
Dr. Paul Dorsey
Dulcian, Inc.

www.dulcian.com

NYOUG - March 9, 2006

Repository-Based J2EE Development

The Problem

Current web applications development product
environment is not ideal:

Many components
Difficult to learn
Resulting systems are less robust than old client/server
systems.

J2EE environment is in constant flux:
2 years ago – JavaServer pages (JSPs)
Today – JSP/Struts
Next year – JavaServer Faces (JSFs)?
What about EJB3, BPEL, Web Services?

The Solution

Big fat
traditional
application

Generate application

Ultra-thin application

Generate or build

Rule
Repository

or

Access rules at runtime

The Challenges

Hard
Repository/grammar is hard to design.
Figure out what to generate.
Determine how the application will look.

Easy
Create the generator

Advantages of Repository-
Based Development

99% generated stuff
Very rapid development
Easy to port systems

to new user interface technology
to new user interface standard
to new database technology
to new area of system

Very easy to add or change rules
Text repository is easy to search.

Self-documenting
English translation of rules
Report on repository

Specifying the system

"The articulation of the rules is
independent of the

implementation of the rules."

System Logical Specification

Object
Structure
Process
Data validation

User Interface
Model

Structure
Binding

View
Structure
Logical rules

Controller
Logical page flow

System Physical Specification

Database
Tables
Views
Packages

User Interface
Model
View
Controller

Logical vs. Physical
Limit specification at physical level to the essentials

Not table/column names

In D, B_OID must appear twice. One must be renamed
Don't maintain two models!

A
<abstract>

B C

D
1

1

*

*

Specifying the rules

Specify everything you can
at the object level

Object level = 80% of the rules

UI = 20% of the rules

System
Logical

Object
Structure
Process
Data validation

User Interface
Model

Structure
Binding

View
Structure
Logical rules

Controller
Logical page flow

Object Rules - Structure

Not just an ERD
Derived Attributes
Keywords

History
Audit

Logical triggers
Post-creation
Pre-update...

Inheritance

Structural Rules Repository
Meta-Model

CLASS

ASSOCIATION

STANDARD GENERALI
ZATION

TRIGGER

ATTRIBUTE

CORE DERIVED

ASSOCIATION_END

1 0..*

0..*1

1

0..*
0..*

1

Object Rules - Process
Not declarative

Too many rules
Not STE or DFD

Too many boxes
Complex state

State and state events
State events (like a database trigger)

On-set
Expire
Manual Process
Manual Decision

.

..
Keeps number of states small

Sample Process Flow

Process Flow Repository

CLASS TRANSITION

STATE_EVENTSTATE

<navigates to <triggered by

0..* 0..*1

1 1

0..*
1 0..*

Data Validation Rules
These rules may always need to be enforced or only contingently
enforced based upon some condition or the state of the object.

May only require looking at the object being validated or accessing objects
in other classes.
Rule failure may only trigger a user warning or may prevent data
modification entirely.

The difficulty is creating a grammar to help specify the rules.
The solution is to place the rules at the object level but support an Object
Constraint Language (OCL)-like syntax that allows you to validate across
classes.

:_child.emp.count >= 1

This grammar can be easily extended to support 99% of all rules
encountered.
Validation rules are often only contingently required.

Can be invoked at the object state level and may be contingently executed
based upon some condition.

Data Validation Repository

CLASS

DATA_VALIDATION_RULE CONDITION

1

0..*

0..*

1

User Interface Rule Types

Once object rules are collected, some additional rules
are required to specify the user interface.
Use modified version of the Model-View-Controller
(MVC) architecture.
The goal is to define the application independent of any
technology or implementation considerations.

Object rules are not enough

You can generate an application...
...but it won't be usable

At least minimal additional information is needed.
Hence..................User interface (UI) rules

UI Rules

UI
Model

Structure & binding
Just point to existing classes,
attributes, associations

Requires parameterized views
in the object layer

View
Structure

Items bind to model
Items sit in groups
Logic – Event-Condition-
Action (ECA)

View Logic
Event-Condition-Action
All rules in the database
Access at runtime

Controller
Logical page flow

Model Layer
Model portion of the logical UI rules is not difficult to specify.

Classes, attributes and associations have already been defined at the object
level.

Only requirement at the UI level is to select a subset of objects
from the object level for use in the UI specification.
Approach runs counter to the way in which most systems are built.
Most tools specializing in model development support very
sophisticated object specification in the model portion of the UI.
Approach does not preclude “thick” UI model level for
implementation

Structure of the UI model should properly be defined at the object level.
Using this approach:

Structural rules at the object level will be quite sophisticated
Requires not only standard views, but also views that are dynamically
altered or generated based on the values of some passed parameters.
UI model specification merely needs to point to existing structural object
specifications.

UI Specification Model

CLASS

ASSOCIATION

UI_ASSOCIATION_USAGE

ATTRIBUTE

UI_CLASS_USAGE
UI_ATTRIBUTE_USAGE

ASSOCIATION_END1 0..*

0..*
1

1

0..*

0..*

1

0..*

1

0..*

1

0..*

1

1 0..*

View Layer

Rules in the view layer of the logical UI are divided:
Structural (what are the elements and how are they grouped)
Logical (what happens when a screen opens, or a button is
pressed)
Presentation (how and where the elements are displayed).

The view layer structural rules are very simple.
Define UI elements (fields, buttons, etc.) and how they are
grouped and bound to the UI model.

View layer logical rules are quite complex.
Full Event-Condition-Action (ECA) architecture needed to
define what happens when events (button press, open an
application, etc.) occur.
Conditions, actions, and events are defined as reusable objects.

ECA Architecture Model

UI_CLASS_USAGE

UI_ELEMENT

EVENT

UI_ATTRIBUTE

UI_LOGIC_RULE

ACTION

UI_ELEMENT_GROUP
1 0..*

0..*1

>

0..1

0..* 0..*

0..*

0..1 0 0..*

0..1

UI Logical Model

0..1 0..1

CONDITION
0..* 0..*

0..*

0..*
0..*

0..*

0..*

0..1

0..*

0..1

View Logic

UI Controller

Logical Page Flow Diagram
How pages navigate
What happens between pages
Same STE as for objects

User Interface Shortcuts

Standard UI structures should not have to be built over and over
again.

You can define system elements such as Browse screens that only require
a few elements to be specified.
All of the logical specification will then be generated automatically.

Example of elements that must be specified in the Browse
screen:

Fields that you want to query by (and how they appear)
Fields in the display block (and how they will appear)

The rest is automatic.
This approach allows you to build the user interface very
quickly.
Specify the browse screen for a particular class, point and click
the desired Query By attributes and display and out pops the
application.

Browse Screen Model

bag$Application

1

0..*

0..*

1
bag$Class

bag$SearchColumn bag$BrowseColumn

1

0..*

Generation Decisions

Thick database
Application Development Framework – Business
Components (ADF BC)
Limit UI design options
Use JSP/Struts
Avoid post-generation modification

Sample Browse Page

Browse Page Sections

Search Criteria:
Search fields generated according to the domain of the
column with which they are associated.

Results:
Displays the query results.
Includes a navigation bar to quickly locate the desired rows.

Associations:
This section shows links to the master and detail classes.
Generated using the associations specified in the UML Data
Model.

Menu:
Includes links to all classes in the application.

Sample Edit Screen
Fields on the Edit screen
appear or disappear
depending upon the
security settings of the
user who is logged in.
Fields can:

be editable
be display-only
not show at all.

Size of the fields based
on domain settings of
associated column in the
object model.

The Generator

Once the logical application is specified, the user calls a
database procedure that starts the application generation
process.
Generator is written in PL/SQL.

Consists of about 18,000 lines of code
Output is a JDeveloper workspace folder in the operating
system.
Once generation is complete, workspace is zipped and the user
can download the zip file onto his/her local machine.
Generated workspace uses a small custom tag library (paging
functionality used in the browse page) and a code library (for
security).

Struts Page Flow Diagram

Conclusions

It is possible to create a complete architecture to
describe and generate a full J2EE application.
Challenges:

Creating a repository/grammar to describe the system
Deciding on the UI and architecture that you want to generate.

Writing the repository managers and generators is a
relatively simple task.
Surprise is really how well it all works.
Using this approach, applications are quickly specified,
effortlessly generated, and easily maintained.
It can be a long road to get it all working, but there is a
great pay-off at the end of the process.

The J2EE SIGThe J2EE SIG
CoCo--Sponsored by:Sponsored by:

Chairperson – Dr. Paul Dorsey

http://www.ioug.org/index.cfm
http://www.oaug.org/cgi-bin/WebObjects/oaug.woa/wa/main
http://www.oracle.com/index.html

About the J2EE SIGAbout the J2EE SIG
Mission: To identify and promote best Mission: To identify and promote best
practices in J2EE systems design, practices in J2EE systems design,
development and deployment.development and deployment.
Look for J2EE SIG presentations and Look for J2EE SIG presentations and
events at national and regional conferencesevents at national and regional conferences
Website: www.odtug.com/2005_J2EE.htmWebsite: www.odtug.com/2005_J2EE.htm
Join by signing up for the JavaJoin by signing up for the Java--L mailing L mailing
list:list:

http://www.odtug.com/subscrib.htmhttp://www.odtug.com/subscrib.htm

http://java.sun.com/

J2EE SIG Member BenefitsJ2EE SIG Member Benefits

Learn about latest Java technology and hot topics Learn about latest Java technology and hot topics
via SIG whitepapers and conference sessions.via SIG whitepapers and conference sessions.
Take advantage of opportunities to coTake advantage of opportunities to co--author Java author Java
papers and be published.papers and be published.
Network with other Java developers. Network with other Java developers.
Get help with specific technical problems from Get help with specific technical problems from
other SIG members and from Oracle.other SIG members and from Oracle.
Provide feedback to Oracle on current product Provide feedback to Oracle on current product
enhancements and future product strategies.enhancements and future product strategies.

Share your Knowledge:
Call for Articles/Presentations

Submit articles, questions, … to
IOUG – The SELECT Journal ODTUG – Technical Journal

select@ioug.org pubs@odtug.com

Dulcian’s BRIM® Environment

Full business rules-based development
environment
For Demo

Write “BRIM” on business card
Includes:

Working Use Case system
“Application” and “Validation Rules” Engines

Contact Information

Dr. Paul Dorsey – paul_dorsey@dulcian.com
Dulcian website - www.dulcian.com

Developer Advanced
Forms & Reports
Developer Advanced
Forms & Reports Designer

Handbook
Designer
Handbook

Coming in 2006:
Oracle PL/SQL for Dummies

Design Using UML
Object Modeling
Design Using UML
Object Modeling

	Repository-Based J2EE Development
	The Problem
	The Solution
	The Challenges
	Advantages of Repository-Based Development
	Specifying the system
	System Logical Specification
	System Physical Specification
	Logical vs. Physical
	Specifying the rules
	Object Rules - Structure
	Structural Rules Repository Meta-Model
	Object Rules - Process
	Sample Process Flow
	Process Flow Repository
	Data Validation Rules
	Data Validation Repository
	User Interface Rule Types
	Object rules are not enough
	UI Rules
	Model Layer
	UI Specification Model
	View Layer
	ECA Architecture Model
	UI Controller
	User Interface Shortcuts
	Browse Screen Model
	Generation Decisions
	Sample Browse Page
	Browse Page Sections
	Sample Edit Screen
	The Generator
	Struts Page Flow Diagram
	Conclusions
	The J2EE SIG
	About the J2EE SIG
	J2EE SIG Member Benefits
	Share your Knowledge:�Call for Articles/Presentations
	Dulcian’s BRIM® Environment
	Contact Information

