
Quote of the day…

Not that anyone should care by now (we are in 10g
times after all) ... but that "Hierarchy" package
presented last year as a 8i method for doing what
sys_connect_by_path does is a bug waiting to
happen. One needs to understand how
it works in order to use it safely.

Quote of the day…

Not that anyone should care by now (we are in 10g
times after all) ... but that "Hierarchy" package
presented last year as a 8i method for doing what
sys_connect_by_path does is a bug waiting to
happen. One needs to understand how
Oracle works in order to use it safely.

Things we think we ‘know’

Suppose everything we learned, we
learned from TV.

Sort of like learning everything we
know from the internet.

Things we ‘know’

• Some things I’ve learned from TV
– Ventilation systems of any building are the perfect

hiding place. Not only that, but you can get anywhere
in the building using them.

– Cars and trucks that crash almost always burst into
flames

– When you wake up from a nightmare, you will always
sit bolt upright, in a sweat, and breath heavy

– Creepy music coming from a graveyard always
mandates investigation

Things we ‘know’

• Some things I’ve learned from TV
– When you are outnumbered in a martial arts fight –

your enemies will always wait patiently to attack you
one by one (waiting for you to knock out their
predecessor of course)

– Having a job of any sort will cause all fathers to forget
their son’s/daughter’s birthday.

– All bombs have very large, red LED display so you
know exactly when they will go off

– When they are alone, all foreigners prefer to speak
English to each other

What happens when we “know”

• My car shook at 58-63 mph
• Everyone knows when that happens – it must be

that your wheels are out of balance/alignment
• Took it in, said balance those tires – and they did.

– Result – not encouraging, I convinced myself it was a
little better but they must not have balanced them right

• So, took it elsewhere, same story
– Result – the same

• Took it to another place and described the problem
– Wheel was bent, all of the balancing in the world would

not help

What happens when we “know”

• My system is going slow
• Everyone knows when that happens – it must be

that you’re low on CPU or files need be moved
• Added CPU, moved files

– Result – not encouraging, I convinced myself it was a
little better but must not have added/moved enough

• So, tried again, same story
– Result – the same

• Looked at the problem
– Massive locking/enqueue problem. CPU made it

worse, moving files would do nothing

You know more than you think

Suppose that one day you are driving to work and end up arriving late for
an important meeting. You aren't able to present your revolutionary idea,
so your clients aren't going to use it. You're frustrated by your tardiness
and vow to never make the same mistake again. So how do you
diagnose the cause in order to avoid a replay? How about this checklist?

• Check the car's surface for imperfections, because surface
imperfections can account for a difference of 1 percent or even greater
in the car's top speed.

• Check the wheel alignment, because an incorrect camber, caster, or
toe angle can cause the car to handle poorly, costing time.

• Test the engine to ensure that it is producing 99 percent or more of
its rated horsepower. If it is not, consider rebuilding or replacing the
engine.

No, you wouldn't use this checklist; that would be ridiculous. You'd probably
diagnose the problem in a completely different way, by asking yourself
just one simple question: What took me so long?

Millsap http://otn.oracle.com/oramag/oracle/04-jan/o14tech_perf.html

Quiz Time!

• All of these questions have very easy answers
• Or do they?
• What is ‘obvious’

Things we think we ‘know’

So, what was the point….

Artemus Ward once wrote, "It ain't so
much the things we don't know that get
us into trouble. It's the things you know

that just ain't so."

Updated for 2005

• It ain't so much the things we don't
know that get us into trouble.

• It's the things you know
• that just ain't so or
• just ain’t so anymore or
• just ain’t always so

Things Change

• Select INTO
• IN vs EXISTS
• NOT vs NOT EXISTS
• Where nvl(:bv,column) = column
• Array Fetching (af.sql)
• And so on…

‘Obvious’ things “I learned” from the net

• The first thing to do to tune is move files, re-org
tables, and rebuild everything in site

– No need to find the root cause of performance,
everyone knows these work

– Unless…
• You switched from ANALYZE to DBMS_STATS

because you know that is the preferred method
• You know method_opt=> null goes “faster” in 8i (but

surprisingly, not in 9i…)
• You don’t know why it goes faster, just does

– It ain’t always so….

‘Obvious’ things “I learned” from the net

• PCTINCREASE should be 1
– Holdover from dictionary managed tablespaces
– Brought about because SMON won’t coalesce adjacent

free extents in a tablespace with a default pctincrease
of 0

– The reason SMON wouldn’t do that is because you
should have set initial=next, obviating the need for
expensive coalescing.

– That would have had the nice side effect of removing
fragmentation

– But setting pctincrease to 1 killed all of that.
– It ain’t so anymore (if it ever was – see next slide…)

PCTINCREASE 1
ops$tkyte@ORA817DEV> create table t (x int)
 2 tablespace testing storage (initial 1k pctincrease 1 minextents 100);
Table created.

ops$tkyte@ORA817DEV> select blocks, count(*) from user_extents
 2 where segment_name = 'T' group by blocks order by 1;

 BLOCKS COUNT(*)
---------- ----------
 2 1
 5 1
 10 5
 15 5
 20 5
 25 5
 30 5
 35 5
 40 5
 45 5
 50 5
 55 5
 57 1
 59 1
 60 3
 62 1
 64 1
 65 1

 BLOCKS COUNT(*)
---------- ----------
 66 2
 67 1
 69 1
 70 3
 71 1
 73 1
 74 1
 75 2
 76 1
 78 1
 79 1
 80 2
 81 1
 83 1
 84 1
 85 2
 86 1

 BLOCKS COUNT(*)
---------- ----------

 87 1
 89 1
 90 1
 91 1
 93 2
 94 1
 95 2
 97 1
 98 1
 99 1
 100 2
 101 1
 103 1
 105 1

49 rows selected.

‘Obvious’ things “I learned” from the net

• Tables should have one (or few) extent(s)
– Nugget of Truth with a dictionary managed tablespace and objects

you DROPPED or TRUNCATED
– Releasing extents was expensive
– Allocating extents frequently was expensive
– But, if a table was already in N thousand extents – would putting it

in a few make it better?
• You’d have that horribly expensive release
• A reload
• And nothing else

– Consider Index Access
– Consider Full table scan
– It ain’t so anymore (if it ever was…)

‘Obvious’ things “I learned” from the net

• Separate Indexes from Data
– “Tablespaces containing tables, and tablespaces

containing indices corresponding to them, would be like
locating matter and antimatter on the same spindle”

– Why? It isn’t like Oracle accesses them in parallel
– Nugget of truth buried in history, old history, long ago

history.
• Attempt to spread IO out
• Could have been done with lots of small extents

(round robin)
• But that would conflict with the previous slide!
• It ain’t so anymore

‘Obvious’ things “I learned” from the net

• Google “oracle tuning tips”
– First hit = Calculate buffer cache hit ratio in the database. Make

sure it is more than 80 for an OLTP environment and 99 is the best
value.

– Appears to be the top 10 (not just in)
– It is a metric, not a goal
– It ain’t so (ever)
– “Hey, we increased the buffer cache in our data warehouse, all of a

sudden cache buffers chains latches are 35% of our wait time!”

‘Obvious’ things “I learned” from the net

• Remove large-table (or even all) full table scans
– Generally true but…
– Becomes a mantra for many and isn’t always the case

• Spend inordinate amount of time hinting and playing games to
get indexes used

• Only to never measure that the full scan was superior
• Simple example coming up

– And in a warehouse “it just ain’t so”
– Full scans – something to look for, not something to make extinct
– It ain’t so

‘Obvious’ things “I learned” from the net

• Remove large-table full table scans
I want to update a table with one go on online system. A table
has 200,000 records with 110 columns. When i give the update
command it takes ~ one hrs.I don't know why it is taking so much
time even though I made sure an index is created on app_flg –
that particular field. app_flag has only two values Approved or
unapproved.By default is unapproved.

select count(*),app_flg from test;

170,000 approved
 30,000 unapproved

update test set app_flg='APPROVED' where app_flg='UNAPPROVED'

it took 1hr to update the records and other application online
users processing got slowed down and locks started to occur on
the table.

‘Obvious’ things “I learned” from the net

• Remove large-table full table scans

I have solved that problem, the index was
dropped. The updates are as fast as you can
think.

‘Obvious’ things “I learned” from the net

• Issue frequent commits
– Theories behind it:

• Enhances performance (faster)
• Resource utilization is minimized
• In other databases that employ read locks…
• Wonder why JDBC and ODBC autocommit after each

statement by default?
– Realities

• Leads to ORA-1555
• Destroys transactional integrity
• Runs slower
• Generates more overall undo and redo

– Your transaction size is driven by one thing – your business rules.
– It ain’t so

‘Obvious’ things “I learned” from the net

• Indexes need to be rebuilt frequently or on a
schedule

– Since space is never reused (myth)
– And they get unbalanced (myth)
– It’ll make them smaller (sometimes yes, sometimes no)

• 10,000 leaf nodes with 1 entry/leaf -> smaller
• 10,000 packed leaf nodes -> bigger
• Most probable is no change at all

– It ain’t so
– www.actoug.org.au/Downloads/oracle_index_internals.pdf

‘Obvious’ things “I learned” from the net

• Most selective fields should go first
– (yes, the doc bug was filed to fix the question in the docs!)
– I’d say least selective should (skip scans, compression)
– In any case – where a=:a and b=:b performs the same regardless

of selectivity and ordering of A,B in the index
– HOW you use the index dictates column ordering

• CREATE TABLE T as SELECT * FROM ALL_OBJECTS and
ask the following

o Get details on Scott’s EMP Table
o Show me the indexes owned by Scott
o Show me Scott’s objects
o Object Name is “most selective”, but should go dead last

– It ain’t so…

‘Obvious’ things “I learned” from the net

• Views are evil things that slow down performance
– Nugget of truth – teeny tiny nugget
– Views when improperly applied to a problem may lead

to sub-optimal query performance. BUT
• It is typically an apples/oranges comparison
• That is, the result from the view with extra predicates

layered on top are different then the results from the
query without the view

– Views are tools, no tool is 100% evil or 100% good
– It ain’t so…

‘Obvious’ things “I learned” from the net

• Count(1) is superior to count(*)
– Funny thing is – in 8i, count(1) was optimized to be

count(*) internally
– Count(1) was slower (probably why the optimization

was made, everyone did it that way and it was slower)
– It just ain’t so and never was

‘Obvious’ things “I learned” from the net

• Primary keys must have a unique index
– Used to be true (in 7.3 and before!)
– Changed in 8.0 with deferrable constraints
– Can be very useful

• MV refreshes
• Update Cascades

– It just ain’t so anymore

‘Obvious’ things “I learned” from the net

• It is always the database (always)
– Time and attendance application
– Worked great most of the time
– Just ported from Informix to Oracle
– Biggest install to date.
– “works great on Informix”
– Was getting totally locked up on Oracle
– What was wrong…

Amazing things I’ve heard that people “know”

• Shared server shouldn’t work that way.
• No, we don’t have a backup of rollback. That’s not

our data – why should we need that just to recover
our database (they “knew” they didn’t need to back
that up)

• No, we just copied the datafiles – we heard that
putting a tablespace in backup mode generated
extra redo so we avoided that overhead

• We just know we can recover, we don’t need to
actually try it out.

5 questions

• What does your group know that it knows it knows
– We know backup & recovery provably so

• What does your group know that it doesn’t yet know it
knows

– We should have been able to predict the need for “resource x”, had
we been watching

• What knowledge does your group lack that it knows it lacks
– Perhaps the easiest of all if you are honest

• What knowledge does your group lack that it doesn’t know it
lacks

– What haven’t you tested?
• What does your group know that “just ain’t so”

– Look at your “standard operating procedures”

There are lots of “experts” out there

• Make them prove everything
• Statements that should raise your eyebrows:

– It is my opinion...
– I claim...
– I think...
– I feel…
– I know
– It always worked that way

• Things change, expect that
• It only takes a single counter case
• Nothing is 100% good, nothing is 100% evil

– It is about understanding when to do what and
as importantly – when not to do what

nswers

uestions

