
Dr. Paul Dorsey
Dulcian, Inc.

www.dulcian.com

December 13, 2005

Ultra-High Performance SQL and
PL/SQL in Batch Processing

Overview

The Problem:
Processing large amounts of data using SQL and
PL/SQL poses unique challenges.

The Story:
Traditional programming techniques cannot be
effectively applied to large batch routines.

The Real Life:
Organizations sometimes give up entirely in their
attempts to use PL/SQL to perform large bulk
operations!

ETL Tools

“Bulk” idea (used by market leading ETL tools –
Ab Initio or Informatica) :

copy large portions of a database to another location;
manipulate the data;
move it back.

ETL vendors:
specialists at performing complex transformations it works!
sub-optimal algorithm it is expensive!

Home-grown tools:
How to outperform the available ETL tools???
Different programming style of batch development!!!

Case Studies

3 case studies with different scenarios:
1. Multi-step complex transformation from source to
target
2. Periodic modification of a few columns in a
database table with many columns
3. Loading new objects into the database

Presentation will discuss best practices in batch
programming.

#1 Multi-Step Complex
Transformation from

Source to Target
Classic data migration problem.
14 million objects a complex set of
transformations from source to target.
Traditional coding techniques (Java and
PL/SQL) bad performance:

Java team
Pure OO-solution (Get/Set methods etc.)
One object per minute (~26.5 years to execute the month-
end routine).

Same code refactored in PL/SQL
Exactly the same algorithm as the Java code
Significantly faster, but still would have required many
days to execute.

Case Study Test #1

Table with only a few columns (3 character and 3
numeric)
Load into a similar table while performing some
transformations on the data. The new table will have a
million records and be partitioned by the table ID (one
of the numeric columns).
Three transformations of the data will be shown to
simulate the actual complex routine.

Sample Transformation

select a1,
 a1*a2,
 bc||de,
 de||cd,
 e-ef,
 to_date('20050301','YYYYMMDD'),--option A
 sysdate, -- Option B
 a1+a1/15,-- option A and B
 tan(a1), -- option C
 abs(ef)
from testB1

A. Complexity of
Transformation Costs

Varying parameters created very significant differences.
Simple operations (add, divide, concatenate, etc.) had no
effect on performance.
Performance killers:

Function Calls (even built-it like sysdate):
Calls to sysdate in a SQL statement - no impact on performance.
Included in a loop can destroy performance

Complex calculations
This cost is independent of how records are processed.
Floating point operations are just slow (Calls to tan() or ln() take longer
than inserting a record into the database)
10g: binary_float data type that could help in some cases

B. Methods of
Transformation Costs

Various ways of moving the data were
attempted.

Worst method = loop through a cursor FOR loop
and use INSERT statements.
Even the simplest case takes about twice as long as
other methods so some type of bulk operation was
required.
Rule of thumb: 10,000 records/second using a cursor
FOR loop method.

1. CREATE-TABLE-AS-
SELECT (CTAS)

Fairly fast mechanism
For each step in the algorithm, create a global
temporary table.
Three sequential transformations still beat the
cursor FOR loop by 50%.
Note: adding a call to a floating point operation
drastically impacted performance.

It took three times as long to calculate a TAN() and
LN() as it did to move the data.

2. Bulk Load into Object
Collections

Load the data into memory (nested tables or
VARRAY) and manipulate the data there.
Problem: Exceeding the memory capacity of the
server.

Massive collects are not well behaved.
Actually will run out of memory and crash. (ORA-600)

Limit number of records to 250,000 at a time
Allows the routine to complete
Not very good performance.
Data must be partitioned for quick access.

Assuming no impact from partitioning, this method
was still 60% slower than using CTAS.

3. Load Data into Object
Collections N Records at a Time

1. Fetch 1000 records at once.
Simple loop used for transformation from one object
collection to another. The last step was the second
transformation from the object collection cast as a table.
Performed at same speed as CTAS.

2. Use FORALL
Oracle 9i, Release 2 - cannot work against object collections
based on complex object types.

Approach provided the best performance yet.
8 seconds saved while processing 1 million records
Reduced overall processing speed to 42 seconds

4. Load Data into Object
Collection 1 Record at a Time

Use cursor FOR loop to load a COLLECT, then
operated on the collection.
Memory capacity exceeded unless number of records
processed was limited.
Even with limits, method did not perform
significantly faster than using a simple cursor FOR
loop.

Summary of results

26018896964x250K

Out of memory1MNext transformation
cast

24417380804x250K

Out of memory1MNext transformation
via loop (full spin)

Load data 1 record
at a time; first step
is regular loop

20613542421M1000 rows per bulk,
second step splits into
the set of collections,
Third step is FORALL

21912654541M1000 rows per insertsLoad data N
records at a time;
first step is BULK
COLLECT
LIMIT N

22014856564x250K

Out of memory1MProcess second step as
FOR-loop

24016876764x250K

Out of memory1MCast result into tableFull bulk load

20213751511M2 buffer temp tablesCTAS

D
+sysdate

+tan()+ln()

C
+sysdate
+tan()

B
+

sysdate

A
Simple

DataExtraMethod

Case Study Test #2

Real case
Data - table with over 100 columns and 60 million records
Action - Each month, a small number of columns within these records
needed to be updated.
Existing solution - update all 100 columns.

Goal
find impact of sub-optimal code.

Testing case
Source A = 126 columns, 5 columns with changed data.
Source B = 6 columns (5 columns with changed data and PK)
Target table being updated either had 5 or 126 columns.
Tried processing 1 and 2 million records.
Used the following syntax:

Update target t set (a,b,c,d,e)=
(select a,b,c,d,e from source where oid = t.oid)

Results

Updating 5 columns:
SQL is 50% faster on 6-column table (comparing to
126-column table)
PL/SQL is the slowest option.

Updating all columns (unnecessarily):
 on the 126-column table more than doubled
processing time.

Lessons Learned

Separate volatile and non-volatile data
Only update the necessary columns.

Summary of Results

6304202M

4704002x1MCursor spin:
Declare
 Cursor c1 is
 Select *
 From source;
Begin
 For c in c1 loop
 Update target

 set a=c.a, …
 where oid = c.oid;
 End loop;
end;

970N/A2x1MUpdate all columns:
Update target t
Set (a,b,c,d,e) =(select a,b,c,d,e

from source where oid = t.oid)

4453102M
4102802x1MUpdate only 5 columns:

Update target t
Set (a,b,c,d,e) =(select a,b,c,d,e

from source where oid = t.oid)

126 column
target

5 column
target

DataMethod

Case Study Test #3

Several million new objects needed to be read
into the system on a periodic basis.
Objects enter system 120-column table
Read from one source table load into a
number of tables at the same time (several
parent/child pair):

Functionality not possible with most ETL tools
Most ETL tools write to one table at a time.
Need to write to parent table - then reread parent table for
each child table to know where to attach child records

Test Structure
Source table:

120 columns
40 number
40 varchar2(1)
40 varchar2 (2000) with populated default values
OID column – primary key

Target tables:
Table A

ID
40 varchar2(2000) columns

Table B
ID
40 Number columns
Child of table A

Table C
2 number columns, 2 varchar2 columns, 1 date column
child of table A

Test Methods
Traditional method of spinning through a cursor

Poor performance
Generated an ORA-600 error.
Results worse than any other method tried.

Bulk collecting limited number of records - best approach.
Best performance achieved with large limit (5000).
Conventional wisdom usually indicates that smaller limits are optimal.

Simply using bulk operations does not guarantee success.
1. Bulk collect the source data into an object collection, N rows at a time.
2. Primary key of table A was generated.
3. Three inserts of N rows were performed by casting the collection.
No better performance than the simple cursor FOR loop.

Using bulk ForAll…Inserts
Performance much better - Half the time of the cursor FOR loop.

Using “key table” to make lookups with cursor FOR loop faster.
No performance benefit to that approach.

Test Result Summary (1)

504 sec4x250K

512 sec1M10000 rows
496 sec4x250K
503 sec1M5000 rows

520 sec4x250K
522 sec1M1000 rows
548 sec4x250K
558 sec1M100 rows

564 sec4x250K

578 sec1M50 rowsBulk collect source data into object collection
N rows at a time and generate A_OID
(primary key of table A) 3 inserts of N
rows (cast the collection)

508 sec4x250K

ORA-6001MLoop source table 3 consecutive inserts
(commit each 10,000 records)

TimingDataExtraMethod

Table Result Summary (2)

480 sec250K

605 sec1MFull insert with recording pairs (Source_ID;
A_OID) into PL/SQL table. Next steps are
querying that table to identify parent ID

272 sec250K

265 sec1M10000 rows

260 sec250K

263 sec1M5000 rows

264 sec250K

271 sec1M1000 rows

316 sec250K

317 sec1M100 rows

336 sec250K

344 sec1M50 rowsBulk collect source data into set of object
collections (one per each column) N rows at a
time + generate A_OID (primary key of table A)

 3 inserts of N rows (FORALL … INSERT)

TimingDataExtraMethod

Conclusions

Using “smart” PL/SQL can almost double
performance speed.
Keys to fast manipulation:

1. Correct usage of bulk collect with a high limit
(about 5000)
2. ForAll…Insert
3. Do not update columns unnecessarily.

Scripts used to create the tests
are available on the Dulcian website

(www.dulcian.com).

The J2EE SIG
Co-Sponsored by:

Chairperson – Dr. Paul Dorsey

About the J2EE SIG

Mission: To identify and promote best practices
in J2EE systems design, development and
deployment.
Look for J2EE SIG presentations and events at
national and regional conferences
Website: www.odtug.com/2005_J2EE.htm
Join by signing up for the Java-L mailing list:

http://www.odtug.com/subscrib.htm

J2EE SIG Member Benefits

Learn about latest Java technology and hot topics via
SIG whitepapers and conference sessions.
Take advantage of opportunities to co-author Java
papers and be published.
Network with other Java developers.
Get help with specific technical problems from other
SIG members and from Oracle.
Provide feedback to Oracle on current product
enhancements and future product strategies.

Share your Knowledge:
Call for Articles/Presentations

Submit articles, questions, … to
IOUG – The SELECT Journal ODTUG – Technical Journal
 select@ioug.org pubs@odtug.com

Dulcian’s BRIM® Environment

Full business rules-based development
environment
For Demo

Write “BRIM” on business card
Includes:

 Working Use Case system
“Application” and “Validation Rules” Engines

Contact Information
Dr. Paul Dorsey – paul_dorsey@dulcian.com
Michael Rosenblum – mrosenblum@dulcian.com
Dulcian website - www.dulcian.com

Developer Advanced
Forms & Reports
Developer Advanced
Forms & Reports Designer

Handbook
Designer
Handbook

Coming in 2006:
Oracle PL/SQL for Dummies

Design Using UML
Object Modeling
Design Using UML
Object Modeling

