL developers can help build web
applications with no web skills whatsoever.

¢ If sophisticated Ul developers are available, they
can focus on delivering very high quality user
Interfaces.

) <{ -' Thick Database
Development Process

¢ Two portions of an application can be coded
Independently
» Teams can work in isolation until substantive portions are
working.
¢ First version of the Ul is built within a few days
> Use as testing environment for the database team
> Feedback can be received from users.

¢ Use Agile process

» Minimal design work done to produce a partially working
system.

» Additional functionality created in an iterative design process.

35

-‘A

P User Interface Design

¢ Design the application.
» Screens are designed on paper.
» White boards are used for page flows.

» Real screen mock-ups are usually a waste of time.

= A careful diagram on a piece of paper suffices for the
Initial Ul design.

= MS Access Is also good.

36

g —ouLciAN; |
- Interface Design

¢ Once the Ul design is complete, determine:

» What views are required
» APIs that will be called

37

Ao Do Interface Stubbing

¢ Stub out the code for the views and APIs.
> select <values> from dual

» APIs = functions that return a correct value (usually
hard-coded).

Interfaces will change as the application
matures.

o
. . E—

38

o

=P Ul and Database Development
¢ Ul and database development take place at the
same time.

» Ul team takes the APIs and incorporates them into
the application.

> Database team makes them work.

Ul Dev, elopment

de Deve\opme“t

server-Si

39

e ™

27

Persistence in “Stateless Land”

¢ Server-side

» Create a table and persist
all global info

> Persistent lock rows
(lock_id column)

> Pass session ID on each
call

» Worry about abandoned
sessions

> Best approach — but
requires more work

¢ Middle tier

» Can’t be done unless you
are only using 1
application server

» Usually persists to the
database
¢ Client
> Cookies

> Pass context to database
each time

]

40

el Function-Based Views

& Functions can return object collections.
¢ An object collection can be cast to a table.
¢ ODbject collections types are supported in SQL.

¢ The 1dea:

» Build a view over the function to hide complex
procedural logic.
$ O/

45‘

o

) . Underlying Types and Functions
type lov_oty i1s object (id, display_tx);
type lov_nt i1s table of lov_oty;

function T getLov nt

(1_table tx,1_1d tx,1 _display tx,1_order_ tx)
return lov_nt 1s

v_out nt lov nt := lov _nt();
begin

execute 1mmediate

"select lov oty("
|1 _1d €©&] |7, || _display t©&>%<]]")"||
" from "|]1_table tx]]|
" order by "||1_order_ tx
bulk collect Into v _out nt;

return v_out nt;
end; 42

) <{ Query the Function as a Table

¢ Generic value list query for any Ul

> Uses bind variables — no significant performance
Impact

» Completely dynamic — any new fields/tables/etc.

select 1d nr, display tx
from table(
cast(f getLov nt
(Cemp”,
“empno-,
“enamel]]""-""]]job",
"ename”)
as lov_nt)

),

43

o

=p. Create a View

¢ Views placed on top of dynamic functions:
» Completely hide the logic from the Ul
> INSTEAD-OF triggers make logic bi-directional.

» Minor problem — There is still no way of passing parameters
Into the view other than by using some type of global.

Create or replace view v _generic lov as
select 1d _nr, display tx
from table(cast(f _getLov nt
(GV_pkg.f getCurTable,
GV_pkg.f getPK(GV_pkg.f getCurTable),
GV_pkg.f getDSP(GV_pkg.f getCurTable),
GV_pkg.f getSORT(GV_pkg.f getCurTable))
as lov_nt)

) 44

ol o De-Normalized Views

¢ The 1dea:

» Convert relational data into something that will make
user interface development easier

¢ The solution:
» Use a view with a set of INSTEAD-OF triggers

Q

d

45

—

oA De-Normalized view
create or replace view v_customer
as
select c.cust 1d,
c.nhame_ tx,
a.addr _1d,

a.street tx,
a.state cd,
a.postal cd
from customer c
left outer join address a
on c.cust 1d = a.cust _1d

46

o

z=p. INSTEAD-OF Insert
create or replace trigger v_customer 11
instead of Insert on v_customer
declare
v_cust_1d customer.cust i1d%rowtype;
begin
IT -new.name_tx 1s not null then
insert Into customer (cust _i1d,name_tXx)
values(object seq.nextval, -new.name_tx)
returning cust i1d i1nto v_cust 1d;
IT new.street tx 1s not null then
insert Into address (addr_id,street tx,
state cd, postal cd, cust 1d)
values (object seqg.nextval, :new.street_ tx,
-new.state _cd, :new.postal cd, v cust 1d);
end 1f;
end;

-ﬂ

ol ' A Tale of Two Systems

¢ 1. Internal Modification Request Tracker:

» Built using conventional approach by an experienced Java
team.

» Earlier version built by offshore, inadequately skilled
development team.

» To create a working version of the system took about 6
months — flawed architecture
¢ 2. Complex order entry system

» Built using the “thick database” approach by a team with
equivalent experience.
> Thick database approach was used from the start

= All navigation supported using a tree on the left hand side of the
screen.

= Tree itself is built into the database. -~
= All navigation logic is handled in the database. \’(

48

Case Study:
2 Similar Systems - Results

development

Database | Java StrutsConfig | Database Java

code code xml development | develop-

of lines |# of lines | # of lines time ment time
Conventional | 2300 | 13000 657 2 weeks 6 months
development
Thick 3900 2800 98 2 weeks 1 week
database

49

-‘A

o0 | Summary

¢ Oracle Fusion will be based on e-Business.
» Everyone else migrates.

& Must use:
> Oracle DBMS, J2EE stack

¢ Should use:
»> OAS, ADF

¢ Avolid for now:
> BPEL, Oracle Business Rules

50

Conclusions

¢ Moving code from the middle tier to the database had
the following benefits:

» Reduced the total amount of code

» Reduced development time

> Improved performance

» Reduced network traffic

» Reduced the complexity of the application

¢ Thick database approach Is a viable alternative to the
conventional wisdom of reducing reliance on the
database.

> Leverages existing database talent
» Can result in dramatic improvements in performance

51

|+ Simhtetdbe Share your Knowledge:
Call for Articles/Presentations

¢ Submit articles, questions, ... to

IOUG — The SELECT Journal ODTUG — Technical Journal
select@ioug.org pubs@odtug.com
Reviewers needed

Demrlgcg%%\{

52

A

A7 777" Dulcian’s BRIM® Environment

Full business rules-based development
environment

& For Demo
> Write “BRIM” on business card

¢ Includes:
» Working Use Case system
> “Application” and “Validation Rules” Engines

or- DULILCIAN: -
BEy—~IULCIAN: Contact Information
¢ Dr. Paul Dorsey — paul_dorsey@dulcian.com

& Dulcian website - www.dulclan.com

Design Using UM Developer Advanced _
Forms & Reports Designer ORACLEY: Oracle JDeveloper 10g

Handbook
Handbook JDeveloper SASY : _
i Handbook N .

shiiie s makaiba

Chicte Pt —— oy s

Oracle PL/SQL

6]

: |
Available now! g

Oracle PL/SQL for Dummies

Michal Reckabluss

	The Path to Oracle Fusion Using a Thick Database Approach
	What you will get out of this presentation�(This is NOT an Oracle approved message)
	Background
	Survey
	Oracle Architecture
	Fusion: What is it?
	Oracle Fusion
	Fusion Middleware Definition
	Two Goals of Fusion Middleware
	Getting there: Fusion
	“Fusion Development Technology” (FDT)
	Fusion Development Technology Parts
	Oracle Application Server (OAS)
	Getting There: �The Oracle Application Server
	ADF BC
	Why use ADF BC?
	Getting There: ADF BC
	BPEL�(Business Process Execution Language)
	Getting There: BPEL
	ADF Faces
	Getting There: Faces
	Getting There: �Oracle Business Rules
	Non-Apps – �Why should I care?
	Fusion Middleware - Conclusions
	“Thick Database” Defined (1)
	“Thick Database” defined (2)
	Database vs. UI Technology� Stack-Independence
	Benefit 1. Better Performance
	Benefit 2. Fewer Round Trips
	Benefit 2. Less Code Required
	Benefit 3. Less Development �Time Needed
	Benefit 4. Easier to Maintain
	Benefit 5. Easier to Refactor
	Benefit 6. Better Use of Different Talent Levels
	Thick Database �Development Process
	User Interface Design
	Interface Design
	Interface Stubbing
	UI and Database Development
	Persistence in “Stateless Land”
	Function-Based Views
	Underlying Types and Functions
	Query the Function as a Table
	Create a View
	De-Normalized Views
	De-Normalized view
	INSTEAD-OF Insert
	A Tale of Two Systems
	Case Study: �2 Similar Systems - Results
	Summary
	Conclusions
	Share your Knowledge:�Call for Articles/Presentations
	Dulcian’s BRIM® Environment
	Contact Information

