Overview

- Transactional systems vs Data Marts/Warehouses
 - OLTP vs OLAP – transactional vs. analytical processing
 - Technology and Methodology
 - What skills must be are common to both
 - What skills must be “unlearned”?
 - What skills are new?
Overview

Topics:

- Database Design
 - Logical Design
 - Physical Design
- Updating and Reporting on Database Contents
- Methodology
 - Project Team
 - Development Life Cycle
 - Tools: build or buy?
Database Design

- Sample OLTP design
- Sample Data Mart design for the same data
- Differences in methodology
Logical DB Design

- Sample - Customer Care System
 - Many accounts, each in a marketing hierarchy (region, market, service area)
 - Each account may generate numerous trouble calls (incidents)
 - Each incident is assigned to a specialist at a call center
 - Each incident may take many calls to resolve
 - Each incident is categorized as to its type and resolution
 Logical DB Design

● Customer Care - ERD
Customer Care - ERD

- Lots of one-to-many relationships (hierarchies; master-detail)
- Lots of many-to-one relationships (descriptions; codes)
- Normalized (3NF) design
OLTP Design Methodology

● Requirements Analysis
 – Determine the data required in the system and the relationships between entities
 – Determine process/functional requirements with user sign-off - a formal Functional Requirements List

● Agile/Extreme Methods
 – How much ahead-of-time analysis is appropriate?
Normalization

- “A column in a table is a fact about the key, the whole key, and nothing but the key, so help me Codd.”

- Normalization eliminates “update anomalies”

- The trade-off is that many tables must be joined to retrieve all relevant information
Requirements Analysis - OLAP

- How much analysis is required/desirable, given that the system’s goal is “adhoc” inquiries and/or to support data mining?
- Tierstein Analysis: What are the top 10 questions you need to be able to answer?
- Data Mining: What are the “groupings” that you will be interested in?
Data Mart DB Design

Performance/Functional Requirements
- Data is static, so updates are not required
- Retrieval speed is paramount
- Capacity planning/scalability is critical
- Database refresh must fit in maintenance window
Star Schema

- Find the central “fact” that the user is interested in:
 - OLTP Hint: Follow the master-detail relationships down to the appropriate level of detail; that’s probably your fact
 - OLTP Hint: Think “transaction” -- sale, history, scheduling
Star Schema

- The descriptive codes describing the fact are “dimensions”

 • OLTP Hint: The date is almost always a dimension.

 • OLTP Hint: The OLTP reference (code) tables of the fact are also one dimension, with different levels of detail “denormalized” into one table

- What is a “small” dimension?
Star Schema

- An ERD ends up with a central fact, and dimensions radiating out from it - a star
- A data mart (or data warehouse) can consist of one or more stars
- The stars can (should) share dimensions
Data Mart Star Schema

CUSTOMER DIM
CUST ID
* CUST NAME
* MARKET ID
* MARKET NAME
* REGION ID
* REGION NAME
* SERVICE LOC CD
* SERVICE LOC DESC

DATE DIM
INCIDENT DATE
* DAY OF WEEK
* WEEK NUMBER
* MONTH NAME
* MONTH NBR
* YEAR
* FISCAL YEAR

STATUS DIM
STATUS CD
* STATUS DESC

INCIDENT FACT

CATEGORY DIM
RESOLUTION ID
* CATEGORY CD
* CATEGORY DESC
* RESOLUTION DESC
* SUBCATEGORY CD
* SUBCATEGORY DESC

SPECIALIST DIM
SPECIALIST ID
* CALL CENTER ID
* CALL CENTER NAME
* GROUP ID
* GROUP NAME
* SPECIALIST NAME
Snowflake

- Sometimes, a dimension in a star schema will, itself, have dimensions
- This results in a snowflake configuration
- Snowflakes may have performance issues
- Some BI tools perform better with different DB designs: Normalized, star, snowflake
Fact and Dimension Tables

- Attributes: Alphanumeric descriptive data
 - Derived attribute: age range, salary range, call length
- Metrics: Numeric data about the fact
 - “Factless fact” – fact table with no metrics
 - OLTP hint: An intersection table with no additional attributes
- Sparsity vs. denseness of data
Physical Design Issues

- Natural vs. Artificial Primary Keys
- Denormalization
- Summarization
- Server-Side Referential Integrity Constraints
- Database Partitioning
- Application Tuning, including Indexes
Assumption: Relational implementation, not a multi-dimensional cube
Natural vs. Artificial Keys

- Natural Primary Key - Value is intelligible to the user, and occurs naturally in the application

- Artificial Primary Key - Value is artificially derived, eg, from an Oracle sequence
OLTP Primary Keys

- Can be a religious argument
- Use artificial keys if:
 - The natural key value is subject to change
 - The key structure is too complex (> 5 columns, 64 characters)
 - Part of the natural key may be null
 - To reduce code lookups
 - Your project standards say to
Always use artificial keys:

- The natural key value might not be unique (for example, when collecting data from multiple systems)
- Indicated for use with bitmap indexes
- Supports “slowly changing dimensions”, when the natural key value is the same but its semantics change
What if a dimension changes:
- Example: Market A used to be in the Western region, now it’s in a new, Mountain region

How can we compare summaries by region from before and after the change?

Approaches:
- 1: Lose the history and realign (or not) data
- 2: Add new dimension records for new data

Several different implementations
OLTP Referential Integrity

- Server-side declarative constraints
- Server-side procedural code
- Client-side GUI controls
Data Mart Referential Integrity

- Are server-side RI constraints needed?
 - All updates are done via one load program
 - Load program should reject dirty data -- and report on it
- RI constraints should be disabled when loading data
 - Ability to use direct path load
- RI constraints may be required by BI tools
OLTP Denormalization

- Methodology whereby a normalized design is “broken”, typically to enhance performance
 - Store summary of detailed data in the master table (to decrease accesses)
 - Store derivable data in the table (to enable indexed searches)
Data Mart Summarization

- Determine the level of detail of data to be stored
- Redundantly store derivable (summary) data, typically to enhance performance
- Use materialized views if
 - You can predict your most frequent queries
 - You have sufficient disk space (for views and view logs)
 - You have time to refresh the views
Data Mart Summarization

- Summarization/Aggregation - Approaches
 - Store individual “transactions”
 - Summarize transactions on load
 - Summarize transactions after a period of time
Data Mart Summarization

- Summarization
 - Maintain summary table(s) (materialized views) which summarize the facts by the most frequently combined dimensions
 - Example: Incident by Resolution by Region
 - Summary tables must be refreshed whenever the database is refreshed
 - Refresh “on demand” as part of the load process
Database Partitioning

- Dividing tables and indexes into partitions
 - Read performance – “partition pruning”
 - Write performance – ability to drop a partition, rather than delete rows
 - Admin performance – ability to assign different partitions to different tablespaces (for backup)

- Must be designed into the ETL process
These disciplines differ greatly between OLTP and Data Mart database.

Examples:
- Estimating table size (extents; volatility)
- Indexes (bit maps vs. b-tree searches)
- In OLAP, a Full Table Scan (FTS) may be good
Refreshing Database Contents

- **OLTP**
 - Convert data from legacy system(s)
 - One-time task

- **Data Mart**
 - Initially load the data mart from source system(s)
 - Refresh database contents at regular intervals
OLTP Data Conversion

- Methodology and Technology
 - Too often, “seat of the pants”
 - Tools are expensive for one-time use
 - Legacy system experts may be hard to find
- “One-time” use
 - But may have to reload data
 - Phased cutovers
Data Mart Refresh

Methodology and Technology

- E(T)TL tool is required:
 - Extract source data
 - (Transport data to new platform)
 - Transform data to new format
 - Load data into new database

Tools

- Oracle Warehouse Builder
- Informatica
- Tools with domain-specific “adapters”
Data Mart Refresh

- ETL tool
 - Maintain metadata about source system(s) - still in use and being maintained
 - Maintain metadata about data mart - should be user accessible
 - Maintain history of refresh cycles
Data Mart Refresh

● ETL Tool/Code
 – Periodically add new data to the data mart
 – Modes of operation
 • Batch/File-based: Must be run in the “maintenance window” for the source and target systems
 • Near real-time: Message queues
Data Mart Refresh

- Operational Data Store (ODS)
 - Normalized database which acts as the feeder system to the data mart
 - Extract data from source system(s) into ODS
 - Load from ODS using refresh routines
Data Mart Refresh

Design Issues

– Change Data Propagation - How do you know which source records are new and need to be loaded?
– Are records ever purged from the data mart? Summarized?
– Are records ever updated in the data mart?
Conclusions (1)

- Logical Design
 - Replace 3NF databases with stars and snowflakes
 - A normalized database may be used for an ODS
 - “Requirements” may not be as formal
Conclusions (2)

Physical Design

- Know how to denormalize and summarize (ie, “enhance” the underlying model for performance)
- Pay more attention to tuning (the data mart is born large)
Data Mart Refresh

- Formalized methodology and technology required
- Metadata is an issue
- Performance (load time)
 - Change data propagation
 - Materialized views and view logs
 - Partitioning
 - Parallel object creation
 - Direct path loads and inserts
Conclusions (4)

- Reporting
 - BI tool required for end-user adhoc report creation
 - Data mining
 - Performance (reporting)
 - Materialized views for aggregates/summaries
 - Partitions
 - Bitmap indexes
About the Author

● Leslie Tierstein is principal technical architect for newScale, Inc, a Silicon Valley company which specializes in ITIL (IT Infrastructure Library) implementations

● She can be reached at: ltierstein@earthlink.net