
Michael Rosenblum
Dulcian, Inc.

www.dulcian.com

Large Issues with Large Objects

NYOUG
June 6, 2007

Large Objects Needed

Most modern systems need to store and access large
objects:

Pictures
Movies
Documents
Sounds

Standard datatypes are limited
(VARCHAR2 - 4,000 characters)
Need to use Oracle large object datatype (LOB)

Types of Large Objects

Internal large objects
Stored in the database
Can be quickly retrieved
3 types

BLOBs – used for binary
information (multimedia)
CLOBs – used for textual
information
NCLOB – used for info in
National Character Set

External large objects
Stored in the file system
Only file names are stored
in the database
Only one type - BFILE
Risks and limitations:

Performance issues
Read-only access

Architecture

Data Access

Problem
How can you access gigabytes of data?

Solution
Separate LOB data from LOB locator

LOB locator – special logical entity that points to LOB data and
allows communication with it.

Types of LOB operations:
Copy semantics - Data alone is copied from source to
destination and a new locator is created for the new LOB.
Reference semantics - Only the locator is copied (without
changing the underlying data).

Data Access

Declare
v_cl CLOB;

Begin
select a_cl
into v_cl
from t_table;

End;

Data

Locator

LOB Data States

Variable/column in the row can be in a number of
different states:

Null – exists but is not initialized
Empty – exists and has locator that doesn't point to any data

Since you can only access LOBs via locators, you must first create them.
In some cases, an initial NULL value is needed.

Populated – exists, has locator, and contains real data

Internal LOB Data Storage

Persistent LOBs
Represented as a value in the table column
Participate in transactions (Commit, Rollback, generate logs)
Each LOB has its own storage structure separate form the
table in which it is located.

Temporary LOBs
Created in temporary tablespace and released when no longer
needed
Created when LOB variable is instantiated
When inserted into table, become permanent

Navigation Using Indexes
Data is stored in chunks:

Consist of one or more data blocks up to 32K
Each I/O operation works with one chunk.

Chunks are navigated using indexes
Each LOB column is represented by 2 segments

One for storing data; one to store the index
Each segment has the same storage properties as regular tables.

Some restrictions
Cannot drop or rebuild LOB indexes
Cannot specify different properties for index and data segments

LOB Operations

Require physical I/O
May have a high number of wait events
Caching options:

NOCACHE (default) – OK for very large LOBs or those
with infrequent access
CACHE – best option but requires a lot of read/write activity
CACHE READS – useful when creating LOB once and
reading data from it often.

Storage “in row”
Enabled – data less than 4000 characters will look like
VARCHAR2(4000)
Disabled – everything goes directly to LOB segment

Basic Example

Sample LOB Table
Using an online shopping catalog as an example, this code uses
LOBs to create a table:

create table goods_tab
(item_id number primary key,
name_tx varchar2(256),
remarks_cl CLOB DEFAULT empty_clob(),
manual_cl CLOB DEFAULT empty_clob(),
firstpage_bl BLOB DEFAULT empty_blob(),
mastertxt_bf BFILE)

LOB(remarks_cl) store as remarks_seg(
tablespace USERS
enable storage in row
chunk 8192
cache)

LOB(manual_cl) store as manual_seg(
tablespace LOBS_BIG
disable storage in row
chunk 32768
nocache)

LOB(firstpage_bl) store as firstpage_seg(
tablespace LOBS_BIG
disable storage in row
chunk 32768
cache reads)

LOB Code Details (1)

Each internal LOB:
Has its own storage block at the end of the table
definition.
Has explicit segment names (remarks_seq,
manual_seq, firstpage_seq)

All internal LOBs are initialized to empty values:
EMPTY_BLOB()
EMPTY_CLOB()

LOB Code Details (2)
Column remarks_cl is accessed and modified very often,
but the amount of data is not very large:

It resides in the same tablespace as the main data.
Storage is enabled within the row.
The cache option enabled.

Column manual_cl is rarely accessed:
It resides in an independent tablespace.
Large chunk size
There is no storage in the row.
There are no caching options.

Difference between firstpage_bl and manual_cl
firstpage_bl is never updated, but often queried.

Enable caching on reads
Set everything else the same way for both.

Loading BFILE

Create a directory to access files from the operating
system.
Check the existence of required files (Oracle cannot do it
for you.)
Create a variable of type BLOB using special built-in
function BFILENAME that takes the directory and file
name and returns a temporary locator.
Insert a newly created locator to the table and make it
permanent.

<<Example 01>>

Loading CLOB and BLOB
from files

Easy way of loading contents into CLOB using the
special PL/SQL APIs provided by built-in package
DBMS_LOB
There is no UPDATE in the block, but the value in the
table will be changed.

Using SELECT…INTO…FOR UPDATE locks the record
and returns the locators back to the LOBs.
Write data directly to storage using a locator.

<<Example 02, 03>>

Using BLOBs & CLOBs
BLOBs

Use for any binary information required for the application
Unstructured data
Mostly read/write with further processing outside of Oracle

CLOBs –
Use for any textual data
Semi-structured by definition (character string is already a
structure)
A lot of extra activity when accessing CLOBs.
Oracle modified standard string built-in functions (search for
the patterns, get length, get part of the code, etc.) to support
CLOBs.
Additional functions in DBMS_LOB package

<<Example 04>>

Additional Info

LOB Restrictions – Generic (1)
SQL activity restrictions:

Cannot have LOB columns in ORDER BY, GROUP BY
clauses or aggregate functions.
Cannot have an LOB column in a SELECT DISTINCT
statement.
Cannot join two tables using LOB columns.
Direct binding of string variables is limited to 4000
characters if you are passing a string into the CLOB column.

DDL restrictions:
LOB columns cannot be part of a primary key
LOB columns cannot be part of an index (unless it is a
domain index or Oracle Text)
Cannot specify a LOB column in the trigger clause FOR
UPDATE OF.
Changing LOBs using locator/DBML_LOB package means
no UPDATE trigger fired on the table

<<Example 05>>

LOB Restrictions – Generic (2)

DBLink restrictions:
You can only use CREATE TABLE AS SELECT and
INSERT AS SELECT if the remote table contains LOBs.
No other activity is permitted.

Administration restrictions:
Only a limited number of BFILEs can be opened at the same
time.

The maximum number is set up by the initialization parameter
SESSION_MAX_OPEN_FILES.
The default value is 10, but it can be modified by the DBA.

Once a table with an internal LOB is created, only some LOB
parameters can be modified.

You can change the tablespace, storage properties, caching options,
but you cannot modify the chunk size, or storage-in-the-row option.

String Issues

Advantages:
Overloads of standard built-in functions simplify string activities
Explicit conversions of datatypes.

Can assign a CLOB column to a VARCHAR2 PL/SQL variable as long as it
can hold all of the data from the CLOB.
Can initialize a CLOB variable with a VARCHAR2 value.

Problems:
When not to use SQL semantics:

More than 100K of data for each CLOB APIs handle caching much better.
Random access to CLOB APIs utilize LOB indexes much more efficiently.

Compare LOBs (>,!=, between) only as part of a PL/SQL routine.
Using SQL semantics can cause problems with some built-in functions.

INITCAP, SOUNDEX, TRANSLATE, DECODE and some other functions
will only process the first 4K (for SQL statements) and 32K (for PL/SQL code)
of your data.
There will be no notifications, and no errors, but part of the data will be
removed.

<<Example 06, 07>>

Transaction Restrictions

Each locator may or may not contain a transaction ID.
If you already started a new transaction (SELECT FOR UPDATE,
INSERT/UPDATE/DELETE, PRAGMA autonomous transaction), your
locator will contain the transaction ID.
If you use SELECT FOR UPDATE of an LOB column, the transaction is
started implicitly and your locator will contain the transaction ID.

You cannot read using the locator when it contains an old
transaction ID if the transaction level is set to SERIALIZABLE.
First write using a locator

You need to have a lock on the record that you are trying to update.
If the locator did not have transaction ID before update, now it has one.

Consecutive write using a locator
The locator must have the same transaction ID as in current transaction

<<Example 08, 09>>

Transaction Rules

1. You can perform read operations using locators as
much as you want.
2. If you want to write using a locator, you need to
have a lock on the record.
3. If you want to write using the same locator multiple
times, you must do it in the same transaction.

Issues with Advanced Features
Autonomous transactions:

If you locked the record in the parent transaction, you cannot
lock it in the child one (otherwise deadlock will occur).
If you locked the record in the parent transaction and already
did the first update (so the locator contains transaction ID), the
update in the subroutine will fail because its transaction ID is
different from the one passed with the locator
If you locked the record in the child transaction, you have to
either commit or rollback the changes to complete it. As a
result, the locator will contain the wrong transaction ID.

Dynamic SQL:
All DDL commands fire implicit COMMITs.

<<Example 10, 11, 12, 13>>

Real World Examples

HTML on the Fly

Task:
There is a large organizational structure that could be versioned.
New structural model should be validated before rolling it over the old one.

Possible approaches:
Populate a temporary table where one row represents one error.

Advantages : No clean up is needed.
Disadvantages : Two-step process (populate and query) requiring the same
session, which may not be possible in the web environment. Formatting the result
must be hard-coded on the client side, so there is no way to change it.

Populate (and commit) a permanent table and clean up after the user confirms
that he/she saw the report.

Advantages: Resolves the problem of session-dependency.
Disadvantages: What if the user’s connection was broken? There may be a lot of
records that will not be cleaned. Formatting of the result has to be hard-coded on
the client side, so there is no way to change it.

Create a function that returns an object collection.
Advantages: One-step process; no clean up is required.
Disadvantages: Formatting the result has to be hard-coded on the client side, so
there is no way to change it.

CLOBs and HTML
Issues to be resolved:

Session-dependency
Clean up
Formatting

Solution:
Special function that returns CLOB and uses HTML-tags to
format the output.

Major points:
A function takes a parameter and returns a CLOB in one
round-trip.
Temporary CLOBs are released automatically.
Full formatting can be done in the CLOB itself.

<<Example 14>>

XML-Based Forms
Task:

Data stored in the relational database needs to be passed to an environment
similar to XML (not exactly XML so you cannot use standard Oracle
features).

Solution:
Special mapping routine is built to have a CLOB with XML as an output

Advantages:
Free formatting
Easy clean up
One roundtrip

Major points:
Whenever you need to pass structured data, an XML-based format can be
very useful.
Oracle also uses CLOB as the storage mechanism for its XMLType
datatype.

<<Example 15 (Demo)>>

Emailing from the Database

Task:
Send attachments directly from database.

Solution
Load the file you are planning to attach to the temporary LOB
(for performance reasons).

You can read data directly using BFILE, but in that case, each
operation will cause a direct read (and a large number of wait events
with any significant number of users).

Attach the data to the email
By SMTP protocol standards, you cannot just pour binary data into the
body of the email.
Data should be encoded into the special BASE64 format (textual
representation of binary data).
Only send a limited number of bytes at a time.

<<Example 16>>

Conclusions

Large objects can be very useful because most
information can now be stored in the database.
You need a thorough understanding of the core
mechanisms, ideas and principles of LOBs or you may
do more harm than good.
Don’t try to use new features in production systems
before doing thorough testing.
Don’t believe everything you read without testing it
for yourself.

Contact Information

Michael Rosenblum – mrosenblum@dulcian.com
Dulcian website - www.dulcian.com

Available now!
Oracle PL/SQL for Dummies

By Michael Rosenblum &
Dr. Paul Dorsey

	Large Issues with Large Objects
	Large Objects Needed
	Types of Large Objects
	Data Access
	Data Access
	LOB Data States
	Internal LOB Data Storage
	Navigation Using Indexes
	LOB Operations
	Sample LOB Table
	LOB Code Details (1)
	LOB Code Details (2)
	Loading BFILE
	Loading CLOB and BLOB �from files
	Using BLOBs & CLOBs
	LOB Restrictions – Generic (1)
	LOB Restrictions – Generic (2)
	String Issues
	Transaction Restrictions
	Transaction Rules
	Issues with Advanced Features
	HTML on the Fly
	CLOBs and HTML
	XML-Based Forms
	Emailing from the Database
	Conclusions
	Contact Information

