
<Insert Picture Here>

PL/SQL Enhancements in Oracle Database 11g
Thomas Kyte
Vice President, Oracle Corporation
http://asktom.oracle.com/

The following is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remain at the sole discretion of Oracle.

PL/SQL Enhancements
in Oracle Database 11g

• Every new major release of Oracle Database brings
PL/SQL enhancements in these categories
• Transparent and “knob-controlled” performance

improvements

• New language features that you use in your programs to get
better performance

• New language features that bring functionality that you earlier
couldn’t achieve, or could achieve only with cumbersome
workarounds

• New language features that improve the usability of
programming in PL/SQL

<Insert Picture Here>

Transparent performance:

DML triggers are faster

DML triggers are faster

• One of our experiments showed

• 25% speed-up for the firing update statement on a table with
a row-level trigger that does DML to another table

• Your mileage may vary!

<Insert Picture Here>

Transparent performance:

Fine Grained Dependency Tracking

The challenge

• View v ends up invalid in 10.2 because we know only
that its dependency parent has changed – at the
granularity of the whole object

create table t(a number)
/
create view v as select a from t
/
alter table t add(Unheard_Of number)
/
select status from User_Objects
where Object_Name = 'V'
/

The challenge

• Same goes for procedure p

create package Pkg is
procedure p1;

end Pkg;
/
create procedure p is begin Pkg.p1(); end;
/
create or replace package Pkg is
procedure p1;
procedure Unheard_Of;

end Pkg;
/
select status from User_Objects
where Object_Name = 'P'

/

Fine Grained Dependency Tracking

• In 11.1 we track dependencies at the level of element
within unit

• so we know that these changes have no consequence

• I classified this as a transparent performance
improvement

• It’s certainly transparent!

• Unnecessary recompilation certainly consumes CPU

• But – recall the “4068” family of errors – this is better
seen as a transparent availability improvement

In-Place Redefinition Improvements

• Fast add column with default value
• Does not need to update all rows to default value

• Invisible Indexes prevent premature use of newly
created indexes

• Online index build with NO pause to DML
• No recompilation of dependent objects when

• Columns added to tables
• Procedures added to packages

• Easier to execute table DDL operations online
• Option to wait for active DML operations instead of aborting

<Insert Picture Here>

Performance “knob”:

Real native compilation

The challenge

• Through 10.2, PL/SQL compiled to a native DLL is
significant faster than PL/SQL compiled for
interpretation by the PVM

• Oracle translates PL/SQL source to C code and
leaves the last step to a 3rd party
C compiler

• BUT… some customers’ religion forbids a C compiler
on a production box!

• AND… other customers’ religion forbids paying to
license a C compiler when they’ve already paid to
license Oracle Database!

Real native compilation

• In 11.1, Oracle translates PL/SQL source directly to
the DLL for the current hardware

• Moreover, Oracle does the linking and loading so that
the filesystem directories are no longer needed

• So PL/SQL native compilation will work out of the box
– and without compromising religion

• Only one parameter remains: the on/off switch,
PLSQL_Code_Type

Real native compilation

• As a bonus, it’s faster!
• Real native compilation is twice as fast as C native

• The Whetstone benchmark runs 2.5x faster as real native
than as C native

• Contrived tests have shown 20x

• The new PL/SQL datatype simple_integer has
semantics that exactly match those of the hardware’s
integer operations
• Has a not null constraint

• Wraps rather than overflowing

• So it’s faster than pls_integer

<Insert Picture Here>

Performance “knob”:

Intra-unit inlining

The challenge

• Helper subprograms are used (as Steven Feuerstein
teaches) to improve understandability

• Often, these are short

• Programmers sometimes agonize over the dilemma:

readability/correctness/maintainability
versus

performance

The challenge

procedure p(Input_String varchar2) is
...
function Found_Another_Word(w out varchar2)
return boolean is ... ;

function Is_Article(w in varchar2)
return boolean is ... ;

begin
while Found_Another_Word(Word) loop
if Is_Article(Word) then
Article_Count := Article_Count + 1;

end if;
end loop;

end p;

The challenge

function Found_Another_Word(w out varchar2)
return boolean is

begin
End_Pos := Instr(v, Space, Start_Pos);
if End_Pos > 0 then
w := Substr(v, Start_Pos, (End_Pos-

Start_Pos));
Start_Pos := End_Pos + 1;
while Substr(v, Start_Pos, 1) = Space loop
Start_Pos := Start_Pos + 1;

end loop;
return true;

else
return false;

end if;
end Found_Another_Word;

Intra-unit inlining

alter procedure p compile
PLSQL_Optimize_Level = 2
reuse settings

/
begin p(:Big_Doc); end;
/
alter procedure p compile
PLSQL_Optimize_Level = 3 -- New in 11.1
reuse settings

/
begin p(:Big_Doc); end;
/

• ~700 milliseconds for level 2

• ~400 milliseconds for level 3

Intra-unit inlining

• Your mileage may vary!

• Using a test taken from the E-Business Suite

• “Flexfields”

• Pure PL/SQL data munging

• Large package with many helper subprograms

• Showed 20% speedup

• Using the PL/SQL Team’s benchmark suite

• Some of the tests have no inlining opportunities

• Showed average of 10% speedup

<Insert Picture Here>

Performance language feature:

SQL & PL/SQL Result Caches

The challenge

• Find the greatest average value of income grouped by
state over the whole population – or some similar
metric

• Huge number of rows yield a few or one row

• The data changes fairly slowly (say every hour) but
the query is repeated fairly often (say every second)

The challenge

function f1 return t1%rowtype is
r t1%rowtype;

begin
select a, m
into r.a, r.b
from (
select a, sb m from (
select a, Sum(b) sb from t1
group by a)

order by m desc)
where Rownum = 1;
return r;

end f1;

• ~ 1,000 milliseconds for each new call

SQL Query Result Cache

function f1 return t1%rowtype is
r t1%rowtype;

begin
select /*+ result_cache */ a, m
into r.a, r.b
from (
select a, sb m from (
select a, Sum(b) sb from t1
group by a)

order by m desc)
where Rownum = 1;
return r;

end f1;

• ~ 0 milliseconds for each new call

The challenge

• Calculate a yet more complex derived metric – like
the ratio of the highest median income grouped by
state to the lowest median income grouped by state
over the whole population

• Now we need a PL/SQL function

• Again, the data changes fairly slowly (say every hour)
but the query is repeated fairly often (say every
second)

The challenge

function f2 return t1%rowtype

is
...

begin
select a, m into r1.a, r1.b from ...;

select a, m into r2.a, r2.b from ...;

r.a := r1.a + r2.a;
r.b := r1.b + r2.b;
return r;

end f2;

• ~ 2,000 milliseconds for each new call

PL/SQL Function Result Cache

function f2 return t1%rowtype
result_cache relies_on(t1, t2)

is
...

begin
select a, m into r1.a, r1.b from ...;

select a, m into r2.a, r2.b from ...;

r.a := r1.a + r2.a;
r.b := r1.b + r2.b;
return r;

end f2;

• ~ 0 milliseconds for each new call

SQL & PL/SQL Result Caches

• Both are cross-session and RAC interoperable

• Both build on the same infrastructure

• Same Result_Cache_Size,… initialization parameters

• Same DBMS_Result_Cache management package

• Same v$Result_Cache_* performance views

<Insert Picture Here>

Performance language feature:

The compound trigger

The challenge

• Insert a row into a separate audit table each time an
employee’s salary is changed

• Typically, very many employee rows are changed by
a single update

• Find a way to use bulk inserts for the audit rows

• Through 10.2, programmers have used the “ancillary
package paradigm”

• Initialize package globals in “before statement”; batch and
flush rows in “before each row; final flush in “after statement”

The compound trigger

• A compound trigger lets you implement actions for
each of the table DML timing points in a single trigger

• You can define variables that are global for these
sections

• The declarations are elaborated at “before statement” time

• You can provide explicit initialization code in the “before
statement” section

• You can provide finalization code in the “after statement”
section

• The globals are destroyed when the firing SQL finishes

create trigger My_Compound_Trg
for update of Salary on Employees

compound trigger
-- These variables have firing-statement duration
Threshold constant pls_integer := 200;

before statement is
begin
...

end before statement;

-- And/or "after each row"
before each row is
begin
null;

end before each row;

after statement is
begin
null;

end after statement;
end My_Compound_Trg;
/

The compound trigger

create trigger My_Compound_Trg
for update of Salary on Employees

compound trigger

Threshold constant pls_integer := 200;
type Emps_t is table of Employee_Salaries%rowtype
index by pls_integer;

Emps Emps_t;
Idx pls_integer := 0;

procedure Flush_Array is
begin
forall j in 1..Emps.Count()
insert into Employee_Salaries values Emps(j);

Emps.Delete();
Idx := 0;

end Flush_Array;

...

end My_Compound_Trg;
/

The compound trigger

create trigger My_Compound_Trg
for update of Salary on Employees

compound trigger

...

after each row is
begin
Idx := Idx + 1;
Emps(Idx).Employee_Id := :New.Employee_Id;
Emps(Idx).Salary := :New.Salary;
Emps(Idx).Effective_Date := Sysdate();

if Idx >= Threshold then
Flush_Array();

end if;
end after each row;

...

end My_Compound_Trg;
/

The compound trigger

create trigger My_Compound_Trg
for update of Salary on Employees

compound trigger

...

after statement is
begin
Flush_Array();

end after statement;

end My_Compound_Trg;
/

The compound trigger

<Insert Picture Here>

Functionality:

Dynamic SQL Functional Completeness

The challenge

• You want to generate a big PL/SQL unit whose
source exceeds 32k characters

• You want you expose the database only via PL/SQL
subprograms; for queries with unbounded result sets
you use ref cursors. Now the requirements change
and you don’t know the where clause – and hence the
number of binds – until run-time

• The number of binds is not known until run-time but
the select list is fixed; you want to use native dynamic
SQL’s bulk fetch

B.t.w., method 4 is what it is

• Method 4 means you don’t know the number of
defines (i.e. the select list) or the number of binds until
run-time

• Therefore, you need to discover the number and
datatypes of the select list columns

• After much debate, we agreed that the nature of the
steps that method 4 requires are better expressed via
a procedural API than via language syntax

• DBMS_Sql is here to stay!

Dynamic SQL Functional Completeness

• execute immediate takes a clob

• For symmetry, DBMS_Sql.Parse() takes a clob

• Can transform a ref cursor into a DBMS_Sql cursor
and vice versa

• DBMS_Sql supports ADTs

• You can do DBMS_Sql bulk binding with collections of
your own datatype – just as you can with native
dynamic SQL

Dynamic SQL Functional Completeness
...
Cur_Num number := DBMS_Sql.Open_Cursor();
rc Sys_Refcursor;

cursor e is select Employee_ID, First_Name, Last_Name
from Employees;

type Emps_t is table of e%rowtype;
Emps Emps_t;

begin
DBMS_Sql.Parse(
c=>Cur_Num, Language_Flag=>DBMS_Sql.Native, Statement=>
'select Employee_ID, First_Name, Last_Name

from Employees
where Department_ID = :d and Salary > :s and ...');

DBMS_Sql.Bind_Variable(Cur_Num, ':d', Department_ID);
DBMS_Sql.Bind_Variable(Cur_Num, ':s', Salary);
...
Dummy := DBMS_Sql.Execute(Cur_Num);
-- Switch to ref cursor and native dynamic SQL
rc := DBMS_Sql.To_Refcursor(Cur_Num);

fetch rc bulk collect into Emps;
close rc;
...

<Insert Picture Here>

Functionality:

Fine Grained Access Control
for Utl_TCP and its cousins

The challenge

• Oracle Database provides packaged APIs for PL/SQL
subprograms to access machines (specified by host
and port) using bare TCP/IP and other protocols built
on it (SMTP and HTTP).

• Utl_TCP, Utl_SMTP, Utl_HTTP…

• If you have Execute on the package, you can access
ANY host-port

• It’s of minor interest whether the Execute flows via
public or is granted directly

Fine Grained Access Control
for Utl_TCP and its cousins

• An Access Control Element (ACE) specifies an
allowed host-port

• An Access Control List (ACL) specifies a user’s ACEs

• The ACEs and ACLs are managed by XDB

<Insert Picture Here>

Functionality:

Regular expression enhancements
in SQL and PL/SQL

The challenge

• OK, there was at least one match. But how many are
there?

• Tedious to step along Str finding each successive
match, incrementing Pos, and counting yourself!

p := '\(?\d{3}\)? ?\d{3}[-.]\d{4}';

Str :=
'bla bla (123)345-7890 bla bla
(345)678-9012 bla bla (567)890-1234 bla bla';

Match_Found := Regexp_Like(Str, p);

Regular expression enhancements
in SQL and PL/SQL

• Regexp_Instr and Regexp_Substr now have an
optional Subexpr parameter that lets you target a
particular substring of the regular expression being
evaluated.

No_Of_Matches := Regexp_Count(Str, p);

<Insert Picture Here>

Functionality:

Support for “super”

The challenge

• The Employee supertype has an overridable member
function Monthly_Pay() that calculates the generic
basic

• The Salesperson subtype specializes Monthly_Pay()
to acknowledge notions like commission based on
actual sales made

• The natural implementation has
Salesperson. Monthly_Pay() calling
Employee. Monthly_Pay()

• Guess what? Through 10.2 you can’t do it without a
cumbersome workaround

Support for “super”

• The OO paradigm specifies the solution

• ANSI describes it

• It’s colloquially known as support for “super”

• 11.1 introduces this

• If you don’t know what this is, you don’t need it!

<Insert Picture Here>

Functionality:

Read-only table
Create a disabled trigger
Specify trigger firing order
*New PLW-06009 warning (my favorite)

alter table t read only
/

...

alter table t read write
/

Read-only table

• What more can I say?

Create a disabled trigger

• If you create a trigger whose body has a PL/SQL
compilation error, then DML to the table fails with
“ORA-04098: trigger 'TRG' is invalid and failed
re-validation”

• So it’s safer to create it disabled and to enable it only
when you know it compiled without error

create or replace trigger Trg
before insert on My_Table for each row
disable

begin
:New.ID := My_Seq.Nextvak;

end;
/

Specify trigger firing order

create or replace trigger Trg_2
before insert on My_Table for each row
follows Trg_1

begin
...

end;
/

• Through 10.1, you might have thought that you knew
the firing order (by experimental observation) but you
famously couldn’t rely on it

The challenge

create procedure p(i in number) is
begin
insert into My_Table(n) values(i);

exception
when others then null;

end p;
/

• Someone else writes “when others then null” because
they expect only the Dup_Val_On_Index exception –
but (amazingly) want to “make sure” that the program
won’t fail.

• Now you’ve inherited this code and you realize that
exceptions are getting swallowed

New PLW-06009 warning

alter procedure p compile
PLSQL_Warnings = 'enable:all'
reuse settings

/

• This now draws a warning:

PLW-06009: procedure "P" OTHERS handler
does not end in RAISE or
RAISE_APPLICATION_ERROR

<Insert Picture Here>

Usability of the language:

Sequence in a PL/SQL expression

create or replace trigger Trg
before insert on My_Table for each row

declare
s number;

begin
-- Annoying locution
select My_Seq.Nextval into s from Dual;
:New.PK := n;

end;
/

• There’s also a performance concern

The challenge

Sequence in a PL/SQL expression

create or replace trigger Trg
before insert on My_Table for each row

begin

:New.ID := My_Seq.Nextval;
end;
/

• Happily, the performance concern is solved
generically for any simple “select… from Dual”

<Insert Picture Here>

Usability of the language:

The continue statement

<<Outer>>for i in 1..10 loop

...

<<Inner>>for j in 1..Data.Count() loop
if not Data(j).Uninteresting then
...

end if;
end loop;

end loop;

The challenge

• The logic is cumbersome and back to front…

• …especially if, on the condition you detect, you want
to start the next iteration of an enclosing loop

<<Outer>>for i in 1..10 loop

...

<<Inner>>for j in 1..Data.Count() loop
continue Outer when Data(j).Uninteresting;
...

end loop;
end loop;

• Many algorithms are described, in pseudocode, using
the continue statement

The continue statement

<Insert Picture Here>

Usability of the language:

Named and Mixed Notation
from SQL

create function f(
p1 in number default 1,
...,
p5 in number default 5) return number

is
v number
begin
...
return v;

end f;
/
select f(p4 => 10) from Dual
/
ORA-00907: missing right parenthesis

The challenge

select f(p4 => 10) from Dual
/
F(P4=>10)

21

Named and Mixed Notation from SQL

<Insert Picture Here>

Summary

Summary

• Performance

• Transparent DML trigger performance improvement

• Finer grained dependency tracking

• Real PL/SQL native compilation

• Intra-unit inlining

• SQL & PL/SQL Result Caches

• The compound trigger

• Notice how little effort it takes to get the benefit of
these features

Summary

• Functionality

• Dynamic SQL functional completeness

• Fine grained access control for Utl_TCP, etc

• Regexp_Count(), etc in SQL and PL/SQL

• Support for “super”

• alter table t read only

• Create a disabled trigger; specify trigger firing order

• “when others then null” compile-time warning

Summary

• Usability

• Sequence in a PL/SQL expression

• The continue statement

• Named and mixed notation from SQL

<Insert Picture Here>

&

	PL/SQL Enhancements in Oracle Database 11g
	PL/SQL Enhancements�in Oracle Database 11g
	DML triggers are faster
	The challenge
	The challenge
	Fine Grained Dependency Tracking
	In-Place Redefinition Improvements
	The challenge
	Real native compilation
	Real native compilation
	The challenge
	The challenge
	The challenge
	Intra-unit inlining
	Intra-unit inlining
	The challenge
	The challenge
	SQL Query Result Cache
	The challenge
	The challenge
	PL/SQL Function Result Cache
	SQL & PL/SQL Result Caches
	The challenge
	The compound trigger
	The compound trigger
	The compound trigger
	The compound trigger
	The compound trigger
	The challenge
	B.t.w., method 4 is what it is
	Dynamic SQL Functional Completeness
	Dynamic SQL Functional Completeness
	The challenge
	Fine Grained Access Control�for Utl_TCP and its cousins
	The challenge
	Regular expression enhancements�in SQL and PL/SQL
	The challenge
	Support for “super”
	Read-only table
	Create a disabled trigger
	Specify trigger firing order
	The challenge
	New PLW-06009 warning
	The challenge
	Sequence in a PL/SQL expression
	The challenge
	The continue statement
	The challenge
	Named and Mixed Notation from SQL
	Summary
	Summary
	Summary

