
©2006 Dulcian, Inc.

"Thick Database" Approach
to Web Development

Dr. Paul Dorsey
Dulcian, Inc.

www.dulcian.com

NYC Metro Area
Oracle Users Group Meeting

©2006 Dulcian, Inc.

Four Messages

1. Thick database approach is the #1 critical success
factor for web architecture
2. Use trees for UI navigation
3. Views for each page
4. 100% is possible.

100% of rules in the database
100% generation

©2006 Dulcian, Inc.

Conventional Wisdom

No logic in the database (database-independent)
Database may change.
A database is just a persistent copy of the classes.

Place all rules in the middle tier.
Write in Java

Class structure is independent of database
structure.

Integrate using Hibernate or TopLink

©2006 Dulcian, Inc.

Conventional Wisdom =
Project Failure

Standard OO Architecture leads to…
Too many round trips to the database
Too many queries – no bind variables
Too much code
Hard to manage complexity
Redeploying to the middle tier is harder than redeploying to
the database.

Results
It looks like it will work – until stress testing.
TERRIBLE performance

It should be possible to get good performance.

©2006 Dulcian, Inc.

“Thick Database” Defined

“Move” code into the database.
Use Oracle database views based on “Pages.”
Use database INSTEAD OF triggers to control
DML.
Move logic into the database.

Validation
Page Navigation

©2006 Dulcian, Inc.

Conventional Wisdom vs.
Thick Database

Client App
Server

Database

Conventional Wisdom

Thick database

Data

Data

©2006 Dulcian, Inc.

Thick Database Advantages

Leverage Oracle talent (little retraining)
Use database for heavy lifting
J2EE is an evolving environment

JSP to JSF
Fusion or open-source?

Less network traffic
Lower risk
Easy to refactor
Less total code

Code partitioning

©2006 Dulcian, Inc.

The Main Ideas

Let the database do what it is good at.
Crunch data

Let UI developers do what they are good at.
Create sophisticated user interfaces

Divide the project cleanly into data and user interface
parts.
The more database skills your shop has, the “thicker”
the database side should be.

A very thick database WILL NOT cause project failure.
A very thin database WILL cause project failure.

We need to work together.

©2006 Dulcian, Inc.

Thick Database Approach

Put everything you can into the database.
Validation logic
Page flow
Tree logic
Object process flow transitions
Screen element display

©2006 Dulcian, Inc.

Thick Database Approach
Advantages

Scales well
Easier development
Requires database skill
Not optimal – but close
Will not kill the project
Uses 50-80% less total code

Nicely partitioned DB and UI

©2006 Dulcian, Inc.

J2EE Highway

BrowserApplication
Server

Firewall

Database

“soda straw”

“super highway”

“water pipe”

©2006 Dulcian, Inc.

Thick Database Ideas (1)

The application is never thrown an error by the
database.
Page flow logic resides in the database.
View-only screens (screen portions) are built
in the database as HTML.
A single row view shows:

Who is logged in
Error message
Current menu selection

©2006 Dulcian, Inc.

Thick Database Ideas (2)

Create 1-2 views (INSTEAD OF triggers) for
each screen.

Cast object collection to a view.
Separate Read-Only and Edit “Views”.

Store error messages in a table.
Use a tree for navigation.

Many fewer screens
Can be driven from the database

©2006 Dulcian, Inc.

Case Study 1

Batch routine
Sales goaling

Database
code
of lines

Java code
of lines

Execution
speed

Database
development
time

Java
develop
ment
Time

Conventional
development

0 10000 20 mins,
reduced to
20 seconds

1 week (SQL
tuning)

6 weeks

Thick
database
development

500 3000 .2 seconds 1 week 1 week

©2006 Dulcian, Inc.

Case Study 2

Two similar OLTP systems
Both built by Dulcian
Bug Tracker

Senior Java team (not Dulcian trained)
Complex Ordering

Thick database concept

©2006 Dulcian, Inc.

Case Study 2
Project Comparison

Complex Ordering
28-screen design

10 screens for
development

Trivial to maintain

Bug Tracker
11 screens
Nightmare to maintain
Locking, timeouts, etc.

©2006 Dulcian, Inc.

Case Study 2
Page Navigation in the Database

Conventional Wisdom
Rats nest page flow diagram

Thick DB
Each pages routes to “dispatcher”
Page flow is a star diagram

©2006 Dulcian, Inc.

Case Study 2
Bug Tracker (25% of total diagram)

©2006 Dulcian, Inc.

Case Study 2
Complex Ordering

©2006 Dulcian, Inc.

Case Study 2
Denormalize Page Views

Each page is one record
Flatten master-detail-detail to single record

100 column table
Strain1Specification1Value
Strain1Specification2Value
Strain2Specification1Value
…

©2006 Dulcian, Inc.

Case Study 2
Complex Order Screen

©2006 Dulcian, Inc.

Case Study 2: Results

Java code
of lines

PL/SQL
code # of

lines

Development
time

Conventional
development

13,000 2,800 6 months V1
6 months V2
6 months V3

Thick
database
development

2300 3,000 6 weeks V1
2 weeks V2

©2006 Dulcian, Inc.

Case Study 3: Super Tree
API-driven
All logic in the database
Keeps copy of tree in the database
APIs

NewTree (type)
Expand (node)
GetMenu (node)
NodeSelect (node)
MenuSelect (menuItem)

Return result actions as XML

©2006 Dulcian, Inc.

©2006 Dulcian, Inc.

Case Study 3
Right-click Leads Working

Fired by application when right-clicking Leads Working
node

api$tree.f_main('14994901', 'GetMenu', -80, 'RecrtrMain')

Result returned from database
<actionSet>
<Menu ID="-80" >

<tran display="Create New Lead" ID="-15240" action="330"
RC_Desk_oid="737003" />

<tranLine ID="-15250" />
<tran display="Power Calling" ID="-15260" action="20" />
<tran display="Mail Merging" ID="-15270" action="20" />
<tran display="E-Mail Merging" ID="-15280" action="20" />

</Menu>
</actionSet>

©2006 Dulcian, Inc.

Case Study 3: Results

Tree UI Control (like SQL Navigator)

Database
code
of lines

Java
code
of lines

StrutsConfig
.xml # of
lines

Database
development
time

Java
develop-
ment Time

Conventional
development

2300 13000 657 2 weeks 6 months

Thick
database
development

3900 2800 98 2 weeks 1 week

©2006 Dulcian, Inc.

Case Study 4:
Thick DB is NOT a Silver Bullet

Version 1 – Java:
Large batch routine
14,000,000 records

100 columns in each record
Each read = 100 SELECTs
(getters)
Each write = 1 insert and
99 UPDATEs (setters)
1 minute per record = 26.5
years (month-end batch) on
a 64 CPU Ultra-Spark

Version 2 – PL/SQL:
Refactor code to the
database.
Use the same wrong
algorithm
Still poor performance

Mindless refactoring to
PL/SQL does not

guarantee success!

©2006 Dulcian, Inc.

100% is Possible
(well at least 99%)

100% of all code in the database
At worst, 1-3 round trips per user interface action
Rules in the application server cause MANY more
round trips.

100% application generation
All of the rules are specified.
All rules are generated or accessed at runtime.

©2006 Dulcian, Inc.

Contact Info
Dr. Paul Dorsey – paul_dorsey@dulcian.com
Dulcian website - www.dulcian.com

Developer Advanced
Forms & Reports
Developer Advanced
Forms & Reports Designer

Handbook
Designer
Handbook

Available now!
Oracle PL/SQL for Dummies

Design Using UML
Object Modeling
Design Using UML
Object Modeling

	"Thick Database" Approach �to Web Development
	Four Messages
	Conventional Wisdom
	Conventional Wisdom = �Project Failure
	“Thick Database” Defined
	Conventional Wisdom vs. � Thick Database
	Thick Database Advantages
	The Main Ideas
	Thick Database Approach
	Thick Database Approach Advantages
	J2EE Highway
	Thick Database Ideas (1)
	Thick Database Ideas (2)
	Case Study 1
	Case Study 2
	Case Study 2 �Project Comparison	
	Case Study 2 �Page Navigation in the Database
	Case Study 2 �Bug Tracker (25% of total diagram)
	Case Study 2 �Denormalize Page Views
	Case Study 2 �Complex Order Screen
	Case Study 2: Results
	Case Study 3: Super Tree
	Case Study 3 �Right-click Leads Working
	Case Study 3: Results
	Case Study 4:�Thick DB is NOT a Silver Bullet
	100% is Possible �(well at least 99%)
	Contact Info

