
NYOUGNYOUG

Improving Scalable Performance
Using Clustered Caching

Cameron Purdy
President
Tangosol, Inc.

NYOUG, 9 June 2005



NYOUGNYOUG

Introduction

Cameron Purdy
• President and founder of Tangosol

• Contributor to Java and XML specifications

• JCache (JSR107) specification lead

Tangosol Coherence
• Leading clustering and grid computing software for Java and

J2EE, with hundreds of successful production deployments.

• Coherence enables in-memory data management for clustered
J2EE applications and application servers, and makes sharing,
managing and caching data in a cluster as simple as on a
single server.



NYOUGNYOUG

Predictable Scalable Performance

Defining “Scalable Performance”
• It is NOT just focused on making an application faster!

• Performance: Overall response times for an application are
within defined tolerances for normal use and remain within
those tolerances up to the expected peak user load.

• Scalable: There is an understanding of the required resources
to support additional load without exceeding those tolerances.

• Predictable: There can be certainty that additional resources
will handle the load.



NYOUGNYOUG

Predicting Scalable Performance

Measuring Scalable Performance
• Resource Usage: Quantifying the effect of each user

• Concurrency: Determining how additional users affect the
scalability of an application

• Complexity: Understanding the number of tiers involved in
servicing a request, and how often each is involved

• Cost: The effects of each of the above on cost



NYOUGNYOUG

Obstacles to Scale

Resource Usage: Later Tiers
• There is a cost when a tier invokes a later tier

• Collocation of tiers reduces inter-tier communication

• Applications that have to talk to the database on each request
will suffer from scalability problems

• The Database tier is difficult and expensive to scale; it is
difficult to scale a database server to more than a single host,
and it becomes exponentially more expensive to add CPUs

• Database servers scale sub-linearly at best with additional
CPUs, and there is a CPU limit



NYOUGNYOUG

Obstacles to Scale

Summary
• Architect so that the application is CPU- or memory-bound,

and that the bottleneck is in the application tier at the latest

• For high-scale applications, make sure that the bottleneck will
never be the data source (mainframe service, database)

• Benefit: You can use server farms and server clusters to scale
an application almost linearly and with a predictable cost per
user



NYOUGNYOUG

Clustering for Scale

Clustering enables multiple servers or server
processes to work together

Clustering can be used to horizontally scale a
tier, i.e. scale by adding servers

Clustering usually costs much less than buying a
bigger server (vertical scaling)

Clustering also typically provide failover and
other reliability benefits



NYOUGNYOUG

Clustering for Scale

Clustering Categories
• Master/Slave: For availability

• Parallel: For scalability, e.g. stateless web server farms

• Centralized: Single server for coordination (can represent
bottleneck and/or SPOF)

• Hierarchical: Multi-tiered centralized model

• Peer-to-Peer: Servers work independently, but have
knowledge of and direct access to the entire cluster
(cooperative worker model)



NYOUGNYOUG

Clustering for Scale

Primary benefits of Clustering:
• If the application has been built correctly, it supports a

predictable scaling model

• Clustering allows relatively inexpensive CPU and memory
resources to be added to a production application in order to
handle more concurrent users and/or more data

Increase application throughput

Increase the in-memory data capacity of the application

• Uses redundancy to improve availability

Simple (n+1) model



NYOUGNYOUG

Clustering for Scale

The Potential for Negative Scale
• Single server mode often permits unrestricted caching ..

• .. since clustering may imply the disabling of caching ..

• .. two servers often handle less load than one!

Data Challenges in a Clustered Environment
• Maintaining the data in sync in the cluster is the biggest

challenge for applications that have to cache read/write data

• If multiple application update the data source, then the app
caches need a way to stay in sync with the persistence tier

Triggers, Polling and custom App-To-App integration

• How to failover servers without losing in-memory data?



NYOUGNYOUG

Clustered Caching for Scale

Common uses for Clustered Caching
• HTTP Session Caching for stateful applications

• Page, Document and Segment Caching

• Application Data Caching: Your Own Java Objects (YOJOs ;-)

• Load Balancing of Data Operations

Information Fabrics

Compute Farms

Offloading XML Transformations

• Dramatically reduce database load by using read-through,
write-through and write-behind caching

There is no better way to increase scalability than to use caching
to unload later tiers!



NYOUGNYOUG

Clustered Caching for Scale

Cache Coherency
• A cache that is “coherent” shows the same contents at every

location within a distributed or clustered environment

• Caches of read-only data are automatically coherent!

• The choice for clustered caching of read/write data:

Accept a certain amount of data staleness

Maintain cache data coherency across the cluster

• Clustered data coherency implies a means to synchronize:

Clustered concurrency control (like Java “synchronized”)

Distributed Transactional Caching

• Interposing the data caches between the application logic and
the data source prevents loss of consistency



NYOUGNYOUG

Replicated Caching

Challenge : Extreme Performance.

Solution : Cache Data is Replicated to all
members of the cluster.

Zero Latency Access : Since the data is replicated
to each cluster member, it is available for use
without any waiting. This provides the highest
possible speed for data access. Each member
accesses the data from its own memory.



NYOUGNYOUG

Replicated Caching

Access to a Replicated Cache



NYOUGNYOUG

Replicated Caching

So, what’s the catch?



NYOUGNYOUG

Replicated Caching

Update to a Replicated Cache



NYOUGNYOUG

Replicated Caching

Scalability Limits with Replicated Caching
• Cost Per Update : Updating a replicated cache requires pushing

the new version of the data to all other cluster members,
which will limit scalability if there are a high frequency of
updates per member.

• Cost Per Entry : The data is replicated to every cluster
member, so Java heap space is used on each member, which
will impact performance for large caches.



NYOUGNYOUG

Replicated Caching

So, how to solve the scalability issue?



NYOUGNYOUG

Partitioned Caching

Challenge : Extreme Scalability.

Solution : Transparently partition the Cache Data
to distribute the load across all cluster members.

Linear Scalability : By partitioning the data
evenly, the per-port throughput (the amount of
work being performed by each server) remains
constant.



NYOUGNYOUG

Partitioned Caching

Access to a Distributed Cache



NYOUGNYOUG

Partitioned Caching

Benefits of partitioning
• Scalability : The size of the cache and the processing power

available grow linearly with the size of the cluster.

• Load-Balanced : The responsibility for managing the data is
automatically load-balanced across the cluster.

• Ownership : Exactly one node in the cluster is responsible for
each piece of data in the cache.

• Point-To-Point : The communication for the distributed cache
is all point-to-point, enabling linear scalability.



NYOUGNYOUG

Partitioned Caching

Update to a Distributed Cache



NYOUGNYOUG

Partitioned Caching

Failover : Cache services can provide failover and
failback without any data loss, and that includes
partitioned caches:
• Configurable level of redundancy (backups)

• Any cluster node can fail without the loss of data.

• Data is explicitly backed up on different physical servers



NYOUGNYOUG

Partitioned Caching

Failover of a Distributed Cache



NYOUGNYOUG

Partitioned Caching

Local Storage : Cluster nodes with local storage
enabled will provide the cache and backup
storage for the distributed cache. Cluster nodes
with local storage disabled will still have the
same exact view of the data, even though they
are not actually managing any of the data.



NYOUGNYOUG

Partitioned Caching

Storage configuration of a Distributed Cache



NYOUGNYOUG

Partitioned Caching

So, how to solve the latency issue?



NYOUGNYOUG

Near Caching

Challenge : Best Scalable Performance.

Solution : Add in-memory performance to
distributed cache scalability.

Coherency : Provides a number of cache-
invalidation strategies, including simple expiry
and event-based invalidation.



NYOUGNYOUG

Near Caching

Access to a Near Cache
JVM1 needs to load values to the ‘front local cache’, JVM3 already has them loaded



NYOUGNYOUG

Near Caching

Update to a Near Cache



NYOUGNYOUG

Near Caching + Storage Enabled Option

Update to a Near Cache



NYOUGNYOUG

Read-Through / Write-Through Caching



NYOUGNYOUG

Write Behind Caching



NYOUGNYOUG

Applications to WS Infrastructure

WS requires HA and Scalability, just like any
other line-of-business process

Stateful WS conversations require scalable,
reliable state management

WS often require large extents of data (lots of
reads, lots of joins), meaning that WS requests
have many opportunities for cache optimizations

WS can use significant transform cycles, which is
a task that begs for a transform farm



NYOUGNYOUG

Clustered Caching Summary

Clustering provides reliability through
redundancy, and scalability by horizontal scale

Applications that delegate all state management
to the database will not scale well

Clustered caching can significantly reduce the
back-end load, resulting in scalable performance

Decoupling the application from the back end
(using caching, clustered data, write-behind and
JMS) can help make applications Highly Available



NYOUGNYOUG

Improving Scalable Performance
Using Clustered Caching

Cameron Purdy
President
Tangosol, Inc.

NYOUG, 9 June 2005


