
1

The Path to Oracle Fusion Using
a Thick Database Approach

Dr. Paul Dorsey
Dulcian, Inc.

www.dulcian.com

NYC Metro Area Oracle Users Group Meeting
October 2, 2007

2

What you will get out of this
presentation

(This is NOT an Oracle approved message)

All of the different things that “Fusion” means
What parts of Fusion are worth learning about

DBMS, OAS, ADF BC, ADF Faces
Which parts can be ignored

BPEL, BAM, Oracle Business Rules
Explanation of the "thick database" approach
and its benefits

3

Background

Fusion technology stack is large and complex.
Hard to make the transition into the J2EE
environment.
Host of different tools, programming languages,
architectures, and technologies
Projects often have the illusion of progress.
Building functioning, scalable production
software often becomes an impossible task.

4

Survey

Non-Oracle DBMS
Non-J2EE Application Server
Apps user

PeopleSoft
JD Edwards
Siebel
eBusiness
None/other

Web technology
J2EE
.Net
Other

J2EE IDE
JDeveloper
Eclipse
Other

J2EE persistence
ADF
EJB
EJB3
TopLink
Hibernate

5

Oracle Architecture

First-rate Service Oriented Architecture (SOA)-centric
environment.
Built from an OO developer’s perspective:

Lacks much of the vision that would make Designer users
comfortable
“Not-so-subtle” encouragement to place business rules
enforcement in the middle tier, coded as Java
Can be used to articulate data-centric complex business
processes, using portions of the architecture
Business Process Execution Language (BPEL)

Can lead to applications with poor performance because of the number
of round trips needed between the middle tier and the database.

6

Fusion: What is it?

In addition to e-Business, Oracle has purchased:
PeopleSoft (previously bought JD Edwards)
Siebel
Retek
AND…

Agile, Bharosa, Bridgestream, Netsure Telecom, TimesTen, Context
Media, G-Log, Oblix, TripleHop, ProfitLogic, i-flex, Innobase, Thor
Technologies, TempoSoft, OctetString, 360Commerce, Sleepycat,
HotSip, Portal Software, Demantra, Net4Call, Telephony@Work,
Signma Dynamics, Sunopsis, MetaSolv Software, Stellent, Hyperion,
AppForge, SPL WorldGroup, Tangosol, LODESTAR

Collectively > 200,000 database tables
500,000 million lines of code

Now what?

7

Oracle Fusion

Will be based on the e-Business data model
Features of other packages will be migrated into
e-Business.
Migration path from PeopleSoft, JD Edwards, Siebel

Impossible to automate
Very expensive
Ultimately essential

Oracle cannot maintain all product stacks indefinitely.
Fusion – V1 release scheduled for 2008

Will include the next major release of the e-Business suite
using Fusion Middleware

8

Fusion Middleware Definition

Fusion
OAS
JDeveloper
Developer

Forms
Reports

Designer
XML Publisher
BPEL
BAM
Business Rules Engine

Non-Fusion
Application Express
PL/SQL
SQL

Recently everything related
to development is Fusion
Middleware

TopLink/Swing Integration
EJB3

Marketing term for “All products under development management”
Includes lots of stuff you should not care about at ALL!!

9

Two Goals of Fusion Middleware

1. Support Oracle Fusion
Clear development path
Tactical focus
Strategic support
HAS to work
Limited scope

2. Support all J2EE
development
Market driven
Lots of pieces
Speculative
Ill-defined scope

Pieces in support of Fusion are safe.

Pieces in support of marketing are market-driven.

10

Getting there: Fusion

Count on a significant conversion effort
sometime within the next 5 years.
New modules should be e-Business
Move to Oracle DBMS

Server-side PL/SQL
Oracle Business Rules engine is in the DBMS.

Move to Oracle Application Server
Probably make life much easier

http://www.oracle.com/applications/project-fusion.html

11

“Fusion Development
Technology” (FDT)

Not an Oracle term (but it should be)
Subset of Fusion Middleware

The technology used in Oracle Fusion
For the first time in Oracle’s history, development is THE critical
success factor.
At Collaborate ‘06, Charles Phillips’ keynote was “Fusion.”

He never even mentioned the DBMS.
Oracle is betting the farm on FDT.
FDT is already good, and has all of the resources that it needs to
become great.
Will have a blank check for years to come
This is what you really need to know.

12

Fusion Development
Technology Parts

OAS
J2EE application server
First-rate product
Mature

Application Development
Framework – Business
Components (ADF BC)

Persistence layer
First-rate product
Recently revamped

ADF Faces
Next generation UIX
Somewhat proprietary
Feels “new”
Hard to go beyond framework

BPEL
Recent addition
Hot standard for inter-
system process
Not sure where it fits

Oracle Business Rules
No idea what to do with
this

DBMS, PL/SQL, SQL

13

Oracle Application Server
(OAS)

J2EE application server
Does not play well with MS Application Server

No application server tech stacks interact well.
Fusion will support other J2EE application servers.
JDeveloper-to-OAS has single button deployment.

Deploying to other J2EE application servers is
annoying.

Your life will be MUCH easier with OAS.
Especially if doing custom deployment

14

Getting There:
The Oracle Application Server

Not such a big deal – can be avoided
Unless you are using MS Application Server

Better integration than other application servers
Lowest TCO

No finger pointing
Lower deployment costs

15

ADF BC

Persistence interface for Fusion
Oracle alternatives

TopLink
Non-Oracle alternatives

Hibernate – open source
EJB
EJB3 – supported in JDeveloper

Very high-quality
Proprietary framework
Very little penetration outside of Oracle

16

Why use ADF BC?

Lower probability of project failure
Very rich product
Very mature

BC4J – V1 released in 2001
Rewritten several times

Fusion will use it.
Leading causes of J2EE project failure are hand-
written persistence interfaces

17

Getting There: ADF BC

Start now
High learning curve
Easy to misuse
Oracle JDeveloper 10g Handbook

(Roy-Faderman, Koletzke, Dorsey)
Oracle JDeveloper 10g for Forms & PL/SQL
Developers

(Koletzke, Mills)

18

BPEL
(Business Process Execution Language)

Emerging standard
Oracle implementation is very nice.
Middle tier process flow language
SOA inspired

Makes great sense for inter-system flows
Makes no sense for complex, local process flow

19

Getting There: BPEL

Wait and see.
How will Oracle really use this?

SOA: You may not even need it unless you are big.
Process Flow: You have some time.

20

ADF Faces

Rich (sort of) user interface
Standards-based

JavaServer Faces
Proprietary extension of Faces

Next generation UIX
Not really mature

Some quirks
Evolving fast

Just another tag library
Hard to extend

WYGIWYG (“What you get is what you get”)
Still evolving

21

Getting There: Faces

Start now
Long learning curve
Use with ADF
Build a small project (or 3)

22

Getting There:
Oracle Business Rules

Wait and see.
Not sure where this fits
Focus resources elsewhere for now.

23

Non-Apps –
Why should I care?

Since I’m not an Oracle Applications customer,
why should I care?
This will be the best development platform on
the planet.

Great Oracle integration
ADF BC is too good to ignore.
Fusion will be a force in the industry and dominant
within the Oracle development community.

24

Fusion Middleware -
Conclusions

A great (or will be soon) development environment
Still evolving - all parts are not totally civilized.
Seems weak for architects (but I am biased)
Too good and big to ignore
Will be the standard for all Oracle Applications
(eBusiness, PeopleSoft, JD Edwards)
Still evolving, so use “thick database” approach

25

“Thick Database” Defined (1)

Micro-Service-Oriented-Architecture (M-SOA) approach
Division between the database and user interface (UI)
portions.
Two key features involved in "thick database thinking":

Nothing in the UI ever directly interacts with a database table.
All interaction is accomplished through database views or APIs.
Nearly all application behavior (including screen navigation) is
handled in the database.

Thick database does not simply mean stuffing everything
into the database and hoping for the best.

26

“Thick Database” defined (2)

Creating a thick database makes your application
UI technology-independent.

Creates reusable, UI technology-independent views
and APIs.
Reduces the complexity of UI development.
Database provides needed objects.
Reduces the burden on the UI developer

27

Database vs. UI Technology
Stack-Independence

Database
Oracle will add features.
DBMS will not internally
refactor.
Existing stack “works.”
Huge DBA learning curve
Huge cost of switching

UI Technology Stack
Java EE or .Net?

AppEx
FLEX

All environments change
Redesign assured

Every year BRIM® has
been rebuilt.

28

Benefit 1. Better Performance

Improved overall throughput
Caused by combined effect of:

Fewer roundtrips
Less network traffic
Better database access

Test: Average improvement in performance?
a) 10%
b) 100%
c) 10x
d) 100x
e) 500x

Answer: c) 10x

29

Benefit 2. Fewer Round Trips

Requires many fewer round trips from the
application server to the database.
Each screen should be 1-3 round trips
Test: OO developers can write screens that
require this many database round trips:

a) dozens
b) hundreds
c) thousands
d) millions Answer: I have seen a, b and c.

The record was 6000 roundtrips.

30

Benefit 2. Less Code Required

Less PL/SQL code is needed to perform data centric
operations than Java.
PL/SQL has more data tricks.
Database-intensive code will always be more efficiently
written in the database.
Test: Average reduction in the amount of code needed is:

a) 10%
b) 25%
c) 50%
d) 90%

Answer: c) 50%

31

Benefit 3. Less Development
Time Needed

Less code means less coding time.
Simpler architecture

Separate user interface and logic
Building two smaller applications is easier than building one large one.

UI is trivial.
Can be shown to users right away.
Faster feedback to the development team
Helps to identify design errors much earlier in the process

Test: Using a thick database approach can reduce development
time by

a) 10%
b) 33%
c) 50%
d) 66% Answer: d) 66%

32

Benefit 4. Easier to Maintain

Application being built is divided into two parts
Each has less code to maintain.

Application is clearly partitioned.
When a business rule changes, only need to look
through half of the code to find it.

As the number of lines of code in an application
doubles, the complexity increases by a factor of
four.

33

Benefit 5. Easier to Refactor

UI technology stack changes are common.
.Net Java EE battle rages on.
Web architecture is more volatile than the
database platform.
Defense against the chaos of a rapidly evolving
standard
Test: What is the probability that your web UI
standards will be the same in 18 months?

Answer 0%

34

Benefit 6. Better Use of
Different Talent Levels

With minimal additional training, skilled SQL
and PL/SQL developers can help build web
applications with no web skills whatsoever.
If sophisticated UI developers are available, they
can focus on delivering very high quality user
interfaces.

35

Thick Database
Development Process

Two portions of an application can be coded
independently

Teams can work in isolation until substantive portions are
working.

First version of the UI is built within a few days
Use as testing environment for the database team
Feedback can be received from users.

Use Agile process
Minimal design work done to produce a partially working
system.
Additional functionality created in an iterative design process.

36

User Interface Design

Design the application.
Screens are designed on paper.
White boards are used for page flows.
Real screen mock-ups are usually a waste of time.

A careful diagram on a piece of paper suffices for the
initial UI design.
MS Access is also good.

37

Interface Design

Once the UI design is complete, determine:
What views are required
APIs that will be called

38

Interface Stubbing

Stub out the code for the views and APIs.
select <values> from dual

APIs = functions that return a correct value (usually
hard-coded).

Interfaces will change as the application
matures.

39

UI and Database Development

UI and database development take place at the
same time.

UI team takes the APIs and incorporates them into
the application.
Database team makes them work.

40

Persistence in “Stateless Land”

Server-side
Create a table and persist
all global info
Persistent lock rows
(lock_id column)
Pass session ID on each
call
Worry about abandoned
sessions
Best approach – but
requires more work

Middle tier
Can’t be done unless you
are only using 1
application server
Usually persists to the
database

Client
Cookies
Pass context to database
each time

41

Functions can return object collections.
An object collection can be cast to a table.
Object collections types are supported in SQL.
The idea:

Build a view over the function to hide complex
procedural logic.

Function-Based Views

42

Underlying Types and Functions
type lov_oty is object (id, display_tx);
type lov_nt is table of lov_oty;

function f_getLov_nt
(i_table_tx,i_id_tx,i_display_tx,i_order_tx)

return lov_nt is
v_out_nt lov_nt := lov_nt();

begin
execute immediate

'select lov_oty('
|i_id_tx||','||i_display_tx||')'||

' from '||i_table_tx||
' order by '||i_order_tx

bulk collect into v_out_nt;
return v_out_nt;

end;

43

Query the Function as a Table
Generic value list query for any UI:

Uses bind variables – no significant performance
impact
Completely dynamic – any new fields/tables/etc.

select id_nr, display_tx
from table(

cast(f_getLov_nt
('emp',
'empno',
'ename||''-''||job',
'ename')

as lov_nt)
)

44

Create a View
Views placed on top of dynamic functions:

Completely hide the logic from the UI
INSTEAD-OF triggers make logic bi-directional.
Minor problem – There is still no way of passing parameters
into the view other than by using some type of global.

Create or replace view v_generic_lov as
select id_nr, display_tx
from table(cast(f_getLov_nt

(GV_pkg.f_getCurTable,
GV_pkg.f_getPK(GV_pkg.f_getCurTable),
GV_pkg.f_getDSP(GV_pkg.f_getCurTable),
GV_pkg.f_getSORT(GV_pkg.f_getCurTable))

as lov_nt)
)

45

The idea:
Convert relational data into something that will make
user interface development easier

The solution:
Use a view with a set of INSTEAD-OF triggers

De-Normalized Views

46

create or replace view v_customer
as
select c.cust_id,

c.name_tx,
a.addr_id,
a.street_tx,
a.state_cd,
a.postal_cd

from customer c
left outer join address a

on c.cust_id = a.cust_id

De-Normalized view

47

create or replace trigger v_customer_ii
instead of insert on v_customer
declare

v_cust_id customer.cust_id%rowtype;
begin

if :new.name_tx is not null then
insert into customer (cust_id,name_tx)
values(object_seq.nextval,:new.name_tx)
returning cust_id into v_cust_id;
if :new.street_tx is not null then
insert into address (addr_id,street_tx,

state_cd, postal_cd, cust_id)
values (object_seq.nextval,:new.street_tx,
:new.state_cd,:new.postal_cd, v_cust_id);

end if;
end;

INSTEAD-OF Insert

48

A Tale of Two Systems

1. Internal Modification Request Tracker:
Built using conventional approach by an experienced Java
team.
Earlier version built by offshore, inadequately skilled
development team.
To create a working version of the system took about 6
months – flawed architecture

2. Complex order entry system
Built using the “thick database” approach by a team with
equivalent experience.
Thick database approach was used from the start

All navigation supported using a tree on the left hand side of the
screen.
Tree itself is built into the database.
All navigation logic is handled in the database.

49

Case Study:
2 Similar Systems - Results

Database
code
of lines

Java
code
of lines

StrutsConfig
.xml
of lines

Database
development
time

Java
develop-
ment time

Conventional
development

2300 13000 657 2 weeks 6 months

Thick
database
development

3900 2800 98 2 weeks 1 week

50

Summary

Oracle Fusion will be based on e-Business.
Everyone else migrates.

Must use:
Oracle DBMS, J2EE stack

Should use:
OAS, ADF

Avoid for now:
BPEL, Oracle Business Rules

51

Conclusions

Moving code from the middle tier to the database had
the following benefits:

Reduced the total amount of code
Reduced development time
Improved performance
Reduced network traffic
Reduced the complexity of the application

Thick database approach is a viable alternative to the
conventional wisdom of reducing reliance on the
database.

Leverages existing database talent
Can result in dramatic improvements in performance

52

Share your Knowledge:
Call for Articles/Presentations

Submit articles, questions, … to

IOUG – The SELECT Journal ODTUG – Technical Journal

select@ioug.org pubs@odtug.com

Reviewers needed

53

Dulcian’s BRIM® Environment

Full business rules-based development
environment
For Demo

Write “BRIM” on business card
Includes:

Working Use Case system
“Application” and “Validation Rules” Engines

54

Contact Information

Dr. Paul Dorsey – paul_dorsey@dulcian.com
Dulcian website - www.dulcian.com

Developer Advanced
Forms & Reports
Developer Advanced
Forms & Reports Designer

Handbook
Designer
Handbook

Available now!
Oracle PL/SQL for Dummies

Design Using UML
Object Modeling
Design Using UML
Object Modeling

	The Path to Oracle Fusion Using a Thick Database Approach
	What you will get out of this presentation�(This is NOT an Oracle approved message)
	Background
	Survey
	Oracle Architecture
	Fusion: What is it?
	Oracle Fusion
	Fusion Middleware Definition
	Two Goals of Fusion Middleware
	Getting there: Fusion
	“Fusion Development Technology” (FDT)
	Fusion Development Technology Parts
	Oracle Application Server (OAS)
	Getting There: �The Oracle Application Server
	ADF BC
	Why use ADF BC?
	Getting There: ADF BC
	BPEL�(Business Process Execution Language)
	Getting There: BPEL
	ADF Faces
	Getting There: Faces
	Getting There: �Oracle Business Rules
	Non-Apps – �Why should I care?
	Fusion Middleware - Conclusions
	“Thick Database” Defined (1)
	“Thick Database” defined (2)
	Database vs. UI Technology� Stack-Independence
	Benefit 1. Better Performance
	Benefit 2. Fewer Round Trips
	Benefit 2. Less Code Required
	Benefit 3. Less Development �Time Needed
	Benefit 4. Easier to Maintain
	Benefit 5. Easier to Refactor
	Benefit 6. Better Use of Different Talent Levels
	Thick Database �Development Process
	User Interface Design
	Interface Design
	Interface Stubbing
	UI and Database Development
	Persistence in “Stateless Land”
	Function-Based Views
	Underlying Types and Functions
	Query the Function as a Table
	Create a View
	De-Normalized Views
	De-Normalized view
	INSTEAD-OF Insert
	A Tale of Two Systems
	Case Study: �2 Similar Systems - Results
	Summary
	Conclusions
	Share your Knowledge:�Call for Articles/Presentations
	Dulcian’s BRIM® Environment
	Contact Information

