
Code Generation in the World of
Business Rules

Michael Rosenblum
Dulcian, Inc.

www.dulcian.com

Background

Definitions of business rules range from:
 “A nice way to write reasonable analysis documents”

to
“The system itself”

Implementation rules => Developer’s world
Analysis rules => System Architect’s world

Part 1:
Rule-Based Systems -

Repository Access Approaches

Business Rule-Based Systems

Flexible enough => to allow for future
modifications which may not be foreseen at the
time of development
Scalable enough => to handle significant data
growth over time
Generic enough => to survive a significant
platform/front-end change (Java, JSP, JSF,
XMLDB....etc.).
Fast enough => to produce specified level of
performance, given limited resources

Business Rules Repository:
 Real world and IT

Developers use SQL and analysts use English.
Business rules have to be centrally stored in the database to
communicate.

SPECS

Real World

SPECS

SPECS SPECS

Analysis
Document

Analysis

Information System

Business
Rules

Repository

Front-End

Implementation

Front-End

Database

Implementation

Business Rules Repository:
 Access Approaches

Since the repository is inside of the database:

Workflow can be dynamically controlled.
Interpreters => run-time access to business rules

Workflow could be represented as database objects.
Generators => run-time access to generated objects

Interpreted access example

Business rule: “The start date of an employee’s
timesheet should not be later than its end date.”
Implementation:

Detect validation point.
Find appropriate rule in the repository.
Translate rule from business terms to database terms.
Validate original object using interpreted rule.
Interpret the result.
Flag main routine regarding the success or failure of the
rule and execute appropriate actions.

Pros and Cons of Interpreters

Pro:
Changes to business rules
and changes to their
interpretation have an
immediate impact on the
system.

Con:
Major performance
drawback because the
database must perform
many operations just to
compare two dates.

Generator example

Business rule: “The start date of an employee’s
timesheet should not be later than its end date”.
Implementation:

The validation firing point should be the state
change of the timesheet from NotSubmitted to
Submitted.
In the database, that rule could be implemented on
the BEFORE UPDATE trigger
If a rule fails, an exception must be raised

Example Code
CREATE OR REPLACE TRIGGER timesheet_bu
 BEFORE UPDATE ON timesheet
REFERENCING NEW AS NEW OLD AS OLD
Begin
 if updating('state_cd')
 then
 if :new.state_cd='Submitted' then
 if :new.start_dt>=:new.end_dt then
 raise_application_error(-20999,

'Rule 10 violated: start date
cannot be later than end date');

 end if;
 end if;

end if;
end;

Pros and Cons of
Code Generation

Pros:
Performance benefits

Cons:
Any modification to the
business rule now will
require regeneration of the
objects that reference it.
Significant problems in a
production system
because of Oracle feature
of invalidating all objects
referencing recompiled
ones.

Common feature of both
approaches

Both approaches have one major concept in common:

The implementation of the business rules
is independent of their specification.

Business rule: “Start date of the employee’s timesheet
should not be later than its end date”

No mention of tables, columns, queries etc.
System architect’s problem to determine the appropriate
implementation mechanism.

Implementation differences

Interpreted approach
Translate the rules into database terms and the results
from the database terms by generating SQL, XML,
conversion maps etc.

Compiled approach
Generate database or other objects using PL/SQL,
Java, XML, JSPs, etc. in order to implement the
business rules.

Role of generators in rule-
based system

Generators can be tuned or changed without touching
the business rules.
Expected performance could be achieved without a
major re-architecting of the system.
If new requirements can be stored in the repository, the
generators can be updated to support them.

Other parts of the system will not be affected by the changes.
Generation algorithms can be changed depending upon
the available data volume, system configuration, etc.
Generators can be substituted or extended to work with
other languages and platforms without altering the
business rules.

Important!

No business rules-based system can be
implemented without some type of

code generator.

Part 2:
Interpreters

Interpreters

In the world of business rules:
 “Interpreted” ~ queries are built on the fly via
generic routines.

Begin
Execute immediate “select … from … ” into
…;

End;

Generic routines cover all possible tasks as broad as
possible.
Repository is accessed each time we need to build
executable code.

Interpreters:
1. Declarative generators

Many attempts to create a pseudo-language to allow
definition of rule written in English to be easily
translated into a set of database commands and
conditions.
Most attempts did not perform as promised.
Few IT environments need to support thousands of
declarative rules:

(Ex. “If gender is male and age is above 45, then recommend
yearly heart checkup”).
Even in very large systems, there may only be a few hundred
of them spread around the large data or process model.

State Transition Engine
Example

Transition with the rule on it.
 If it succeeds, the object will be moved to the state
“Recommend heart checkup.”

From the repository point of view, the rule should look
like:
RuleId: 11
BelongsTo: Transition 10
RuleText: gender is male and age is above 45

Select type of
Health checkup Males over 45 Request yearly

heart checkup

Solution

Add one extra column for each implementation
environment (SQL, Java etc).
Column is populated after the first cycle of analysis by
the software developer based on the text of the rule:
ExecutableRule:
emp.gender=’Male’ AND emp.age>=45

Generic validation routine

Pass table (where the object is stored), primary
key, and column to store the primary key into
the function => allow the system to uniquely
identify the desired object.
Pass transition to be able to select the applicable
rules and their translation to PL/SQL.
Use Dynamic SQL => check rules against
identified object.

Generic validation routine
function f_validate (pin_pk_id number, pin_pk_column_cd varchar2,
 pin_class_cd varchar2, pin_trans_id number)
return boolean is
 cursor c1 is
 select ExecRuleTx from ste_rule where trans_id = pin_trans_id;

 ...
begin
 open c1;
 loop
 fetch c1 into v_rule_tx;
 exit when c1%notfound or v_hasfailedrule_b=true;
 execute immediate 'select count(*) from '||pin_class_cd||
 ' where '||pin_pk_column_cd||'='||pin_pk_id||

 ' and ('|| v_rule_tx ||')' into v_out_nr;
 if v_out_nr=0 then
 v_hasfailedrule_b:=true;
 end if;
 end loop;
 close c1;
 return v_hasfailedrule_b;
end;

Interpreters:
2. Event-Condition-Action Generators

A set of UI elements:
button1 (named “Set Default End Date”),
textField1 (contains start date),
textField2 (contains end date)

Elements may have events
 button1 is associated with the event “Press.”

Events may have conditions:
“End date is null.”

If the condition is satisfied, the event has a set of
actions:

Set end date equal to start date + one month both on the
screen and in the database.
Disable the end date field.

Algorithm

Notify the database about the event.
Generate a list of appropriate actions
Check all corresponding rules for each action.
Retrieve the list of actions that correspond to
the event
Interpret list of actions at the client side into
tool-specific command

Example
function f_checkRule (pin_astion_id number) is
 cursor c1 is
 select r.condition_tx, r.executable_rule_tx, r.Class_CD
 from ar$rule r
 where action_id = pin_action_id;
 ...
begin
 open c1;
 loop
 fetch c1 into v_rec;
 exit when c1%notfound or v_hasfailedrule_b=true;

 execute immediate
'select count(*) from '||c.Class_CD||
' where '||pin_pk_column_cd||'='||pin_source_object_id||

 ' and ('|| v_rec.executable_rule_tx ||')' into v_out_nr;
 if v_out_nr=0 then
 v_hasfailedrule_b:=true;
 end if;
 end loop;
 close c1;
 return v_hasfailedrule_b;
end;

Interpreters:
3. Communication Interface Generators

Requirements:
 Front-end environment working against XML-based
forms.
Set of APIs only worked with specially formatted
XML documents.

Problems:
Can’t expect changes in the API

Need to create two-way parser
Documents are specially formatted

Not possible to use internal XML parsers from the
database.

Solution: Database to XML

Map existing data into the appropriate XML tags.
(discussed later)
 Generate an XML-document procedurally as a
regular text document from the maps.
 Store the original CLOB in the table.
Query CLOB from the client side.
Convert the text into an XML-document.
Apply the required APIs.

Solution: XML to Database

Compare the modified XML-document with the
master copy.
Store the differences as CLOBs in the table.
Map XML tags to real columns.
Update identified columns with new values.

Challenges

Manual creation of XML
Some characters are special for XML
(“>”,”<”,”&”,” %”)
Others could be special in the database (single
quotes, characters from different languages).

A converter of strings into the XML-compatible
format may be useful.

Part 3:
Compilers

Compilers

In the world of business rules:
 “Compiled” ~ some physical objects (tables, procedures, files
etc.) will be created.

Begin
Execute immediate “create or replace package …”;

End;

Objects fully (or as much as possible) represent the set of
business rules
Executable code will need to access the repository fewer times.

Compilers: 1. Data Models
Data models represent structural business rules.
Dynamic SQL => all database objects (tables, views,
constraints, triggers) could be generated from the
repository
More than one way to implement the same rule:
 “field <gender>can only have values male/female” :

FK from the EMP table to the reference table.
Check constraint on EMP
Before-Update trigger

Possibility to rename/alter items in real time =>
implement business rule changes on the fly.

Main task:
Create Original Code

Purpose:
Test versions
Quick prototypes

Advantage
Using the generator means that you always know
what is going on in the database.

Challenge
Limited notation of ERD => problem of
implementing UML in relational database

Example
Maintaining historical records on a class.

Add two new columns to the table:
start_dt and end_dt

Add three new columns to the view:
 start_dt, end_dt and active_yn
If end_dt is populated => object is inactivated.
If end_dt is set to Null => object is reactivated.
Add Before-(Insert, Update, Delete) to the view to
prevent any activity on the object if it is inactivated
except for update of end_dt

Main task: Maintain changes

Purpose:
Implementation of changes to the rules repository

Challenge
Need to maintain a strict one-to-one relationship between the
definition of a business rule and its implementation.

Example
 Modify name of the class

procedure setTableName(in_class_id number,
 in_oldclasscode_tx varchar2,
 in_newclasscode_tx varchar2) is

 v_ddl_tx varchar2(2000);
begin
 v_ddl_tx:='rename '||in_oldclasscode_tx||
 ' to '||in_newclasscode_tx;
 execute immediate v_ddl_tx;

 v_ddl_tx:='alter table '||in_oldclasscode_tx||
 ' rename column '||in_oldclasscode_tx||||‘_OID ||
 ’ to '|| in_newclasscode_tx||'_OID';
 execute immediate v_ddl_tx;
end;

Compilers: 2. Process models

A workflow can (and sometimes should) be
represented as generated code.
Major drawback of implementing advanced
process flows is the large number of repository
requests.
If all communications between different states of
the flows could be generated, not much else is
required.

Dulcian STE notation

Extension of UML activity diagram:
Classes can have workflows consisting of states.
States can have events.
States are connected by transitions.
Transitions are initiated by special kinds of events.
Transitions can have rules. If a rule fails, then
navigation via the transition is impossible.
Events can have rules. If a rule fails, then the event is
aborted.
Events and transitions can have corresponding tasks.

Sample state with transitions

State #1
SELECT TYPE OF

HEALTH CHECKUP

BeforeOpen Event

A
U

TO
-D

EC
IS

IO
N

State #2
REQUEST YEARLY
HEART CHECKUP

State #3
REQUEST YEARLY

MAMMOGRAM

State #4
SKIP CHECKUP

Trans #10

Rule #1: Males over 45

Trans #20

Rule #2: Females over 45

Trans #30

Example
procedure p_auto_1(SelfOID in Number) is
Begin
 /*BeforeOpen*/
 emp.setHealthValidationDt(sysdate);
 /*:HealthValidatoinDt:=sysdate*/

 if (emp.getAge(selfOID)>=45 and emp.getGender(selfOID)='Male')
then

 /*(:Age >= 45 and :Gender='Male')*/
 ste$pkg.setState(SelfOID,2,10); --object,state,transation
 elsif (emp.getAge(selfOID)>=45 and

emp.getGender(selfOID)='Female') then
 /*(:Age >= 45 and :Gender='Female')*/
 ste$pkg.setState(SelfOID,3,20); -- object,state,transation
 elsif 1=1 then
 /*No Rule*/
 ste$pkg.setState(SelfOID,4,30);
end if;
End;

Advantages of extended
UML notation

Higher level of abstraction in the definition of a state
(about 1 high-level state for every 60 in a regular
flowchart)
Smaller number of logical structures involved
(IF..THEN, LOOP, etc.) => simplify the code
Predefined and limited number of events => precisely
identify the elements to be generated
Any event (with rules and tasks) can be represented as a
set of commands in any procedural language.
Any transition (with rules and tasks) can be represented
as a set of commands inside of the initiating event.

Compilers: 3. Data mappings

Problem working with XML-based forms:
Architecturally, forms were exact copies of the
paper forms
Data model was significantly different from what
was shown on the screen.

Challenge:
Map stored data into XML tags.
Mandatory to decrease workload on the client
machines.

Solution

Full two-way conversion of stored data into the
precise data representation required for the client
code.
Special mapping repository was created to carry
out the conversion.

MAP MAP_
READ

MAP_READ_
COLUMN

MAP_
WRITE

MAP_
COLUMN

Consists of1
1..*

1
0..*

May be divided

11
0..*

Results

0..*

1

1..*

Corresponds to

Sub-divides into

Solution (continued)

Originally DB XML and XML DB maps
were used.
Later this architecture was extended to support
DB DB maps => extremely powerful
migration utility

Generic definition of the source and target =>
migration maps between completely different data
models of any level of complexity.

Conclusions

So what?

Advantages of using
generators

Build systems “better”:
Improve flexibility, performance, maintainability, scalability
etc

Build systems “faster”:
90% of the code is generated => less time to create, less time
to implement the change

Build systems “cheaper”:
Shorter development cycle.
One top-level developer is still cheaper than 10 low-level
Less chance for human mistakes, miscommunication etc.

Guidelines for using
code generators

Keep them in mind from the very beginning of
the project.

Flexible data sources => generate queries
Logical processing => generate workflows
Process a lot of data => generate batch workflows
Future extensions of the system => generate data
model
Data transformations => generate maps
Communication with other language systems =>
create converters.

Dulcian’s BRIM® Environment

Full business rules-based development
environment
For Demo

Write “BRIM” on business card
Includes:

 Working Use Case system
“Application” and “Validation Rules” Engines

Contact Information

Michael Rosenblum mrosenblum@dulcian.com
Code examples from these slides are available in the
accompanying paper on the Dulcian website

www.dulcian.com
See Conference Papers and Presentations/Presentations
by Conference/ODTUG 2005

