
An Extensible Materialized View
Architecture

NYOUG Meeting
September, 2006

Claudio Fratarcangeli
Adept Technology Inc.

claudiof@computer.org

To appear in SELECT Journal, 4th Quarter 2006

Oracle Materialized Views

• Replicate and transform data from one set
of tables to another

• Materialized view is target table in
copy/transformation process

• Changes to source(master) tables
captured in log tables via triggers on
master tables

Oracle Materialized Views

• Information in log tables used to
incrementally refresh the materialized
views

• Materialized view based on one or more
master tables

• Materialized view and master tables can
be in different databases

• Transformation logic based upon a query
defined against the master tables

Limitations of Oracle Materialized
Views

• Support for incremental refresh is limited.
• Many restrictions on the nature of the defining query in

order to support incremental refresh.
• Restrictions on the defining query for incremental refresh

vary depending upon whether or not the master tables
and materialized view are in the same database or in
different databases.

• Complex materialized views with joins require use of
ROWID based materialized view logs. This makes it
impossible to reorganize (i.e. to defragment) a
materialized view table without doing a full refresh.

Limitations of Oracle Materialized
Views

• Incremental refresh query plans can be very
inefficient for complex defining queries.
– For example, materialized views with remote masters

and subqueries are very inefficient when the level of
nesting of subqueries is two or more.

• Limited ability to tune refresh queries generated
by Oracle
– Alter optimization parameters
– Alter stored table and index statistics

Limitations of Oracle Materialized
Views

• If the materialized view becomes out of synch
with the master because of media failure
– Full refresh must be performed to resynchronize the

materialized view with the master.
– No capability to automatically and efficiently

incrementally resynchronize materialized view with
master

• No statistics are recorded indicating number of
rows updated, deleted, inserted during a fast
refresh.

Workarounds to Oracle
Materialized View Limitations

• Create nested intermediate materialized views
that can be fast refreshed
– Requires additional space for the intermediate

materialized views.
– Full and delta refreshes require extra time because

multiple materialized views must be refreshed.
– Added complexity and time to recover from media

failure. Need to restore and refresh intermediate
materialized views as well as the target materialized
view.

Model Refresh/Transformation
Architecture

• Modeled after Oracle materialized views
• Suited to efficient movement and

transformation of large volumes of data
• Moves all changes that happened since

last refresh in bulk
• Overhead at source due to triggers on

master tables
– Reasonable tradeoff for increased refresh

speed

Features of Model Architecture
Borrows from Materialized Views

• Concept of materialized view is supported
• Changes to master tables are captured via

triggers in log tables.
• Fast incremental refresh supported
• Refresh Groups supported

– Atomic refresh of a group of materialized
views

Features of Model Architecture not
found in Oracle Materialized Views

• Fast Incremental refresh of arbitrarily complex
materialized views

• Choices for transformation logic:
– A single query against a set of master tables
– An arbitrarily complex stored procedure.

• Declarative specification of transformation logic for
typical transformations

• Incremental resynch of materialized view with master in
case of media failure. No full refresh required.

• Materialized view may be a table in a non-Oracle
database.

Features of Model Architecture Not
found in Materialized Views

• The master table logs store only primary
key column(s) of inserted, updated, or
deleted rows and a small fixed number of
control columns.
– Non-key column values are not stored

• Low space consumption in log tables
• Inserts into log tables are efficient

– Master table reorganizations do not disrupt
replication

Limitations of Model Architecture

• Master table triggers add overhead although
only PK column values are stored

• Direct path loads on masters requires
application to explicitly insert rows into log tables
to support fast refresh.
– Oracle doesn’t support fast refresh for direct path

loads into remote master tables at all.
• All master tables for a single materialized view

must reside on the same database

Fast Refresh: Identifying
Changed Rows

• Identify rows updated, deleted, inserted in
master table(s) since time of last refresh

• Record timestamp of last refresh in log
table along with primary key values

• Problem:
– In trigger we store timestamp of DML

operation on master table
– Instead we really need to store timestamp at

time of commit of DML operation

DML Timestamp Versus Commit
Timestamp

Example: 2 concurrently executing transactions
– Transaction 1: makes changes to a master table,

DEPT
– Transaction 2: Concurrently refreshes a materialized

view based on DEPT
• Timestamp of most recent refresh of DEPT is

stored in a catalog table
• Assume DEPT was last refreshed at time, T80

DML Timestamp Scenario

Time Transaction 1 Transaction 2

T100 Update DEPT row.
Row inserted into log table

with timestamp, T100.
T103 Records the current timestamp,

T103, in a catalog table. We
will use this timestamp to
identify newly inserted log table
rows the next time we do a
refresh.

T104 Fetch log table rows with
timestamp > T80 (time of last
refresh).

For each log table row retrieved
propagate changes to
materialized view table and
commit

T105 Commits

DML Timestamp Versus Commit
Timestamp Scenario

• During next refresh we fetch log table rows
with timestamp > T103

• T103 is timestamp of most recent refresh
• Log table row inserted at time T100 will

not be picked up because T100 < T103
• Log table row inserted at time T100 was

also not picked up in prior refresh
• We never replicate update performed by

Transaction 1 at T100

Commit Timestamp
• Store commit SCN (System Change Number) instead of

DML timestamp in log table row
• Oracle built-in returns commit SCN for current

transaction
– USERENV(‘COMMITSCN’)
– Can only be invoked once per transaction and stored in a single

column in a single row
• Oracle initially stores a place holder in row/column
• Oracle remembers what row/column placeholder was

stored
• At commit time Oracle goes back to row/column and sets

it to the actual commit SCN of current transaction

Commit Timestamp: Multiple Rows Updated
Per Transaction

• Problem:
– Can only store commit SCN in one log table row

• Solution:
– Store SCN in a separate table, SCN_HISTORY,

along with current tranasaction_id
– Only one row inserted into SCN_HISTORY per

transaction
– Store transaction_id in log table rows
– Built-in returns local transaction id:

• DBMS_TRANSACTION.LOCAL_TRANSACTION_ID

Commit Timestamp: Multiple Rows
Updated Per Transaction

Table: DEPT_LOG Table
TRANSACTION_ID VARCHAR2(100) (PK)
DEPT_NO NUMBER (PK)

Foreign key: TRANSACTION_ID
references SCN_HISTORY.TRANSACTION_ID

Table: SCN_HISTORY
TRANSACTION_ID VARCHAR2(100) (PK)
COMMIT_SCN NUMBER (UNIQUE KEY)

Commit SCN

DEPT_LOG Table:

TRANSACTION_ID DEPT_NO
10.40.30 40
10.40.30 53
10.40.30 60

SCN_HISTORY Table:

TRANSACTION_ID COMMIT_SCN
10.40.30 9900

Commit SCN Scenario
Time Transaction 1 Transaction 2
T1 Updates DEPT row

Row inserted into DEPT_LOG
with transaction_id, 10.40.30

Row inserted into SCN_HISTORY
with transaction_id, 10.40.30

and
USERENV(‘COMMIT_SCN’)

T3 Records the current system SCN,
9890, in a catalog table.

T4 Fetch DEPT_LOG rows with
COMMIT_SCN > last refresh SCN.

Update materialized view table.
Commit

T5 Commits. Oracle automatically
updates the COMMIT_SCN

Commit SCN Scenario

• Most recent refresh SCN stored in catalog
for DEPT is 9890

• Commit SCN, 9900, is greater than 9890
• Next time we do refresh, log row created

at time T1, will be retrieved

Oracle 10G: ORA_ROWSCN

• Pseudo-column, ORA_ROWSCN,
available in all tables

• Contains upper bound estimate of the
commit SCN for a row in any table.

• Eliminates need to explicitly store
transaction_id in log table and to store
Commit SCN in SCN_HISTORY table.

Extensible Framework
Materialized View Framework

• Standard materialized view refresh functionality
is built into the framework
– Typical types of transformations
– Concurrency control
– Keeping track of last refresh SCN in catalog tables
– Other bookkeeping tasks

• Non-standard functionality is also supported:
– Custom written refresh procedures can be plugged

into the framework to support arbitrarily complex
types of transformations

Service Provider Interface (SPI) for
Custom Refresh Logic

• SPI is a standard call interface that must be
supported by a custom written refresh procedure

• A custom written refresh procedure must support
the following parameters:
– Materialized view name (INPUT)
– Master database link name (INPUT)
– Last refresh SCN (INPUT)
– Number of rows inserted (OUTPUT)
– Number of rows updated (OUTPUT)
– Number of rows deleted (OUTPUT)

Custom Refresh Procedure

• Uses master database link name to connect to master
database

• Uses last refresh SCN to retrieve master log table rows
inserted since last refresh

• Fetches data from master tables based upon rows found
in log tables and performs custom refresh logic updating
target materialized view

• Updates 3 output parameters with rows processed
during refresh

• Framework records row counts in a log and records SCN
of current refresh in a catalog table to be used during
next refresh cycle.

Meta-Data Maintained by
Framework

• Schema.table_name of materialized view.
• Name of custom written refresh procedure (optional)
• Defining query for the materialized view (if standard

refresh functionality is used)
• Last refresh SCN for the materialized view.
• List of master tables and database link pointing to

master table database.
• Logical foreign keys in the materialized view table that

reference primary key columns of master tables.
• For each master table an indication of whether or not the

join to the master table in the defining query is an outer
or inner join.

Meta Data about Master Tables
Maintained by Framework

• Schema.table_name
• List of materialized views and their

locations that reference the master table.
• For each referencing materialized view,

the last refresh SCN of the materialized
view.

• Name of log table.
• Primary key of master table.

Refresh Control Logic
• Start a serializable transaction.
• Retrieve and lock meta-data about the

materialized view and its master tables
– Lock meta data about materialized view in exclusive

mode
– Lock meta data about master table in share mode

• Obtain and save in meta-data repository the
current SCN at the master site using
– SYS.DBMS_FLASHBACK.GET_SYSTEM_CHANGE

_NUMBER
– This becomes last refresh SCN to be used during

next refresh

Refresh Control Logic (continued)

• Invoke the refresh procedure passing in the last
refresh SCN and master database link as
arguments

• Record statistics about the refresh including
number of rows processed and duration.

• Commit the transaction releasing the locks on
the meta-data.

Refresh Logic for a Materialized
View Consisting of Joins

• Materialized view is defined as a join
query among master tables

• Assumptions:
– All joins among master tables must be equi-

joins.
– There must exist a column in the materialized

view for each join column referenced in an
equi-join predicate between master tables.

– An actual Oracle view exists representing the
defining query for the materialized view.

Refresh Logic for a Materialized
View Consisting of Joins: Steps

• Identify rows from the log of each master that
have been created since the last refresh SCN.

• For each newly created master log row:
– Identify the primary key column(s) value(s) of the

materialized view rows that might need to be updated,
deleted, or inserted.

– Simplifies the task of identifying the rows that need to
be deleted from the materialized view table and the
rows from the defining view query that must be
merged into the materialized view table.

• For each primary key value from prior step,
perform the required update, insert, or delete.

Sample Master Tables
• Table: EMP

– Columns:
• EMP_ID (PK)
• NAME
• DEPT_ID (FK references DEPT.DEPT_ID)
• COMPANY_SITE_ID (FK references

COMPANY_SITE.SITE_ID)
• Table: DEPT

– Columns:
• DEPT_ID (PK)
• NAME

• Table: COMPANY_SITE
– Columns:

• SITE_ID (PK)
• NAME

Master log tables

• Table: EMP_CLOG
– Columns:

• TRANSACTION_ID (PK)
• EMP_ID (PK)

• Table: DEPT_CLOG
– Columns:

• TRANSACTION_ID (PK)
• DEPT_ID (PK)

• Table: COMPANY_SITE_CLOG
– Columns:

• TRANSACTION_ID (PK)
• SITE_ID (PK)

Materialized view table

• Table: EMP_MVIEW
– Columns:

• EMP_ID (PK)
• EMP_NAME
• DEPT_ID (Logical FK references DEPT.DEPT_ID)
• DEPT_NAME
• COMPANY_SITE_ID (Logical FK references

COMPANY_SITE.SITE_ID)
• COMPANY_SITE_NAME

Oracle View Containing Defining Query of
Materialized View

View: EMP_MVIEW_VW

SELECT e.emp_id, e.name emp_name, e.dept_id,
d.name dept_name, e.company_site_id,
c.name company_site_name

FROM
emp e
JOIN

dept d ON
(e.dept_id = d.dept_id)

LEFT OUTER JOIN
company_site c ON

(e.company_site_id = c.site_id)

Distributed Database
Considerations

• Strategy to work around limitations of Oracle’s
distributed query optimizer
– Create views dynamically on master database site
– Use a local temp table to store primary keys of

materialized view rows to update,insert,delete
• Temp Key Table on Local Site:

– EMP_MVIEW_KEY
• Columns:

– EMP_ID number
– OPERATION_TYPE varchar(2)

Inner Join Master Tables

• Changes to inner join tables can cause inserts,
updates, or deletes in materialized view
– Updates,inserts,deletes of EMP or DEPT can cause

updates,deletes, inserts of rows in EMP_MVIEW_VW
• Changes to outer join tables can only cause

updates
– Updates,inserts,deletes of COMPANY_SITE in

EMP_MVIEW_VW can only cause rows in
EMP_MVIEW_VW to be updated

Oracle View: EMP_MVIEW_KEY_VW

View to retrieve PK’s of materialized view rows to be
inserted/updated because of operations on DEPT or
EMP

SELECT s.commit_scn, v.emp_id
FROM scn s, dept_clog l, emp_mview_vw v
WHERE s.transaction_id = l.transaction_id

AND l.dept_id = v.dept_id
UNION
SELECT s.commit_scn, v.emp_id
FROM scn s, emp_clog l, emp_mview_vw v
WHERE s.transaction_id = l.transaction_id

AND l.emp_id = v.emp_id

Inner Join Master Tables

• Get PK’s of rows to be inserted or updated in
materialized view:

INSERT INTO emp_mview_key (emp_id, operation_type)
SELECT DISTINCT emp_id, 'UI'
FROM emp_mview_key_vw@masterdb
WHERE commit_scn > :last_refresh_scn

• The operation_type is set to 'UI' indicating update or
insert.

• :last_refresh_scn is the last refresh SCN for the
EMP_MVIEW materialized view.

Identify Rows to be Deleted from
Materialized View

• Cannot find PK of rows to delete on
master database because master table
rows are gone

• Query materialized view itself to find PK’s
of rows to be deleted

• Use PK’s of master tables found in log
tables to query materialized view

Identify Rows to be Deleted from Materialized View

INSERT INTO emp_mview_key (emp_id, operation_type)
SELECT emp_id, ‘D’
FROM emp_mview
WHERE dept_id in
(SELECT /*+ no_merge(a) */ *
FROM
(SELECT DISTINCT dept_id
FROM dept_clog@master_db
WHERE transaction_id IN
(SELECT transaction_id
FROM scn@master_db
WHERE commit_scn > :last_refresh_scn))) a

UNION
SELECT emp_id, ‘D’ FROM emp_mview WHERE emp_id IN ….
MINUS
SELECT emp_id, ‘D’
FROM emp_mview_key

Identify Rows to be Deleted from
Materialized View

• MINUS excludes emp_id’s inserted in prior
step which we know to be updates or
inserts

• Embed the remote subqueries for each
query fragment in an in-line view

• NO_MERGE hint forces the optimizer to
execute the entire subquery at the remote
site.

Outer Join Master Tables

• Changes to outer join master table rows
can only cause rows to be updated

• Query materialized view by PK’s of outer
join master tables found in logs

• This is why we require columns
corresponding to primary key’s of master
tables to exist in our materialized view

Identify Rows to be Updated because of Outer Join Master
Tables

INSERT INTO emp_mview_key (emp_id, operation_type)
SELECT emp_id, ‘UI’
FROM emp_mview
WHERE company_site_id IN
(SELECT /*+ no_merge(a) */ *
FROM
(SELECT DISTINCT site_id
FROM company_site_clog@master_db
WHERE transaction_id IN
(SELECT transaction_id
FROM scn@master_db
WHERE commit_scn > :last_refresh_scn))) a

MINUS
SELECT emp_id, ‘UI’
FROM emp_mview_key

Apply Changes to Materialized View
Table

• PK’s of all rows to be updated, inserted, deleted and
operation type exists in EMP_MVIEW_KEY table

• Create following view on master site for efficiency:

CREATE VIEW emp_mview_upsert AS
SELECT *
FROM emp_mview_vw
WHERE emp_id IN
(SELECT emp_id
FROM emp_mview_key@mview_db
WHERE operation_type = 'UI')

Merge Updates and Inserts into Materialized View

MERGE INTO emp_mview mv
USING emp_mview_upsert@master_db v
ON (mv.emp_id = v.emp_id)
WHEN MATCHED THEN
SET mv.emp_name = v.emp_name,

mv.dept_id = v.dept_id,
mv.dept_name = v.dept_name,
mv.company_site_id = v.company_site_id,
mv.company_site_name = v.company_site_name

WHEN NOT MATCHED THEN
INSERT (mv.emp_id, mv.emp_name, mv.dept_id, v.dept_name,

mv.company_site_id, mv.company_site_name)
VALUES

(v.emp_id, v.emp_name, v.dept_id, v.dept_name,
v.company_site_id, v.company_site_name)

Delete Rows from Materialized
View

DELETE FROM emp_mview
WHERE emp_id IN
(SELECT emp_id
FROM emp_mview_key
WHERE operation_type = 'D')

Resynch After Media Failure on
Materialized View Site

• Media failure on materialized view database
requires restore of old backup

• Backup was taken prior to last refresh
• Restored backup is out of synch with last refresh

SCN stored in catalog on master database
• Normally a full refresh is required to resynch

materialized view with masters
• In our case an incremental resynch is possible

Incremental Resynch After Media Failure on
Materialized View Site

• During refresh compare last refresh scn’s stored
in materialized view database catalog and
master database catalog

• If last refresh SCN on materialized view site is
earlier than last refresh SCN on master site then
– Use the earlier last refresh SCN from materialized

view site to do refresh
• We reprocess master log records that were

processed prior to restore of old backup
• As long as old log records still exist this will work
• Materialized view is brought back in synch with

master tables

Preserving Data Consistency for
Master Tables During Refresh

• Updates on master tables can occur
during refresh

• Consistency of data in master tables can
change during refresh

• Would like to logically freeze contents of
master tables during refresh

• 2 ways to do this:
– Serializable transactions
– Flashback Query

Preserving Data Consistency

Time User 1: Refresh Transaction User 2: Update transaction

T1 Read master table DEPT

T2 Delete a row from DEPT read by
User 1 at time, T1.

Commit
T3 Read detail table EMP

T4 Update target materialized
view based on DEPT and
EMP.

Commit

EMP rows refreshed without related master DEPT row.

Serializable Transaction

• A read-only transaction that also allows
updates

• A logical snapshot of database is taken at
start of transaction

• All reads occur against the logical
snapshot

• Updates performed by other transactions
are not seen

Flashback Query

• Create a logical snapshot of database as
of a specific point in time
– Reads occur against the logical snapshot

• Syntax:
– SELECT * FROM DEPT AS OF SCN 234
– 234 is the SCN of the last refresh

Preserving Data Consistency of Materialized
Views During Refresh

• Multiple related materialized views could be
refreshed as a group but in different transactions

• Refresh a set of related materialized views in
parallel in different transactions

• Changes to related materialized views could be
committed at different times

• Readers could see an inconsistent view of data
across different materialized views during
refresh

Preserving Data Consistency of Materialized
Views During Refresh

• Use flashback query
• Record current SCN of materialized view

database in a table at the start of each refresh.
• Readers use the stored SCN to perform

flashback queries against materialized views
during refresh
– SELECT * FROM … AS OF SCN 433
– 433 is SCN just before start of refresh

• Flashback query is only used while a refresh is
happening

Alternatives to Materialized Views:
Oracle Streams

• Propogate individual low level operations
captured in redo log

• Much less efficient than bulk movement of
data changes captured in master table
logs

Alternatives to Materialized Views:
Oracle Data Capture

• Changes to master tables are captured in change tables
• Both before and after images of rows are stored in

change tables. This incurs a fair amount of overhead.
• Data in change tables is used to replicate data to target

table(s).
• Synchronous Mode:

– Changes to master tables captured in change tables via triggers
– Similar to Materialized Views

• Asynchronous Mode:
– Oracle streams is used to mine redo log and store changes in

change tables.

	An Extensible Materialized View Architecture
	Oracle Materialized Views�
	Oracle Materialized Views�
	Limitations of Oracle Materialized Views
	Limitations of Oracle Materialized Views
	Limitations of Oracle Materialized Views
	Workarounds to Oracle Materialized View Limitations
	Model Refresh/Transformation Architecture�
	Features of Model Architecture Borrows from Materialized Views
	Features of Model Architecture not found in Oracle Materialized Views
	Features of Model Architecture Not found in Materialized Views
	Limitations of Model Architecture
	Fast Refresh: Identifying Changed Rows�
	DML Timestamp Versus Commit Timestamp
	DML Timestamp Scenario
	DML Timestamp Versus Commit Timestamp Scenario
	Commit Timestamp
	Commit Timestamp: Multiple Rows Updated Per Transaction
	Commit Timestamp: Multiple Rows Updated Per Transaction
	Commit SCN
	Commit SCN Scenario
	Commit SCN Scenario
	Oracle 10G: ORA_ROWSCN
	Extensible Framework Materialized View Framework�
	Service Provider Interface (SPI) for Custom Refresh Logic�
	Custom Refresh Procedure�
	Meta-Data Maintained by Framework
	Meta Data about Master Tables Maintained by Framework
	Refresh Control Logic
	Refresh Control Logic (continued)
	Refresh Logic for a Materialized View Consisting of Joins�
	Refresh Logic for a Materialized View Consisting of Joins: Steps�
	Sample Master Tables
	Master log tables�
	Materialized view table
	Oracle View Containing Defining Query of Materialized View
	Distributed Database Considerations�
	Inner Join Master Tables�
	Oracle View: EMP_MVIEW_KEY_VW
	Inner Join Master Tables�
	Identify Rows to be Deleted from Materialized View
	Identify Rows to be Deleted from Materialized View
	Identify Rows to be Deleted from Materialized View�
	Outer Join Master Tables�
	Identify Rows to be Updated because of Outer Join Master Tables
	Apply Changes to Materialized View Table�
	Merge Updates and Inserts into Materialized View
	Delete Rows from Materialized View
	Resynch After Media Failure on Materialized View Site
	Incremental Resynch After Media Failure on Materialized View Site�
	Preserving Data Consistency for Master Tables During Refresh
	Preserving Data Consistency
	Serializable Transaction
	Flashback Query
	Preserving Data Consistency of Materialized Views During Refresh�
	Preserving Data Consistency of Materialized Views During Refresh�
	Alternatives to Materialized Views: Oracle Streams
	Alternatives to Materialized Views: Oracle Data Capture

