
Web Application Security
Implementing the Superstition

in JDeveloper

Peter Koletzke
Technical Director &
Principal Instructor

2

Believe It or Not

Security is mostly a superstition.
It does not exist in nature,
nor do the children of men
as a whole experience it.

Avoiding danger is no safer
in the long run than outright exposure.

Life is either a daring adventure
or nothing.

—Helen Keller (1880–1968)

3

Survey
• Jobs

– Developer?
– DBA?
– Sys admin, others?

• Web Application Work
– J2EE?
– .NET?
– PHP, ColdFusion, others?

• Tools
– JDeveloper
– Eclipse
– Others

Part 1 now
Part 2 next

4

Agenda – Part 1

• Why security?

• OC4J security

• Set up the user repository

• Set up web descriptor security

• Define View layer security
Slides and white paper with hands-

on practices are available on the
Quovera and NYOUG websites

Some material
courtesy co-author

Duncan Mills

5

Application Areas of Exposure
• Unapproved users can run the application
• Approved users can access data or

functions they should not access
– Access through View or Model code

• You cannot track who accesses the data
– Approved or not

• Users bend normal query functions to
gain unauthorized access
– SQL injection

6

Security Objectives
• Ultimate security may just be superstition,

however, data must be protected
• Why is exposure greater in web apps?

– More accessible to any WWW hacker than an
internal app

– Given time and CPU power, a motivated hacker
can break any security scheme

• Main objective with any security system:
– Make breaking in as difficult as possible

• Assume file system of app server is secure
– Reading configuration files with user identity and

application security should be really difficult
– Operating system and network has other

security needs and features

7

Two Primary Operations
• Authentication

– Validate that the user is who she/he claims to be
• Normally done with passwords
• With extra equipment, could be something else

– Retinal scan, thumbprint, DNA (?)

• Authorization
– Allow authenticated user access to specific

resources
– Usually done with security roles

• Like database roles
• Application components (pages, functions) and

data are made available to named roles
• Users are enrolled in roles

– User has access to whatever the role is granted

8

Agenda – Part 1
• Why security?

• OC4J security

• Set up the user repository

• Set up web descriptor security

• Define View layer security

9

How to Implement the Superstition
• Use recognized, prebuilt, proven, supported

security technologies
• Java Authentication and Authorization

Services (JAAS)
– Java API library in the J2SE Development Kit

(JDK or J2SDK))
• One solution: JAZN

– Available in Oracle App Server Containers for
J2EE (OC4J)
• Oracle Application Server’s J2EE runtime

– Java authorization and authentication
– An API to JAAS

• Meta-API?
– You configure your application to use JAZN

10

Summarizing That
• OC4J in Oracle App Server contains

JAZN that calls JAAS in the JDK

Oracle App Server

OC4J

Notes
• This is only one method for security.
• This is not to scale.

JDK

JMS
JAAS

JDBC
Java
Core

JSP
Runtime

JAZN
EJB

Runtime

11

The User Repository
• The storehouse of user and role information

– A.k.a., credentials store or identity store
• JAZN can tap two types of user repositories

– XML
• Extensible Markup Language
• Properties file containing user and role definitions
• With 10.1.3 OC4J, can set up lightweight SSO

– LDAP
• Lightweight Directory Access Protocol
• A communications protocol
• Oracle Internet Directory (OID)

– Used for Single Sign-On (SSO)
• OID can read other LDAP providers

– E.g., Microsoft Active Directory

12

Application Security Flow

Oracle Application Server

OID directory services

Database

APPUSER
Database Session

1

JOE

ID
Password

Login

Login

JOE
** authenticated **

Sales
Application

http://webapps.co.com/tuhra

2

3

5

6
Authentication

service GL
Application

TUHRA
Application

8

APPUSER/****

JOE/**** JOE/****

4

JOE (manager)7

5

LDAP User Repository
user

FRANK/****
MARY/****

SCOTT/****

manager

AMY/****

JOE/****

admin

SUE/****
HARRY/****

salesrep

13

Application Security Flow
1. User sends HTTP request including a context root indicating a

particular application.
2. The authentication service determines the method (XML or

LDAP) and presents a login page.
3. The user enters an ID and password and submits the login

page.
4. The authentication service requests OID to verify the user and

password.
5. OID verifies the password in from the LDAP source and

indicates pass or fail to the authentication service.
6. The authentication service accesses the application and

places the user name into the HTTP session state.
7. The application can request the username or group (role, in

this example, “manager”) to which the user belongs
8. The application connects to the database using the

application database user account (APPUSER)
written into a configuration file.

14

Variations
• Single Signon (SSO)

– The user is authenticated by iAS (OID or LDAP)
– The user credentials (name and roles) are available in all

applications managed by SSO
• Details in Oracle Containers for J2EE Security Guide 10g

(10.1.3.1.0) online guide – Ch.8

• Database users
– You can connect the user repository to users and passwords

in the Oracle database
– Custom Login Module for JAZN or SSO

• Details in the Nimphius/Mills article mentioned
at end

• Other J2EE-compliant containers such as
Tomcat work the same way

• HTTPS is preferred and the set up is
the same

15

Agenda – Part 1
• Why security?

• OC4J security

• Set up the user repository

• Set up web descriptor security

• Define View layer security

16

Review: Security Tasks

Select a security
system
– JAZN here

Set up user repository
roles and users
Enroll users in roles in
the user repository
Switch user
repositories
– Before production

Set up logical application roles
for the application
Configure a login method for
the application
Set up security constraints to
protect pages based on roles
Protect items based on roles

Administrator Developer

To Do – Part 2
Secure Model level attributes
Create login and logout pages
Protect against SQL injection attacks
Log data modifications
Display the logged-in user
Use ADF Security

17

JDeveloper Support
• Define these files using JDeveloper’s XML

property editors
– <appname>-jazn-data.xml
– <appname>-oc4j-app-data.xml
– web.xml
– These files configure the Embedded OC4J Server

in JDeveloper
• “<appname>” is the application workspace

name in JDeveloper
– Transfer these settings to the “system”

level files in the 10.1.3 server
• system-jazn-data.xml
• system-oc4j-app-data.xml

18

Set Up Roles and User Accounts
• For XML provider in <appname>-jazn-data.xml
• Define within a realm (namespace within the XML file)

– By default jazn.com
<role>
<name>admin</name>
<members>
<member>
<type>user</type>
<name>SKING</name>

</member>
<member>
<type>user</type>
<name>AHUNOLD</name>

</member>
</members>

</role>

<role>
<name>admin</name>

</role>
User

Role

Users in Role

<users>
<user>
<name>SKING</name>
<credentials>{903}1JHgZuUDp..
</credentials>

</user>
</users> password

obfuscation

19

Users and Roles in JDeveloper
• Tools | Embedded OC4J Preferences after

selecting the application
– Current Workspace\Authentication\ realms\jazn.com

• Users node
– Click Add
– Define

name and
password

– Password
is obfuscated

• Roles
– Click Add
– Enter name,

description
20

Enroll Users in Roles
• Members Users tab on Roles page

– Shuttle users to Selected area.

Demo

21

Agenda – Part 1
• Why security?

• OC4J security

• Set up the user repository

• Set up web descriptor security

• Define View layer security

22

Set Up Logical Application Roles
• In web.xml (web application deployment

descriptor)
• Standard J2EE XML file – standard contents
• Abstracts the roles required by the application

from the user repository roles
<security-role>
<description>Administrative users</description>
<role-name>admin</role-name>

</security-role>
<security-role>
<description>Management users</description>
<role-name>manager</role-name>

</security-role>

23

Logical Application Roles
• On web.xml node in ViewController\Web

Content\WEB-INF, select Properties
– Web Application Deployment Descriptor dialog
– On Security Roles page, click Add

Demo

24

Define Security Constraints
• Used to map logical roles to URL patterns
• Restricts access to a set of files based on role
• URL pattern represents a directory and file

names
<security-constraint>
<web-resource-collection>
<web-resource-name>UserZone</web-resource-name>
<url-pattern>faces/pages/*</url-pattern>

</web-resource-collection>
<auth-constraint>
<role-name>user</role-name>
<role-name>admin</role-name>
<role-name>manager</role-name>

</auth-constraint>
</security-constraint>

25

Security Constraints
• On Security Constraints node (web.xml), click New

– A Constraint child node will appear
• Click Add and name the constraint

– Order matters - start with most restrictive

26

Define the Constraint
• Select Web Resource Collection (AdminZone)

– On Authorization tab, select the roles
– These roles will be constrained to the URL patterns

you define next
• On Web Resources tab, select collection

– Click Add and Enter
path and file
names (or “*” for all)

• Repeat creation of constraint
for all other URL patterns needed
– E.g., UserZone constraint

for “faces/pages/*” URL pattern

27

Constraint Principles
• Security constraints can be defined for any number of

roles.
– Users can be members of any number of roles
– Roles can contain any number of users.

• Security constraints protect files and directories.
– Allow files and directories to be accessed by specific users

(roles).
• Pages not protected by a security constraint are

accessible to any user
• Security constraints are processed in the order in

which they appear in the web.xml file.
– Access allowed if the servlet finds the first security constraint

for the user’s role where the page matches the URL pattern
– URL patterns can include the asterisk (“*”)

wildcard character
• Match file names, for example, “*Emp.jsp”
• Match all files in all subdirectories

– For example, “/faces/pages/*”

28

Wildcard Gotcha
• Wildcard “*” stands for “all files and files

in all subdirectories”
• E.g., you define URL patterns for

“/faces/*” and “/faces/admin/*”
– User role assigned “/faces/*”
– Admin role assigned “/faces/admin/*”
– User role then has access to /faces/admin

pages – Not intentionally, however
• Solution: define specific patterns:

– User role assigned “/faces/*.jsp”
– Admin role assigned “/faces/admin/*”

29

Navigation Gotcha
• Redirect property is “false” by default

– This indicates a “forward”
• Controller calls the page directly

– Problem: no URL is used so the URL pattern
cannot be matched

• Set Redirect on navigation case to “true”
– That way, the browser will request

the page using the URL pattern
– “Redirect” requests browser to send URL

of the new page
– Problem: ADF dialog does not work using

redirect

30

Define Application Login
• Set login method

– Basic or form-based authentication
– Set in web.xml

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>security/login.jsp</form-login-page>
<form-error-page>security/login.jsp</form-error-page>

</form-login-config>
</login-config>

<login-config>
<auth-method>BASIC</auth-method>

</login-config>

Basic

Form-based
Specify a login
and error page.

Demo

31

Define Login Method
• Login Configuration page (web.xml)

– Select HTTP Basic Authentication

Part 2 and a hands-on practice
accompanying the white paper
shows how to create a custom login
page for the “Form-Based
Authentication” option

32

Testing Basic Authentication
• Reminder:

– admin can access faces/pages/admin/*
– user and admin can access faces/pages/*

• Define pages for admin and user
– One page in each directory

• Test each page
• Basic authentication

dialog will appear when
you run the page

• Test password protection

Demo

33

Switching User Repositories
• XML user repository is handy for development

– Stored in <appname>-jazn-data.xml in the
application root directory – edit it manually

– Can manage this locally for application development
• LDAP is used for enterprise production systems
• Switch it in <appname>-oc4j-app-data.xml

<jazn provider="XML" location="jazn-data.xml" default-realm="jazn.com"/>
<jazn provider="LDAP" location="ldap://ldap.tuhra.com:389"/>

To:

From:

34

Agenda – Part 1
• Why security?

• OC4J security

• Set up the user repository

• Set up web descriptor security

• Define View layer security

35

Who is Running the App?
• Get user role from FacesContext

• This requires writing code in some utility
class

• Alternative: use JSF-Security
– Adds an EL scope: securityScope

public boolean isAdmin() {
FacesContext ctx =

FacesContext.getCurrentInstance();
ExternalContext ectx = ctx.getExternalContext();
return (ectx.isUserInRole("admin"));

}

36

JSF-Security
• Open source framework for exposing security

settings to application
– jsf-security.sourceforge.net

• Download library file and add it to the project
– WEB-INF\lib

• Then role can be queried for value of
properties on components
– Disabled
– Rendered
– Read-only

37

Example 1
• Hide container (af:tableSelectOne) for all

but admin and manager roles
<af:tableSelectOne text="Select and"

rendered=
"#{securityScope.userInRole['admin,manager']}">

admin and manager users other users

38

Example 2
• Disable Salary item for all but admin roles

<af:inputText value="#{bindings.Salary.inputValue}"
label="#{bindings.Salary.label}"
required="#{bindings.Salary.mandatory}"
columns="#{bindings.Salary.displayWidth}"
disabled="#{ !securityScope.userInRole['admin']}"

/>
admin users other users

Demo

39

Agenda - Part 2

• Define Model layer security

• Create login and logout pages

• Protect against SQL injection

• Log audit information

• Display the user name on the page

• Use the ADF Security framework

40

Review: Security Tasks

Select a security
system
– JAZN here

Set up user repository
roles and users
Enroll users in roles in
the user repository
Switch user
repositories
– Before production

Set up logical application roles
for the application
Configure a login method for
the application
Set up security constraints to
protect pages based on roles
Protect items based on roles

Administrator Developer

To Do:
Secure Model level attributes
Create login and logout pages
Protect against SQL injection attacks
Log data modifications
Display the logged-in user
Use ADF Security

41

Securing Model Layer
ADF BC Attributes

• ADF BC can read
the role of an
authenticated user

• Used to secure
entity attributes
– Mark them as

• Read-only
• Updateable while

new
• Always Updatable

• Automatically reflected by the UI

42

Secure Model Attributes
1. Tell ADF BC to worry about security

– Set the configuration param
jbo.security.enforce=Auth

43

Secure Model Attributes
1. Tell ADF BC to worry about security
2. Propagate jazn-data.xml data

• Make sure that the following files contain
the same users and roles:

• %JDEV%/j2ee/home/config/system-jazn-data.xml
• %JDEV%/jdev/system/oracle.j2ee.10.1.3.n.n/

embedded-oc4j/config/system-jazn-data.xml
• %workspace%/workspace-jazn-data.xml

• This is just for design time

44

Secure Model Attributes
1. Tell ADF BC to worry about security
2. Propagate the jazn-data.xml data
3. Edit the Entity

Object
• Select the

Authorization
node

• Select an
attribute

• Click Add

45

Agenda - Part 2

• Define Model layer security

• Create login and logout pages

• Protect against SQL injection

• Log audit information

• Display the user name on the page

• Use the ADF Security framework

46

Login Page
1. Create non-JSF JSP

– \security subdirectory
– JSF is processed after the JSP authentication

takes place
2. Add standard HTML items

– Form
• Name: j_security_check
• Method: post

– Fields
• Names: j_username,

j_password
– Button

• Name: login
• Value: Login

47

Login Page
3. In the web.xml editor, set login page as

security/login.jsp
4. This page will be used instead of the basic

authentication page

Hands-on
practice shows
how to display
error message

for invalid login.

48

Logout Page
• Need to invalidate session and navigate to

the login page
1. Define page and navigation

2. Add a button on the browse page
– Text: Logout
– Action: browse

• Will navigate to the logout page

– Immediate: true
• So validation is not performed

49

Logout Page
3. Add items to the page

– PanelHeader – for message
– Button

• Text: Yes
– Button

• Text: No
• Action: browse

4. Add backing bean code to
Yes button
– Invalidate session
– Navigate to the browse page

• This will activate the login page
– Double click the button to create the bean

• Create the bean (backing_logout)
• Rename the method (logoutButton_action)

50

Logout Page
• In new backing bean:

public String logoutButton_action() throws IOException
{

ExternalContext ectx = FacesContext.
getCurrentInstance().getExternalContext();

HttpServletResponse response =
(HttpServletResponse)ectx.getResponse();

HttpSession session = (HttpSession)
ectx.getSession(false);

session.invalidate();
response.sendRedirect("./browseEmp.jsp");
return null;

}

51

Agenda - Part 2

• Define Model layer security

• Create login and logout pages

• Protect against SQL injection

• Log audit information

• Display the user name on the page

• Use the ADF Security framework

52

SQL Injection
• A technique used to insert unintended

SQL text inside query forms, e.g.,
SELECT * FROM employees
WHERE last_name LIKE '<field_value>%'

• User is supposed to enter something
like “Kin” in the Last Name query field
–The SQL would then be:
SELECT * FROM employees
WHERE last_name LIKE 'Kin%'

53

SQL Injection Attempt
• The user could, instead, enter:

%' and salary > 10000 --
• This turns into:

SELECT * FROM employees
WHERE last_name LIKE '%' and salary > 10000 -- %'

• The user will be able to see all employees
with salaries over 10,000
– Could be a problem

• Smart hackers could potentially enter
function calls or other code that changes
data as well

54

SQL Injection Solutions
• Do not use Find mode (in ADF Faces)

– However, it is very convenient
• Instead, use bind variables (parameterized

queries)
– Nearly 100% solution
– Database matches datatypes
– Does not construct SQL clause predicates

• Like the Oracle Reports bind parameter
– QBE uses parameters like the lexical parameters:

part of the SQL statement
• You can also filter query parameters before

processing
– See hands-on practice on website

55

Logic for Query Criteria Filter
• Intercept and filter the search criteria

– Implement a Impl class for the VO
– Override getViewCriteriaClause(boolean)

• Filter can check for "warning" strings
– Operators
– Column names
– Pseudo columns

• Regular Expressions are
excellent for this

56

Filtering the Criteria

getViewCriteria()

For Each Row

getAttribute()

For Each Attribute in Row

Filter

Usually only
one query row

Gets the entered
criteria e.g. S%

Each field the
user may have
entered criteria

into

setAttribute()

Override the criteria
if "bad"

57

A Simple Filter
import java.util.regex.Matcher;
import java.util.regex.Pattern;
…
protected String detectInjection(String criteria) {
boolean reject = false;
String testPattern =

"^(>=|<=|=<|=>|<|>|<>|!=|=|BETWEEN|IN|LIKE|IS)";
String testCriteria = criteria.trim().toUpperCase();
if (testCriteria != null &&

testCriteria.length() > 0) {
Pattern pattern = Pattern.compile(testPattern);
Matcher matcher = pattern.matcher(testCriteria);
if (matcher.find())
reject = true;

}
return reject?null:criteria;

}

58

Agenda - Part 2

• Define Model layer security

• Create login and logout pages

• Protect against SQL injection

• Log audit information

• Display the user name on the page

• Use the ADF Security framework

59

Audit Columns in ADF BC
• Entity object history column property

– created on
– created by
– modified on
– modified by
– version

• Requires
use of
JAZN
security

60

More Advanced Audit
• History columns mechanism may not be

enough for some uses
– Saving old versions of records
– Writing audit trails to a different table
– Non ADF BC applications also update the

tables
• Use table triggers to write the audit info
• The problem of "identity"

– Database account is most likely shared
– Need to push the J2EE identity into the

DB…

61

Steps for Propagating Identity
1. Set up application context to store this

additional metadata
2. Use the context information from the

table triggers
3. Set the context information at runtime

from ADF BC

62

Application Context
• A namespace containing name=value

pairs
– "Session State" in the database
– USERENV is one such

• Populated by a defined (trusted)
package

• Used for VPD as well

SELECT SYS_CONTEXT('USERENV','NLS_DATE_FORMAT')
FROM DUAL;

CREATE CONTEXT hr_context USING security_pkg;

63

The Context Package
CREATE OR REPLACE PACKAGE security_pkg
IS

PROCEDURE set_security_context (
p_username IN VARCHAR2,
p_application IN VARCHAR2 DEFAULT 'TUHRA');

END security_pkg;

CREATE OR REPLACE PACKAGE BODY security_pkg
IS

PROCEDURE set_security_context (
p_username IN VARCHAR2,
p_application IN VARCHAR2 DEFAULT 'TUHRA')

IS
BEGIN

-- Write the user info into the context area
SYS.DBMS_SESSION.set_context ('HR_CONTEXT',

'APP_USERNAME', p_username);
EXCEPTION

-- exception handling code
END;

END security_pkg;

64

Using The Context
CREATE OR REPLACE TRIGGER employees_audit_biu

BEFORE INSERT OR UPDATE
ON employees
FOR EACH ROW

DECLARE
v_user VARCHAR2(30);

BEGIN
v_user := UPPER(SYS_CONTEXT('HR_CONTEXT',

'APP_USERNAME'));
IF INSERTING
THEN

:NEW.created_by := v_user;
:NEW.created_date := SYSDATE;

ELSIF UPDATING
THEN

:NEW.modified_by := v_user;
:NEW.modified_date := SYSDATE;

END IF;
END;

65

Setting the Context from ADF
• Application module prepareSession() method
public void prepareSession(SessionData sessionData)
{
super.prepareSession(sessionData);
// Retrieve the J2EE user ID
String authenticatedUser = getUserPrincipalName();
DBTransactionImpl dbTrans =

(DBTransactionImpl)getDBTransaction();
CallableStatement cStmt =

dbTrans.createCallableStatement(
("BEGIN " +

"security_pkg.set_security_context(?); " +
"END;"), 0);

try {
callableStmt.setString(1, authenticatedUser);
callableStmt.execute();

}
...

Full example in the
hands-on practices.

66

Agenda - Part 2

• Define Model layer security

• Create login and logout pages

• Protect against SQL injection

• Log audit information

• Display the user name on the page

• Use the ADF Security framework

67

Display the Username
• The user name is in the securityScope
1. Add an outputFormatted item

– This should be part of the template
2. Set Value property

– Signed in as “#{securityScope.remoteUser}”
<f:facet name="infoUser">
<af:outputFormatted value=

"Signed in as #{securityScope.remoteUser}"/>
</f:facet>

68

Agenda - Part 2

• Define Model layer security

• Create login and logout pages

• Protect against SQL injection

• Log audit information

• Display the user name on the page

• Use the ADF Security framework

69

ADF Security
• Alternative to container security method

explained before
• ADF feature that allows you to control access

on the binding level
• Affects the View layer code
• Use this for any Business Service

– ADF BC, EJB, web services, POJO
– Compared to Model security which is for ADF BC

only
• Works with JAAS and OC4J
• Requirement: currently, all bindings

must have authorization defined
70

ADF Security - Steps
1. Configure application for ADF Security

– Use the ADF Security Wizard
– Available in JDev 10.1.3.2 (not 10.1.3.1)

2. Define OC4J container security
3. Define security on all bindings

– Use the Edit Authorization right-click menu item
– PageDef file
– Individual

bindings
4. Optionally restrict

access to
components

71

1. Configure the Application - A
• Tools | ADF Security • ADF Security requires

definitions for all
bindings

• Add “faces/” to
Browse results

• Writes provider to
orion-application.xml

72

1. Configure the Application - B
• Specifies system-jazn-

data.xml

• Writes this to web.xml
as with previous
method

• Can have the wizard
create these pages
automatically – nice!

73

1. Configure the Application - C
• adfAuthentication is the constraint name
• Set up roles
• This ends up in web.xml
• Need to modify

web.xml
afterwards to
add URL
patterns to
this constraint

74

2. Define OC4J Container Security
• Set up users and roles and map users

to roles, as before but use Global area

Ends up in system-jazn-data in
jdev\system\oracle.j2ee.xxxx\
embedded-oc4j\config

75

3. Define Security on the Bindings
• Select Edit

Authorization
on the PageDef
node

• Fill out the Auth.
Editor

• Repeat
for each
binding
and
executable

76

4. Optionally Restrict Access to
Components - A

• Set Disabled, Rendered properties on
components based on the PermissionInfo object
– This reads the binding grants you defined in the Edit

Authorization dialog for that user’s role
<af:commandButton actionListener="#{bindings.Delete.execute}"

text="Delete"
disabled=

"#{!bindings.DepartmentsView1Iterator.permissionInfo.delete}"
/>

Iterator binding authorizations

77

4. Optionally Restrict Access to
Components - B

• Access the grants programmatically in backing bean code
public String createDepartmentsAction()
{
final FacesContext fc = FacesContext.getCurrentInstance();
final Application fapp = fc.getApplication();
//get binding
OperationBinding obind = (OperationBinding)

fapp.createValueBinding("#{bindings.CreateDepartment}").
getValue(fc);

if (ADFContext.getCurrent().getSecurityContext().hasPermission
(new RowSetPermission("AppModuleDataControl.DepartmentsView1",
"create")))

{
obind.execute();
if (obind.getErrors() == null || obind.getErrors().size()==0)
{
return "editDepartments";
}

}
return null;
} Example from Frank

Nimphius’ article cited later.
78

To Use or Not To Use?
• It’s actually more complex, but easier to

define
– Huh?
– Easy: Wizard and authorization dialogs help
– Complex: It requires granting every binding

• Use it if your business service is not ADF BC
• Use it if you need low-level control of

elements
– More options than ADF BC authorization control

• Use it if you prefer “easy” declarative
screens

• Wait, if you can, for an upcoming version
that allows you to declare permissions
for only bindings that need permissions

Stay tuned
for JDev

R 11

79

Other Resources
• Declarative J2EE authentication and

authorization with JAAS, Frank Nimphius and
Duncan Mills
– Google search that title

• Oracle Application Server Containers for
J2EE Security Guide 10g Release 3 (10.1.3)
– download-east.oracle.com/docs/cd

/B25221_04/web.1013/b14429/toc.htm
• Introduction to ADF Security in JDeveloper

10.1.3.2, Frank Nimphius on OTN
– Google search that title

• White paper for this talk
– Hands-on practices
– On the IOUG SELECT and Quovera websites

80

Summary
• You need to design application security
• OC4J offers easy access to standard

JAAS security features (JAZN)
• JAZN supports user repositories in XML

and LDAP
• JDeveloper can help you define XML

user repositories and hooks into the app
• Design and test for all security

breach scenarios

81

Out of Business

We will bankrupt ourselves
in the vain search

for absolute security.

—Dwight David Eisenhower, (1890–1969)

82

Designer
Handbook

Developer
Advanced
Forms & Reports

JDeveloper 3
Handbook ORACLE9i

JDeveloper
Handbook

• Founded in 1995 as Millennia Vision
Corp.

• Profitable for 7+ years without outside
funding

• Consultants each have 10+ years
industry experience

• Strong High-Tech industry background
• 200+ clients/300+ projects
• JDeveloper Partner
• More technical white papers and

presentations on the web site

http://www.quovera.com

Books co-authored with Dr. Paul Dorsey,
Avrom Roy-Faderman, & Duncan Mills
Personal web site:
http://ourworld.compuserve.com/homepages/Peter_Koletzke

ORACLE
JDeveloper 10g
Handbook

Please fill out the evals

