
Copyright 2006 Steven Feuerstein - Page 1

Six Simple Steps
to

Unit Testing
Happiness

Steven Feuerstein
steven.feuerstein@questcom

www.unit-test.com
www.quest.com

Copyright 2006 Steven Feuerstein - Page 2

Writing software is.....

Copyright 2006 Steven Feuerstein - Page 3

Testing software is.....

Copyright 2006 Steven Feuerstein - Page 4

Buggy software is....

Embarrassing
Expensive
Deadly

Copyright 2006 Steven Feuerstein - Page 5

Buggy software is embarrassing

There can be as many as 20 to 30 bugs per 1,000
lines of software code. —Sustainable Computing
Consortium
32% of organizations say that they release software
with too many defects.—Cutter Consortium
38% of organizations believe they lack an adequate
software quality assurance program.—Cutter
Consortium
27% of organizations do not conduct any formal
quality reviews.—Cutter Consortium
Developers spend about 80% of development costs
on identifying and correcting defects.—The National
Institute of Standards and Technology

Copyright 2006 Steven Feuerstein - Page 6

Buggy software is expensive -
$60B per year in US alone!?

JUNE 25, 2002 (COMPUTERWORLD) -
WASHINGTON -- Software bugs are costing the
U.S. economy an estimated $59.5 billion each
year. Of the total $59.5 billion cost, users
incurred 64% of the cost and developers 36%.
There are very few markets where "buyers are
willing to accept products that they know are
going to malfunction," said Gregory Tassey, the
National Institute of Standards and Technology
senior economist who headed the study. "But
software is at the extreme end in terms of errors
or bugs that are in the typical product when it is
sold."
Oh, yes and Y2K: $300B? $600B?

Copyright 2006 Steven Feuerstein - Page 7

Buggy software is deadly

2003 Software failure contributes to power outage across
the Northeastern U.S. and Canada, killing 3 people.
2001 Five Panamanian cancer patients die following
overdoses of radiation, amounts of which were determined
by faulty use of software.
2000 Crash of a Marine Corps Osprey tilt-rotor aircraft
partially blamed on “software anomaly" kills four soldiers.
1997 Radar that could have prevented Korean jet crash
(killing 225) hobbled by software problem.
1995 American Airlines jet, descending into Cali, Colombia,
crashes into a mountain, killing 159. Jury holds maker of
flight-management system 17% responsible. A report by
the University of Bielefeld in Germany found that the
software presented insufficient and conflicting information
to the pilots, who got lost.

Copyright 2006 Steven Feuerstein - Page 8

How do we avoid buggy software?

Clear and accurate requirements
Careful design
Excellent tools
Best practices, standards, guidelines (that is,
follow them)
Code review
Thorough testing Uh oh...

the world is in
big trouble.

Copyright 2006 Steven Feuerstein - Page 9

Wouldn't it be great if...

It was easy to construct tests
– An agreed-upon and effective approach to test construction that

everyone can understand and follow
It was easy to run tests
– And see the results, instantly and automatically.

Testing were completely integrated into my
development, QA, and maintenance processes
– No program goes to QA until it has passed a battery of tests
– Anyone can maintain with confidence, because my test suite

automatically validates my changes

Copyright 2006 Steven Feuerstein - Page 10

Different types of testing

There are many types of testing: unit tests,
functional/system tests, stress tests...
A "unit test" is the test of a single unit of
code.
Unit tests are the responsibility of developers
- that is, us, the people in this room.
– Not fundamentally a job for the QA department, which

generally focuses on functional and system tests.

Copyright 2006 Steven Feuerstein - Page 11

Truth or Dare

How do you (or your team) unit test
your PL/SQL code today?
– We use automated testing software.
– We have a formal test process that we each

follow, but otherwise a manual process.
– Everyone does their own thing and we

hope for the best.
– Our users test our code.

?
?

?

?

Copyright 2006 Steven Feuerstein - Page 12

Unit testing reality

Let's face it: we PL/SQL developers don't spend
nearly enough time unit testing our code.
– For the most part, we run a script that displays output on

the screen and then we stare at all until we decide if the test
succeeded or failed.

There are some understandable reasons:
– Very few tools and utilities have been available, to date, for

PL/SQL testing.
– Managers don't give us enough time to prepare and

execute tests.

Copyright 2006 Steven Feuerstein - Page 13

Typical Testing

DBMS_OUTPUT.PUT_LINE - unit testing
mechanism of choice?

betwnstr.sf
betwnstr.tst

BEGIN
DBMS_OUTPUT.PUT_LINE (betwnstr (NULL, 3, 5, true));
DBMS_OUTPUT.PUT_LINE (betwnstr ('abcdefgh', 0, 5, true));
DBMS_OUTPUT.PUT_LINE (betwnstr ('abcdefgh', 3, 5, true));
DBMS_OUTPUT.PUT_LINE (betwnstr ('abcdefgh', -3, -5, true));
DBMS_OUTPUT.PUT_LINE (betwnstr ('abcdefgh', NULL, 5, true));
DBMS_OUTPUT.PUT_LINE (betwnstr ('abcdefgh', 3, NULL, true));
DBMS_OUTPUT.PUT_LINE (betwnstr ('abcdefgh', 3, 100, true));

END;

Copyright 2006 Steven Feuerstein - Page 14

Problems with Typical Testing

Almost entirely ad hoc
– No comprehensive effort to compile test cases
– No infrastructure to record cases and administer tests
Difficult to verify correctness
– Non-automated verification is slow and error-prone.
Relies on the user community to test
– Since we are never really sure we’ve tested properly, we rely

on our users (or, we are lucky, the QA department) to finish
our job

There has got to be a better way!

Copyright 2006 Steven Feuerstein - Page 15

Moving towards a Better Way

Change from within: your code will not test itself.
– You must accept the responsibility and then be disciplined

(sigh...that's not fun at all).
– Commit to testing and watch the way you write your code

change.
Change from without: new possibilities are on
the horizon!
– utPLSQL and Ounit
– Quest Code Tester for Oracle

Ah, but what about those six, simple steps?

http://utplsql.sourceforge.net/

http://www.unit-test.com

Copyright 2006 Steven Feuerstein - Page 16

Six Simple Steps to Unit Testing Happiness

1. Describe fully the required functionality of the
program.
2. Elaborate the test cases for the program.
3. Define the header of the program (name, parameter
list, return value).
4. Build test code that implements all test cases.
5. Write the program unit.
6. Test, debug, fix, test, debug, fix, test, debug....
Then...repeat steps 3-6 for each enhancement and
bug report.

Copyright 2006 Steven Feuerstein - Page 17

Describe required functionality

I need a variation of SUBSTR that will return the
portion of a string between specified start and end
locations.
Some specific requirements:
– It should work like SUBSTR as much as makes sense (treat a start

location of 0 as 1, for example; if the end location is past the end of
the string, the treat it as the end of the string).

– Negative start and end should return a substring at the end of the
string.

– Allow the user to specify whether or not the endpoints should be
included.

Copyright 2006 Steven Feuerstein - Page 18

Elaborate the test cases

Before I write any code, I will come up with as many of
the test cases as possible -- and write my test code.
– This is known as "test-driven development". TDD is a very hot topic

among developers and is associated with Agile Software
(http://agilemanifesto.org/) and Extreme Programming.

Putting aside the fancy names and methodologies, TDD
makes perfect sense -- when you stop to think about it.

If you write your program before you define your
tests, how do you know you when you're done?

TNT or TDD?

And if you write your tests afterward, you are likely
to prejudice your tests to show "success."

Copyright 2006 Steven Feuerstein - Page 19

Brainstorm the test cases

Even a simple program will have many test
cases!
– You don't have to think of every one before you

implement your program and start your testing.
– You should aim at least for a "representative" sampling.

But where do you store/define the test cases?
– You can certainly put the information in and work from a

document or spreadsheet.
– Best of all, however, is to link the test case definitions

as tightly as possible to the code.

Copyright 2006 Steven Feuerstein - Page 20

Some of the test cases for BETWNSTR

Start and end within the string ("normal" usage)
Start of 0
End past end of string
Null string, string of single character, 32767 len
character
Null start and/or end
Negative start and end
Start larger than end (positive and negative)
Variations of the above with different inclusive values

Copyright 2006 Steven Feuerstein - Page 21

Define the program specification

My specification or header should be compatible
with all requirements.
– I also self-document that the function is deterministic: no

side effects.
I can (and will) now create a compile-able stub
for the program. Why do that?
– Because I can then fully define and implement my test code!

FUNCTION betwnstr (
string_in IN VARCHAR2

, start_in IN PLS_INTEGER
, end_in IN PLS_INTEGER
, inclusive_in IN BOOLEAN DEFAULT TRUE

)
RETURN VARCHAR2 DETERMINISTIC

betwnstr0.sf

Copyright 2006 Steven Feuerstein - Page 22

Testcases and Test Code

The challenge (terror?) of the blank screen....
– How do I define the test cases?
– How do I set up those tests?
– How do I verify the results?

Let's see how the Quest Code Tester for
Oracle helps me tackle these challenges.
– Define and maintain your test cases through a graphical

interface, then let it do all the work.

Copyright 2006 Steven Feuerstein - Page 23

Write the program.

Now that I
know I can test
the program, I
can start
implementing
betwnstr...
Finally!

CREATE OR REPLACE FUNCTION betwnstr (
string_in IN VARCHAR2

, start_in IN PLS_INTEGER
, end_in IN PLS_INTEGER
, inclusive_in IN BOOLEAN DEFAULT TRUE

)
RETURN VARCHAR2 DETERMINISTIC

IS
BEGIN

RETURN (SUBSTR (
string_in

, start_in
, end_in - start_in + 1)
);

END;betwnstr1.sf

First version of "between string"

Copyright 2006 Steven Feuerstein - Page 24

Test, debug, fix, test, debug, fix, test, debug...

With a test script in place, I can quickly and easily
move back and forth between running my program,
identifying errors, debugging and fixing the code,
running the program again.
I also then have my test process and regression
test in place so that as I make enhancements or fix
bugs, I can fall back on this foundation.
– It is critical that you maintain your test case definitions and test

code as your program evolves.
– And update those first -- before you change the program!

Copyright 2006 Steven Feuerstein - Page 25

Change Your Testing Ways

Qute (and even utPLSQL) can make a
dramatic difference in your ability to test and
your confidence in the resulting code.
Build a comprehensive "library" of unit tests
as you build your application
– These tests and all their test cases can be passed on to

other developers
– Anyone can now enhance or maintain the code with

confidence. Make your changes and run the tests. If you
get a green light, you're OK!

Copyright 2006 Steven Feuerstein - Page 26

Testing: Baby steps better than paralysis.

Unit testing is an intimidating process.
– You are never really done.
– You have to maintain your test code along with your

application code.
But every incremental improvement in testing
yields immediate and long-term benefits.
– Don't worry about 100% test coverage.
– Download Quest Code Tester for Oracle and give it a try!

• Special pre-release version free at least through January 2007!

www.unit-test.com

	Writing software is.....
	Testing software is.....
	Buggy software is....
	Buggy software is embarrassing
	Buggy software is expensive - �$60B per year in US alone!?
	Buggy software is deadly
	How do we avoid buggy software?
	Wouldn't it be great if...
	Different types of testing
	Truth or Dare
	Unit testing reality
	Typical Testing
	Problems with Typical Testing
	Moving towards a Better Way
	Six Simple Steps to Unit Testing Happiness
	Describe required functionality
	Elaborate the test cases
	Brainstorm the test cases
	Some of the test cases for BETWNSTR
	Define the program specification
	Testcases and Test Code
	Write the program.
	Test, debug, fix, test, debug, fix, test, debug...
	Change Your Testing Ways
	Testing: Baby steps better than paralysis.

