Oracle Database 10g SQL Enhancements

An introduction to the SQL enhancements provided with Oracle10g.

Presented by Dave Anderson
March 9, 2006
NYOUG

SKILLBUILDERS

Updated for R2!
What’s New with 10g…

- Regular Expressions
- Case Insensitive Sort and Search
- New technique for coding quotes in literals
- MERGE statement enhancements
- ORA_ROWSCN pseudocolumn
- OLAP / DSS / Warehouse features
 - Partition Outer Join
 - SQL MODEL clause
...What’s New with 10g

- New Functions, New Datatypes
- LOB Enhancements
- Enhanced CONNECT BY
- Nested Table Enhancements
- Temporary Table Enhancements
- Aggregates in RETURNING
- XQuery Support
Regular Expressions…

- Like UNIX regular expressions
- Powerful text pattern matching
 - Much more powerful than LIKE
- Compliant with POSIX and Unicode standards
 - Common metacharacters, matching lists, repeating sequences, subexpressions, backreferences, more…
- Release 2 adds Perl expression support
…Regular Expressions

- New condition
 - REGEXP_LIKE

- New functions
 - REGEXP_INSTR, REGEXP_REPLACE, REGEXP_SUBSTR
REGEXP_LIKE

LIKE is TRUE if pattern matches entire string

Must code leading / trailing %

“i” for case insensitive search

REGEXP_LIKE is TRUE if pattern is within the string

DAVE@linux3> select street from customer
 2 where lower(street) like '%apt%';

STREET

738 Marci St. Apt 3A
388 Park Ave Apt 62

DAVE@linux3> select street from customer
 2 where regexp_like(street, 'apt', 'i');

STREET

738 Marci St. Apt 3A
388 Park Ave Apt 62
Common Metasymbols

Dot matches any character except NULL

Asterisk operates on the dot. Dot matches zero or more characters

Dollar sign anchors to end of line

Plus sign operates on the dot. Dot must match 1 or more chars

```
DAVE@linux3> select cust_no, lastname from customer
       2   where regexp_like(lastname, '.*son$','i');

   CUST_NO LASTNAME
   -------- ----------------------
        1 Son
        3 Anderson
```

```
DAVE@linux3> select cust_no, lastname from customer
       2   where regexp_like(lastname, '.+son$','i');

   CUST_NO LASTNAME
   -------- ----------------------
        3 Anderson
```

© 2005-2006 SkillBuilders, Inc.
Perl Expressions

R2 adds support for Perl expressions

```
DAVE@linux3> select cust_no, lastname
  2  from customer
  3  where regexp_like(lastname, '\s')
  4  /

  CUST_NO LASTNAME
  ---------- -------------------
  1  Van Doren
```
Matching Sets and Repeaters

DAVE> select c1, c2 from t
2 where regexp_like(c2, '[0-9]{3}-[0-9]{4}-[0-9]{3}');

One of the characters in brackets must match string

1 My social security number is 111-1111-1111.
3 My phone number is 111-1111 and my social secu
4 My social security number is 333-3333-333

Repeat match set 3 times

DAVE> select c1, regexp_substr(c2, '[0-9]{3}-[0-9]{4}-[0-9]{3}')
2 from t3 where regexp_like(c2, '[0-9]{3}-[0-9]{4}-[0-9]{3}');

C1 SSN

1 111-1111-1113 222-2222-2224 333-3333-333

REGEXP_SUBSTR extracts the pattern from the string
Backreferences

REGEXP_REPLACE
function replaces 2nd pattern
with the 3rd pattern

```
DAVE@linux3> update customer
  2   set lastname =
  3     regexp_replace(lastname, '(.+)son$', '\1sen',1,1,'i')
  4   where regexp_like(lastname, '.+son$','i');
```

1 row updated.

Subexpression is enclosed in parenthesis

“1” refers to the 1st subexpression
Continuation of Notes

- This is a full page of notes.
- The slide is hidden.
Summary: Regular Expressions…

- Powerful text pattern search and update tool
- Much more than what’s presented here
- Supports common industry standard syntax
...Summary: Regular Expressions

- Supported datatypes
 - CHAR, VARCHAR2, CLOB
- But performance
 - LIKE and Intermedia Text support indexes
- Recommend reading:
 - Mastering Oracle SQL,
 - Sanjay Mishra and Alan Beaulieu
 - Metalink Note 263140.1
 - Oracle10g SQL Reference
Case-Insensitive Sort...

- Default case sensitivity controlled with NLS_SORT parameter
 - Session level and statement level control
- Default is usually ‘BINARY’
 - Append “_ci” for case-insensitive sort
 - Append “_ai” for case-insensitive and accent-insensitive sort
...Case-Insensitive Sort...

LINUX3> select * from nls_database_parameters
 2 where parameter='NLS_SORT';

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLS_SORT</td>
<td>BINARY</td>
</tr>
</tbody>
</table>

LINUX3> select * from t order by c1;

C -AABaab
6 rows selected.

LINUX3> alter session set nls_sort=binary_ci;
Session altered.

LINUX3> select * from t order by c1;

C -aAAabB
6 rows selected.

Lower case “a” is equivalent to upper case “A”
Continuation of Notes

- This is a full page of notes.
- The slide is hidden.
...Case-Insensitive Sort

```
1 select * from t
2* order by nlssort(c1, 'NLS_SORT=binary_ci')
LINUX3> /

C
- a
 A
A
a
b
B
6 rows selected.
```

Can also request in ORDER BY clause
Case-Insensitive Search...

SQL> alter session set nls_sort=binary_ci nls_comp=ansi;
Session altered.
SQL> select * from t where c1 = 'a';
C
- a
A
A
a

Set NLS_COMP to ANSI

SQL> select * from t where c1 in ('a', 'b');
C
- a
A
A
a

- =, !, <, >, <=, >=
- [NOT] IN
- [NOT] BETWEEN
- CASE
- ORDER BY
- HAVING
- START WITH
…Case-Insensitive Search

- Use NLSSORT function for statement-level control

```
SQL> select * from t
  2  where nlssort(c1,'nls_sort=binary_ci')
  3       = nlssort('a','nls_sort=binary_ci');
```

C
-

A

A

A

a
Accent-Insensitive Sort and Search

```sql
SQL> select * from t where letter = 'a';

LETTER
----------
a

SQL> select * from t
  2  where nlssort(letter, 'nls_sort=binary_ai') =
  3           nlssort('a', 'nls_sort=binary_ai');

LETTER
----------
ä
a
A
```
Effect on Index Use...

- “Normal” indexes are binary indexes
 - “built according to a binary order of keys”
- Not used for case-insensitive searches
- Solution:
 - Create function-based index on NLSSORT
...Effect on Index Use

DAVE@linux3> create index ti_function on t
 (nlssort(c1,'nls_sort=binary_ci')) nologging;

Index created.

DAVE@linux3> alter session set nls_sort=binary_ci nls_comp=ansi;

Session altered.

DAVE@linux3> set autotrace traceonly
DAVE@linux3> select c1 from t where c1 = 'a';

154 rows selected.

Execution Plan

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=2 Card=173 B
 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T' (TABLE) (Cost=2
 2 1 INDEX (RANGE SCAN) OF 'TI_FUNCTION' (INDEX) (Cost=
Text Literal Quote Character

```sql
SQL> insert into ord
2  (order_no, cust_no, order_date, payment_method,
3             gift_message)
4  values
5  (order_seq.nextval, 1, sysdate, 'CA',
6             q'[Peg's birthday present]');
```
MERGE Enhancements (1)

- Four enhancements to MERGE
 1. Optional WHERE clause
 - WHEN MATCHED THEN UPDATE clause
 - Test source or target row
 - Perform update if only if condition is true
 - WHEN NOT MATCHED THEN INSERT clause
 - Test source rows
 - Insert only if condition is true
 2. UPDATE clause has DELETE WHERE option
 - Test result of UPDATE
 - Delete row if meets condition
MERGE Example (1)

begin
merge /*+append*/ into target
using (select * from source) source
on (target.c1 = source.c1)
when matched then
 update set target.c2 = target.c2 + source.c2
 where source.c2 is not null
 delete where target.c2 > 100000
when not matched then
 insert (target.c1, target.c2)
 values (source.c1, source.c2)
 where source.c2 < 50000;

dbms_output.put_line(sql%rowcount ||' rows merged');

24290 rows merged
.84 elapsed seconds
.39 cpu seconds
MERGE Enhancements (2)

3. Constant Filter Predicate
 - Code 0=1 to skip join in ON clause

4. Not required to specify both INSERT and UPDATE clauses
MERGE Example (2)

4 v1 number := 0;
5 v2 number := 1;
6 begin
7 merge /*+append*/ into target1
8 using (select * from source) source
9 on (v1 = v2)
10 when matched then
11 update set target1.c2 = target1.c2 + source.c2
12 when not matched then
13 insert (target1.c1, target1.c2)
14 values (source.c1, source.c2);
15
16 dbms_output.put_line(sql%rowcount || ' rows merged');

.
48437 rows merged
1.6 elapsed seconds
.45 cpu seconds
Partition Outer Join…

- **Purpose**
 - Create dense reports
 - “Densify” data
 - Dense data good for analytic windowing functions
 - Oracle8i feature
 - “Easy” to code
 - Compared to manual
 - Faster*
...Partition Outer Join

- Create partitions from results of left side
- Outer join each partition to right side result
- Union the results together

```
DAVE@linux3> select s.prod_id, d.date_col, nvl(total_sales,0)
   2   from ( select prod_id, trunc(sale_date) sale_date,
   3      sum(amount) total_sales
   4   from sales
   5   group by prod_id, trunc(sale_date)
   6       s
   7   ) PARTITION BY (s.prod_id)
   8   right outer join
   9   ( select trunc(date_col) date_col from dates
  10        d on s.sale_date = d.date_col;
```

<table>
<thead>
<tr>
<th>PID</th>
<th>DATE_COL</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30-DEC-04</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>25-DEC-04</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>26-DEC-04</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>27-DEC-04</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>28-DEC-04</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>29-DEC-04</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>30-DEC-04</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>25-DEC-04</td>
<td>12</td>
</tr>
</tbody>
</table>
Continuation of Notes

- This is a full page of notes.
- The slide is hidden.
MODEL Clause Concepts

- Query result viewed as multi-dimensional array
- Spreadsheet-like capability from the database
 - Reduce need to dump data out of DB
- Integrating more analytic capability into the database
- Inter-row references
 - Without self-joins or unions
 - Should provide better performance
- Define calculations on “cells”
- “Upsert” capability allows projections
 - Update the array
 - Insert into the array
MODEL Components

- **Partition**
 - Defines array of data to be worked on
 - Formulas view each partition independently

- **Dimension**
 - Uniquely identifies cell in array

- **Measure**
 - Like a spreadsheet cell

- **Rules**
 - Formulas

© 2005-2006 SkillBuilders, Inc.
Q. What are projected Oracle-related website hits delivered by Google in 2005?

LINUX> select year, interest, tech_subject, hits
2 from webhits
3 where referer = 'GOOGLE' and tech_subject = 'ORACLE'
4 model
5 partition by (referer)
6 dimension by (year, interest, tech_subject)
7 measures (hits)
8 rules (9
 hits [2005, 'COURSE-OUTLINES', 'ORACLE'] =
10 hits[2004, 'COURSE-OUTLINES', 'ORACLE'] * 1.10
11 ,hits [2005, 'TECH-ARTICLES', 'ORACLE'] =
12 hits[2004, 'TECH-ARTICLES', 'ORACLE'] * 1.10
13)
14 order by year, interest;

Positional reference to cell – DIMENSION BY (year, interest, tech_subject)

See output next page

Dimension must uniquely identify measure (cell)

Assume 10% growth
MODEL: Example 1

<table>
<thead>
<tr>
<th>YEAR</th>
<th>INTEREST</th>
<th>TECH_SUBJECT</th>
<th>HITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>COURSE-OUTLINES</td>
<td>ORACLE</td>
<td>5072</td>
</tr>
<tr>
<td>2003</td>
<td>COURSE-OUTLINES</td>
<td>ORACLE</td>
<td>5004</td>
</tr>
<tr>
<td>2003</td>
<td>TECH-ARTICLES</td>
<td>ORACLE</td>
<td>5947</td>
</tr>
<tr>
<td>2004</td>
<td>COURSE-OUTLINES</td>
<td>ORACLE</td>
<td>5025</td>
</tr>
<tr>
<td>2004</td>
<td>INTRANET</td>
<td>ORACLE</td>
<td>5023</td>
</tr>
<tr>
<td>2004</td>
<td>TECH-ARTICLES</td>
<td>ORACLE</td>
<td>9023</td>
</tr>
<tr>
<td>2005</td>
<td>COURSE-OUTLINES</td>
<td>ORACLE</td>
<td>5528</td>
</tr>
<tr>
<td>2005</td>
<td>TECH-ARTICLES</td>
<td>ORACLE</td>
<td>9925</td>
</tr>
</tbody>
</table>

Note since there is no rule for ‘INTRANET’ hits, there’s no 2005 cell for ‘INTRANET’

Projected 10% increase in hits in 2005

Array output from query on previous page
MODEL: Example 2

LINUX> select year, interest, tech_subject, hits
 2 from webhits
 3 where referer = 'GOOGLE' and tech_subject = 'ORACLE'
 4 model return updated rows
 5 partition by (referer)
 6 dimension by (year, interest, tech_subject)
 7 measures (hits)
 8 rules
 9 (hits [2005, 'COURSE-OUTLINES', 'ORACLE'] =
 10 AVG(hits)[year between 2002 and 2004,
 11 'COURSE-OUTLINES', 'ORACLE'] * 1.10
 12 ,hits [2005, 'TECH-ARTICLES', 'ORACLE'] =
 13 AVG(hits)[year between 2002 and 2004,
 14 'TECH-ARTICLES', 'ORACLE'] * 1.10);

<table>
<thead>
<tr>
<th>YEAR</th>
<th>INTEREST</th>
<th>TECH_SUBJECT</th>
<th>HITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>TECH-ARTICLES</td>
<td>ORACLE</td>
<td>8234</td>
</tr>
<tr>
<td>2005</td>
<td>COURSE-OUTLINES</td>
<td>ORACLE</td>
<td>5537</td>
</tr>
</tbody>
</table>

Show only rows updated in or inserted into array

Use the average hits
ORA_ROWSCN...

- Approximate SCN of most recent change to row
- By default, ORA_ROWSCN returns block-level SCN

```
LINUX> select c1, ora_rowscn from test;

  C1  ORA_ROWSCN
  ------ --------
    1      1375539

LINUX> update test set c1 = 2;
1 row updated.
LINUX> commit;
Commit complete.

LINUX> select c1, ora_rowscn from test;

  C1  ORA_ROWSCN
  ------ --------
    2      1459673
```

Current SCN: 1375539
New SCN: 1459673
...ORA_ROWSCN

- Can request precise SCN at table-level

```
LINUX> create table test (c1 number) rowdependencies;
Table created.
[ load table ]
LINUX> select c1, 2> ora_rowscn from test;
    C1  ORA_ROWSCN
-------  ---------
     1    1469023
     10   1469023
    100   1469023
LINUX> update test set c1=2 where c1=1;
1 row updated.
LINUX> commit;
Commit complete.
LINUX> select c1, ora_rowscn from test;
    C1  ORA_ROWSCN
-------  ---------
     2    1469051
     10   1469023
    100   1469023
```

New SCN

Original SCN's
ORA_ROWSCN Use

- Can be used to prevent lost updates
- New, easier optimistic locking technique

LINUX> select c1, ora_rowscn from test where c1=10;

<table>
<thead>
<tr>
<th>C1</th>
<th>ORA_ROWSCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1469023</td>
</tr>
</tbody>
</table>

<application code to display data retrieved>

LINUX> update test set c1=1000
 2 where c1=10 and ora_rowscn=1469023;

1 row updated.

Capture SCN

Update only if row has not changed while viewing
New Datatypes

- **BINARY_FLOAT**
 - 4 bytes + 1 length byte
 - 32 bit single-precision floating point

- **BINARY_DOUBLE**
 - 8 bytes + 1 byte length field
 - 64 bit single-precision floating point

- **IEEE754 compatible**
 - Calculations can perform faster

- **Compare to NUMBER**
 - Variable length 1 to 22 bytes
 - Maximum length number 38 digits
 - More precise
LOB Enhancements

- Up to 8 TB or 128 TB
 - Depends on DB blocksize
- DML performance
- Remote DML support
- Parallel LONG to LOB conversion
- Transportable tablespace support
- Regular expression support
- NCLOB / CLOB implicit conversion
- IOT support for LOBs
New Functions

- CARDINALITY
- COLLECT
- CORR_S
- CORR_K
- CV
- ITERATION_NUMBER
- LNNVL
- MEDIAN
- NANVL
- ORA_HASH
- POWERMULTISET
- PRESENTNNV

- PRESENTV
- PREVIOUS
- REGEXP_INSTR
- REGEXP_REPLACE
- REGEXP_SUBSTR
- REMAINDER
- SCN_TO_TIMESTAMP
- SET
- STATS_*
- TIMESTAMP_TO_SCN
- TO_BINARY_DOUBLE
- TO_BINARY_FLOAT
RETURNING Aggregates

Aggregates in RETURNING clause

```
DAVE@linux3> var x number
DAVE@linux3> update t set c1=c1-2
   2    returning sum(c1) into :x;
1 row updated.
```

Returns sum of updated values
CONNECT_BY_ROOT

Operator provides access to root row

```
DAVE@linux3> select lastname as name,
2       connect_by_root lastname as root,
3       connect_by_root emp_no as mgr_no
4  from employee
5  start with emp_no = 1
6  connect by prior emp_no = mgr;

NAME       ROOT       MGR_NO
----------- ----------- ----------
Gardinia   Gardinia   1
Anderson    Gardinia   1
Somers      Gardinia   1
```

© 2005-2006 SkillBuilders, Inc.
CONNECT BY: NOCYCLE

- NOCYCLE keyword
 - Use when child is also a parent
 - Suppresses ORA-01436 error

```sql
DAVE@linux3> select lastname as name,
            2      sys_connect_by_path(lastname, '/') AS path
            3  from employee
            4  connect by prior emp_no = mgr;

from employee
  *
ERROR at line 3:
ORA-01436: CONNECT BY loop in user data

DAVE@linux3> select lastname as name,
            2      sys_connect_by_path(lastname, '/') AS path
            3  from employee
            4  connect by nocycle prior emp_no = mgr;
```
CONNECT BY:
Pseudocolumns

- CONNECT_BY_ISCYCLE
 - Returns 1 if row is part of a cycle (has a child that is also an ancestor)

```
DAVE@linux3> select lastname as name,
          2  connect_by_iscycle
          3  from employee
          4  where connect_by_iscycle = 1
          5  connect by nocycle prior emp_no = mgr;
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>CONNECT_BY_ISCYCLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gardinia</td>
<td>1</td>
</tr>
</tbody>
</table>

- CONNECT_BY_ISLEAF
 - Returns 1 if current row is a leaf
COMMIT Enhancements

- Can COMMIT w/o waiting for log write
 - Performance increase
 - BATCH groups redo streams for write
- Can lose transaction
- Might consider for data loads with frequent commits

```sql
SYSTEM@orcl> commit write batch nowait;
Commit complete.
SYSTEM@orcl> show parameter commit_write
NAME                     TYPE   VALUE
------------------------- ------ -----
commit_write              string
```
Miscellaneous SQL Features

- Nested Table Enhancements
 - Compare two nested tables with
 - =, !=, IN and NOT IN
 - New conditions
 - SUBMULTISET, IS A SET
 - New “multiset” operators
 - MULTISET EXCEPT, MULTISET UNION, MULTISET INTERSECT

- Temporary tables now support VARRAY columns
Introduction to XQuery

- XML query language
 - SQL is for relational tables
 - XQuery is for XML data
- Based on XPath
- In development by W3C
 - Not finalized yet
 - Oracle support might change
 - Caution building apps on this release
- Support from all major vendors
 - Oracle, Altova, Microsoft, Sun, IBM, many more
Oracle XQuery Support

- Database includes XQuery engine
 - Native XQuery execution
 - Index support
- Oracle Application Server too
 - Use to combine XML from many sources
XQuery Examples

```
DAVE@linux3> select XMLQuery('for $i in ora:view ("xml_test") return $i' returning content) x
2   from dual;

X-----------------------------------------------
<ROW><ID>1</ID><DOC><ROWSET>
   <ROW>
      <TABLE_T>
         <VERS_MAJOR>1</VERS_MAJOR>
      </TABLE_T>
   </ROW>
</DOC></ROWSET>
```

```
DAVE@linux3> xquery for $i in ora:view ("xml_test")
2   return $i
3   /

Result Sequence
-----------------------------------------------
<ROW><ID>1</ID><DOC><ROWSET>
   <ROW>
      <TABLE_T>
```

© 2005-2006 SkillBuilders, Inc.
Summary…

- Regular Expressions
 - Much more powerful than LIKE
 - R2 adds Perl expression support
- Case Insensitive Sort and Search
 - Convenient and possibly efficient technique for negating case
- New technique for coding quotes in literals
 - Simplify coding of literal quote
MERGE Enhancements
- More functionality for this 9i invention
- Row-level dependency tracking with ORA_ROWSCN
 - New optimistic locking technique

Analytic / DSS / Warehouse features
- Partition Outer Join
 - Densify data
- SQL MODEL clause
 - Spreadsheet-like reports
…Summary…

- LOB Support Enhancements
 - Terabyte size LOBs and much more
- BINARY_DOUBLE and BINARY_FLOAT
 - Provide better performance
 - But not same precision
- CONNECT BY
 - CONNECT_BY_ROOT, NOCYCLE and pseudo-columns
...Summary

- Aggregates in RETURNING
 - returning sum(c1) into :x
- Nested Table Enhancements
 - Compare nested tables
 - Condition and Operators on Nested Tables
- VARRAY columns in temporary tables
- XQuery support in Release 2
Oracle 10g Classes

- Oracle 10g Administration
 - March 20 – 24, NYC
 - May 1 – 5, NYC

- Oracle 10g New Features for Administrators
 - May 9 – 12, Richmond, VA
 - May 15 – 18, NYC

- Oracle 10g New Features for Developers
 - May 9 – 11, NYC

To Register:
- Online at skillbuilders.com
- Or Call 888-803-5607

Or, call us to teach a class at your site:
888-803-5607
The End

- Thanks for listening!

- Dave Anderson

- dave@skillbuilders.com

- www.skillbuilders.com

FREE Tech papers and Presentations
FREE Oracle Tutorials
FREE Practice Exams