
 1

HANDS-ON PRACTICE 4
LOADING AUDIT COLUMNS
Peter Koletzke, Quovera
Duncan Mills, Oracle Corp.
Now we will look at a different approach to the same problem implemented within the database itself. As we mentioned
before, you may choose to take this approach if you have other applications accessing the same data or requirements that are
not covered by the basic history column functionality of ADF BC.

Implementing audit columns or a journal table in PL/SQL requires BEFORE row-level triggers for each operation. The row-
level trigger updates an audit column or inserts the values of the old (or new) row in the journal table; alternatively, the
journal table could hold just the data that has been changed. The problem is that if your application uses a single database
user account to connect to the database (as do most J2EE web applications), the table triggers cannot use the USER pseudo-
column to assign the created or modified user columns. For example, in an Oracle Forms application where the user logs in
using his or her own database account, a BEFORE INSERT row-level database trigger would contain the following:

:NEW.created_by := USER;
:NEW.created_date := SYSDATE;

You can create named values (like variables) that you store in the application context by assigning a value to a name. You
can then read the values by accessing the value name within that same database session. Since you declare these variables at
runtime (not in explicit declarative code), context name-value pairs are akin to global variables in Oracle Forms. In Oracle
Forms, you create global variables by assigning them, and you can then read the value throughout the same database session.

The entire solution requires the following elements:

• An application context You access a context by a name; the same context can provide session-specific
information for many database sessions, although the values assigned into the context in one session will be
readable only within that session. Therefore, you only need one application context for this purpose.

• A PL/SQL context package This package contains procedures and functions that write and read to the context
area.

• J2EE code to write to the context The J2EE code will call a procedure in the context package to write a value
for the logged-in user name to the application context.

• Table trigger code to read the context The built-in database function SYS_CONTEXT can access the context in
the trigger. For example, you could create a context called HR_CONTEXT; application code would write a value
called APP_USERNAME into that context with the logged-in user name. The snippet shown earlier from the
BEFORE INSERT table trigger would then become this:
:NEW.created_by := SYS_CONTEXT('HR_CONTEXT', 'APP_USERNAME');
:NEW.created_date := SYSDATE;

The following practice is taken in part from the Oracle JDeveloper 10g for Forms and PL/SQL Developers (Oracle Press,
McGraw-Hill/Osborne). The technique consists of the following phases:

 I. Create the database objects

 II. Set the context from the application
• Call the database procedure from prepareSession()
• Test the method call
• Move the code to the framework class

Note
Code snippets are available in text files that accompany this
practice.

Web Application Security – Loading Audit Columns Koletzke and Mills

 2

I. Create the Database Objects
Although this section describes how to implement the audit column technique, you could apply many of the same principles
to inserting a row into a journal table. Although the PL/SQL triggers and tables will differ between the two requirements, the
problem is the same—how to access the logged-in user name from within PL/SQL code.

The key to the solution is an application context, an Oracle database feature that allows you to store and query information
for a specific user session. You need to create the context and associate it with a PL/SQL package that will manage writing
and reading from the context. You can think of the application context as a memory area, which you can write to and read
from throughout a user’s database session.

You can create named values (like variables) that you store in the application context by assigning a value to a name. You
can then read the values by accessing the value name within that same database session. Since you declare these variables at
runtime (not in explicit declarative code), context name-value pairs are akin to global variables in Oracle Forms. In Oracle
Forms, you create global variables by assigning them, and you can then read the value throughout the same database session.

The entire solution requires the following elements:

• An application context You access a context by a name; the same context can provide session-specific information
for many database sessions, although the values assigned into the context in one session will be readable only within
that session. Therefore, you only need one application context for this purpose.

• A PL/SQL context package This package contains procedures and functions that write and read to the context
area.

• J2EE code to write to the context The J2EE code will call a procedure in the context package to write a value for
the logged-in user name to the application context.

• Table trigger code to read the context The built-in database function SYS_CONTEXT can access the context in
the trigger. For example, you could create a context called HR_CONTEXT; application code would write a value
called APP_USERNAME into that context with the logged-in user name. The snippet shown earlier from the
BEFORE INSERT table trigger would then become this:

:NEW.created_by := SYS_CONTEXT('HR_CONTEXT', 'APP_USERNAME');
:NEW.created_date := SYSDATE;

You need to follow the steps in this section to make the required database changes.

2. Log in to the database as SYS, or a DBA account connected as sysdba, and grant access to the application object
owner (HR) using the following statements:
GRANT EXECUTE ON SYS.dbms_session TO hr;
GRANT CREATE ANY CONTEXT TO hr;
GRANT DROP ANY CONTEXT TO hr;
GRANT SELECT ON SYS.v_$session TO hr;

3. Log in as HR, and add audit columns to the table. This example uses the EMPLOYEES table, so you would run the
following:
ALTER TABLE employees
ADD (
 created_by VARCHAR2(30),
 created_date DATE,
 modified_by VARCHAR2(30),
 modified_date DATE);

4. Update the CREATED_BY and CREATED_DATE columns with appropriate values, and change those columns to
NOT NULL, as follows:
UPDATE employees
SET created_by = 'HR',
 created_date = TO_DATE('01/01/1980 12:12','MM/DD/YYYY HH24:MI');

ALTER TABLE employees
MODIFY (created_by NOT NULL,
 created_date NOT NULL);

Web Application Security – Loading Audit Columns Koletzke and Mills

 3

5. Create the context and refer to a package (even though this package is not yet created):
CREATE CONTEXT hr_context USING security_pkg;

6. Create the SECURITY_PKG using the following SQL:
CREATE OR REPLACE PACKAGE security_pkg
IS
 PROCEDURE set_security_context (
 p_username IN VARCHAR2,
 p_application IN VARCHAR2 DEFAULT 'TUHRA');

 FUNCTION logged_in_user
 RETURN VARCHAR2;

END security_pkg;

CREATE OR REPLACE PACKAGE BODY security_pkg
IS
 PROCEDURE set_security_context (
 p_username IN VARCHAR2,
 p_application IN VARCHAR2 DEFAULT 'TUHRA')
 IS
 BEGIN
 -- Write the user info into the context area
 -- The application name is used later
 SYS.DBMS_SESSION.set_context ('HR_CONTEXT', 'APP_USERNAME', p_username);
 EXCEPTION
 WHEN OTHERS
 THEN RAISE_APPLICATION_ERROR(-20001,
 'Error in SECURITY_PKG.SET_SECURITY_CONTEXT: ' || SQLERRM);
 END;

 FUNCTION logged_in_user
 RETURN VARCHAR2
 IS
 v_username VARCHAR2(100);
 BEGIN
 v_username := UPPER(SYS_CONTEXT('HR_CONTEXT', 'APP_USERNAME'));
 RETURN v_username;
 EXCEPTION
 WHEN OTHERS
 THEN RETURN 'Error in LOGGED_IN_USER';
 END;

END security_pkg;

Additional Information: The Java code you write later will pass the logged-in user name to the
set_security_context procedure. It will also pass the application name. Although the code just shown does not use
this parameter, the section “What Could You Do Next?” later in this practice explains its possible use.

7. Create the trigger to set the audit columns as follows:
CREATE OR REPLACE TRIGGER employees_audit_biu
 BEFORE INSERT OR UPDATE
 ON employees
 FOR EACH ROW
DECLARE
 v_user VARCHAR2(30);
BEGIN
 v_user := security_pkg.logged_in_user;

 IF INSERTING
 THEN
 :NEW.created_by := v_user;

Web Application Security – Loading Audit Columns Koletzke and Mills

 4

 :NEW.created_date := SYSDATE;
 ELSIF UPDATING
 THEN
 :NEW.modified_by := v_user;
 :NEW.modified_date := SYSDATE;
 END IF;
END;
/

8. You can test your code in the SQL tool of your choice (for example, JDeveloper’s SQL Worksheet). First note the
contents of the audit columns for a particular row in the EMPLOYEES table:
SELECT employee_id,
 first_name, last_name,
 created_by,
 TO_CHAR(created_date, 'mm/dd/yyyy hh24:mi:ss') created_date,
 modified_by,
 TO_CHAR(modified_date, 'mm/dd/yyyy hh24:mi:ss') modified_date
FROM employees
WHERE employee_id = 100;

9. Set the application context parameter for the session as follows:
BEGIN
 security_pkg.set_security_context('TFOX', 'TUHRA');
END;

10. Check that the application context parameter is set:
SELECT security_pkg.logged_in_user
FROM dual;

11. Issue an UPDATE statement. The following does not change anything, but it will cause the trigger to fire:
UPDATE employees
SET last_name = last_name
WHERE employee_id = 100;

12. Check the audit column values by re-running the SELECT statement from step 7. You should see a
MODIFIED_BY value of “TFOX” and the MODIFIED_DATE of today.

What Did You Just Do?
You added audit columns to the EMPLOYEES table and created an application context to hold the value of the user name,
which will be passed to the application context. You also created a package associated with the application context. This
package contains a procedure to add the user name to the application context and a function to read the user name from the
context. In addition, you created a trigger on the EMPLOYEES table that loads the user name into an audit column during an
INSERT or UPDATE. Finally, you tested these database components by updating the EMPLOYEES table and viewing the
resulting audit column values.

What Could You Do Next?
Naturally, you can add this kind of functionality to more than one table. Each table requires audit columns and a trigger to
load the user name and dates for INSERT and UPDATE operations. The package and application context would be shared
by all these triggers.

You could use a similar technique to implement a journal table system by creating a duplicate of the main table (for example,
EMPLOYEES_ JN), with additional columns for OPERATION (“INSERT” or “UPDATE”), OPERATION_DATE, and
OPERATION_USER. The trigger would be modified to insert a record with the old values and values for the additional
columns into this table. Again, the package and application context would be the same as before.

You might want to add a condition to the audit columns trigger so that if a user is not logged in through the web application,
the trigger will record the database login user name instead of the web application login name. This requires the following
changes:

Web Application Security – Loading Audit Columns Koletzke and Mills

 5

• An additional context value IS_WEB_USER that you assign as “Y” in the
set_security_context function.

• Additional trigger logic to check if the context variable IS_WEB_USER is set to “Y.” If so, the user name column
is set to the user name in the context. Otherwise, it is set to USER (the logged-in database user).

Since all web users log in as the same database user, there is no way to distinguish their sessions when viewing the virtual
view, V$SESSION. However, V$SESSION contains two columns, CLIENT_INFO and ACTION, into which you can write
information such as the logged-in user name. To add user-specific information to these columns, you would add these two
lines to the security_pkg.set_security_context procedure:

DBMS_APPLICATION_INFO.SET_CLIENT_INFO(p_username);
DBMS_APPLICATION_INFO.SET_ACTION(p_application || ' - ' ||
 TO_CHAR(SYSDATE,'MM/DD/YYYY HH24:MI'));

You must also grant the connection user EXECUTE privilege on DBMS_APPLICATION. The first line writes the user
name into the CLIENT_INFO column, and the second line writes the value of the p_application parameter (set to “TUHRA”
by the application code) and the date and time into the ACTION column.

Note
V$SESSION displays information about database
connections. Since a J2EE web application has no persistent
database connection and since ADF BC pools database
connections, you do not know the state of user sessions that
appear to be connected in V$SESSION. For example, a user
name may appear in V$SESSION even though the user has
closed the browser, because the database connection in the
application module pool may not have been reused.

II. Set the Context from the Application
Now that the PL/SQL and database objects are in place, all that remains is to write code in the application to call the database
function that sets the application context value for the user name. This phase uses a technique to call a database procedure
and to define code that will be executed automatically as the ADF Business Components layer establishes the user session
with the database.

Call the Database Procedure from prepareSession()
This section extends the functionality of the application module prepareSession() method, which the ADF BC will
automatically call as the database connection is established (for each interaction with the database). The advantages of
adding the context initialization code to this method follow:

• The framework will execute the context setting code for you. You do not need to explicitly execute the call from the
user interface code.

• The prepareSession() method will automatically be reinvoked and the context set correctly if the application
employs connection pooling or application module pooling,

• The context will be reset with the new ID if the user logs out of the application and connects using another ID.
The following steps start with the sample TUHRA (The Ultimate Human Resources Application) application workspace. In
addition to the database code described in Phase I of this practice, they require an Employees Edit page and the security
features worked into the application in the first practice.

1. Select the TuhraService application module node under Model\Application Sources\tuhra.model. Double click
TuhraServiceImpl.java in the Structure window to open the Java file in the editor.

2. Select Source | Override Methods and select the checkbox for the prepareSession(oracle.jbo.Session) method. (This
method will display an open lock icon, indicating that it is public.) Click OK. The method code stub will be inserted
into the code file.

3. Modify the generated prepareSession() method so it includes the following code:

Web Application Security – Loading Audit Columns Koletzke and Mills

 6

public void prepareSession(Session session)
{
 super.prepareSession(session);
 // Retrieve the J2EE user ID
 String authenticatedUser = getUserPrincipalName();

 if ((authenticatedUser != null) &&
 (authenticatedUser.trim().length() > 0))
 {
 DBTransactionImpl dbTransaction = (DBTransactionImpl)getDBTransaction();
 // Parameter for application name
 String pApplication = "TUHRA";
 // Transaction statement with procedure call
 CallableStatement callableStmt = dbTransaction.createCallableStatement(
 ("BEGIN " +
 "security_pkg.set_security_context(?, ?); " +
 "END;"), 0);
 try
 {
 // Register parameters and call procedure
 callableStmt.setString(1, authenticatedUser);
 callableStmt.setString(2, pApplication);
 callableStmt.execute();
 } catch (SQLException sqlExcept)
 {
 throw new JboException(sqlExcept);
 }

 {
 try
 {
 if (callableStmt != null)
 {
 callableStmt.close();
 }
 } catch (SQLException closeExcept)
 {
 throw new JboException(closeExcept);
 }
 }
 }
}
Additional Information: This code uses an API function provided by the ApplicationModuleImpl superclass—
getUserPrincipalName(), which returns the ID of the user that is authenticated by the J2EE container. If the user
name is not null, the code then creates a database transaction object, dbTransaction, and prepares a statement with
two replaceable parameters (user name and application name) to call the database procedure. Next, the code
registers the parameters and executes the PL/SQL statement.

4. You will see many class names with wavy underlines. These indicate missing imports. Hold the mouse cursor over
DBTransactionImpl, and press ALT-ENTER to add the import (oracle.jbo.server.DBTransactionImpl). Repeat this
operation for CallableStatement.

5. Hold the mouse cursor over one of the callableStmt lines, and import SQLException. Repeat this for JboException
(select oracle.jbo.JboException from the pulldown).

6. Compile the code (using Make from the right-click menu in the editor). Fix any problems and recompile.

7. Click Save All. The method is now defined and will execute automatically when a new session is created.

Test the Method Call
Now that the setup is complete, you can run a test in the application.

Web Application Security – Loading Audit Columns Koletzke and Mills

 7

1. Open the Table Viewer in JDeveloper for the EMPLOYEES table (in the Connections Navigator, open the
Database, HR, HR, and Tables nodes; and double click the EMPLOYEES node). Select the Data tab.

2. Select an employee record, and note the values for the columns MODIFIED_BY and MODIFIED_DATE (probably
NULL).

3. Return to the Applications tab, and run the application. Log in as TFOX. On the Employees tab, query and edit the
employee record you noted in the preceding step. Change the phone number, and click Save.

4. Close the Table Viewer in JDeveloper, and reopen it. The MODIFIED_BY and MODIFIED_DATE for the record
should now be TFOX and the current date.

5. Log out and log in again as NKOCHHAR. Update the same record, and note the change in the audit column values.

6. Close the browser and stop the server.

Move the Code to the Framework Class
Although this application only contains one application module at this stage of development, you expect the project to grow
so that it contains more than one application module. You will need to apply the same context-setting procedure call to all
application modules. Instead of repeating the method in each application module, you can code it on the application
framework level so that one method is available to all application modules. In this section, you will move the method call to
the framework code level.

1. Open the TuhraServiceImpl.java file if it is closed. (Select the application module and double click the file name in
the Structure window.)

2. Place the cursor in the prepareSession() method, and select Refactor | Pull Members Up. The Pull Members Up
dialog will appear, as shown here:

3. Be sure the prepareSession() method checkbox is selected.

4. Notice the Target pulldown contains the name of the superclass
TuhraApplicationModuleImpl. Click OK. The method will disappear from the editor.

5. Scroll to the class declaration line (public class TuhraServiceImpl) and,
on the TuhraApplicationModuleImpl class name (in the extends
TuhraApplicationModuleImpl clause), select Go to Declaration from the right-click menu. The superclass file will
open in the editor. Verify that prepareSession() was moved. This method will now be available to all application
modules in the same project.

6. Click Save All.

7. Run the application. Log in as TFOX again. Make a change to a record, and check that the audit columns are
updated.

8. Close the browser and stop the server.

Web Application Security – Loading Audit Columns Koletzke and Mills

 8

What Did You Just Do?
You wrote code in the application layer to call the security_pkg.set_security_context procedure so the logged-in user name
would be placed in the application context and the INSERT and UPDATE trigger could write the proper user name into the
table’s audit columns. You did this by overriding and adding functionality to a framework method, which is called as the
database session is established. Then you tested this code and moved the method to the framework class so that all
application modules in the same project will be able to take advantage of it.

Tip
Should you wish to share this code among projects, you can
create a cross-application framework file that extends the
ADF class. The new cross-application framework file would
be distributed in a library that you attach to each Model
project you create. Your project-level framework class would
then subclass the cross-application framework class.

You could also implement Virtual Private Database (VPD) features that restrict a user’s access to specific rows. The
technique just described writes the logged-in user name to the application context. You can write functions that return
WHERE clause predicates using the user name in the context to restrict rows. You then attach the functions to tables by
setting up policies, definitions that cause a policy function to be executed when any SELECT statement is issued to its
attached table. More information about VPD can be found in the Oracle Application Developer’s Guide–Fundamentals,
available in the Oracle database documentation.

