
J2EE: Black Box in the Oracle World

December 2005



DBA Hot Seat:  Have these things ever
happened to you?

DBA Application Owner

IT Manager

Software Vendor



Hotseat comes from Unclear Ownership

Need evidence to show where the problem exists,
avoid “Finger Pointing” to the database

It’s an Application issue! It’s a Database issue!

App OwnerDBA



Unclear where to add capacity
investment?

Need to idendtify what improvement will occur before
expenditures or tuning projects…

Where do we put the hardware
investment – Database or App

Server?

DBA

Management

I need it…

J2EE Owner

I need it…



Problems must occur multiple times

Why did we have poor
performance this morning?

Management DBA

Not sure, we need
to wait for it to
happen again

Need to watch production
transactions, not just
synthetic/test transactions



Typical Multi-Tier System

J2EE layer

App Layer 
Oracle eBusiness 

Peoplesoft
Siebel
SAP

Custom apps

OS Independent OS Independent

Oracle database

OS Independent

Web Server

Web page request

Service Levels 
Measured Here…

…Blame assigned 
Here



Typical Java tools

Focus on system measurement, not Wait
Time/Service Time
Java details, no database visibility – but most
Java delays are due to database
No real time/constant monitoring



Typical Oracle Database Tools

Focus on database in isolation – no
connection to the J2EE application
Look system wide, not at individual SQLs
Count executions, not Wait Time
Traces for special sessions, no continuous
monitoring



System Centric Monitoring: How Can You
Manage Performance this Way?

Focus on system operation
No correlation to transaction
performance

Idle threads

Number of
requests

Waiting
Requests

Memory
Usage



Wait-Time Based Performance Analysis

Emerging best-practice for database tuning
• “You can’t tell how long something took by counting how

many times it happened. … If you’re only measuring event
counts, then you’re not measuring what the users care
about.”

—Optimizing Oracle Performance, O’Reilly Press

Oracle is starting to build wait-based tuning tools into
the database particularly in 10g

Tune by determining where processing time is spent



Track Wait Time,
Not System Counters

SQL 1

SQL 2

SQL 3

Resources I/O Network RedoLocks

• Watching Counters leads to wrong conclusions: Time is more relevant

• Total System Counters hide information:   Need breakdown to
individual steps in your transaction

5 R

25 R

50 Reads

Total
System
Counter

80K Reads

30 Minutes

15M

5M

6 M

10 M

100 Minutes

35 A

50 A

50 A

125 Attempts

4 M

200 Minutes

5M

4 M

200 Minutes

5M

5K Packets 216K Writes



1st Step: Course Grained Measure of Time
Between Systems



Many Tools Never See Inside Your
Multi-Tier Application

Black Box

Black Box

Black Box

Black Box

Black Box

Web – J2EE - Oracle

Standard approach: Treat each system as a Black Box
No detail inside the system
Where are the bottlenecks, and who is responsible?



3 Requirements for J2EE to Oracle Visibility

Every Transaction
Every Step inside each layer
Measure Time – That’s what users care about



Performance Monitoring where it Matters
Most

J2EE layer

App Layer 
Oracle eBusiness 

Peoplesoft
Siebel
SAP

Custom apps

OS Independent OS Independent

Oracle database

OS Independent

Web Server

Web page request

This is where the
wait time
accumulates



Desired Correlation Between Java and
Oracle

Key Questions to
Answer

Where are the
transaction
bottlenecks?

Why is Java
waiting on the

database?

What in the
App server is
driving my
Oracle load



Essential Step: Correlate Application Wait
Time to SQL Waits

Question:  Which SQL statements are causing Wait Time for
my application?



Correlate URL Requests to Specific SQLs

Question:  Which User Requests are responsible for driving
SQL Wait Times?



Result:  Identify Where the Bottlenecks
Occur

App Server Oracle Database



Get down to Details

Recall 3 requirements: 1. Individual
request

2. Every
step

3. Wait
time



Typical J2EE Performance Test Setup –
Trial and Error to Find Bottleneck

• Functional Test/ 
Memory Leaks

• Build Test 
Environment

4. Single session 
Profile – time measure

3. Simulate Load

5. Measure system 
parameters

6. Try some changes

Typical Cycle Desired Cycle
• Functional Test/ 
Memory Leaks

• Validate in 
Test Environment

3. Measure Real 
Transactions

4. Identify bottleneck
 steps

5. Monitor Service 
Time Compliance



Java Measurement Techniques

JMX – Heavy Load
Profiler – Test transactions only
Byte code instrumentation – Production
Monitoring
• Insert monitor byte into selected Java methods
• Jar file pre-processor = No runtime intrusion
• Test/validate instrumented jars on integration

system
• Download to production environment

Method execution correlates with JDBC/SQL



Identify Execution Paths

• SQL – Method Call – URL Request

• Allocate Wait Time to each



Conclusions

DBA does not have to take the blame
Solve database problems by understanding
the other systems
Look for Wait Time – that’s where the action
is
Connect SQL Waits with J2EE application time
Watch production data, not synthetic
transactions



About the Author

Don Bergal, Confio Software
Responsible for Product Management, among
other things…
17 Years software product management
across enterprise, telco, wireless, networking
donbergal@confio.com


