What Are You Expecting?
Oracle 10g's Expression Filter
Uncovered

An | ntroductory Overview

Melanie Caffrey
Harris Corporation
NYOUG - December, 2005

| ecture ODbjectives

What Exactly Is Expression Filter?

Attribute Sets and Expression Sets

Storing Expressions and the Evaluate Operator
Expression Indexing *

Validation Utility and the Exceptions Table
Uses and Benefits

Expression Filter Goodies and Gotchas

* You must be using the Enterprise Edition of the Oracle

Database to take advantage of expression indexing
capabilities.

What Exactly is Expression Filter?

A facility that allows you to write and store
WHERE clauses, essentially.

You store these WHERE clauses In a text column
of a table.

The database can watch the table and alert you
when rows matching any of the WHERE clause
expressions become available.

Expression processing functionality (procedures
and functions) are owned by the EXFSY S
schema.

How Does |t Work?

To describe data you're watching for,
you create the WHERE clause
expressions ahead of time.

Oracle Expression Filter processing

can Initiate whenever a new row IS
stored In the database and continues
on to find WHERE clauses that match
the new data In that row.

Attribute Sets

First, decide which elements or types of
values are important to you.

Each of these elements Is an attribute, and
the entire collection of attributes used by

an application using Expression Filter is an
attribute set.

You'll need to
O Name each attribute

® Specify a datatype for each attribute
© Name the entire attribute set

Creating an Attribute Set

First decide which tables you'll use towards expression filter capability:

SQL> CREATE TABLE student (SQL> CREATE TABLE section (

student_id NUMBER, section_id NUMBER,
name VARCHAR2(10), course_no VARCHAR2(6),

class_year VARCHAR2(10), section_no NUMBER,
registration_date DATE, location VARCHAR2(40));

prereqgs_needed VARCHAR2(1),
estimated_graduation_date DATE);

> CREATE TABLE enrollment (CREATE TABLE course (

enroll date DATE, course_description VARCHAR2(40),
section_id NUMBER, required_prereq VARCHAR2(6));

SQL
g student_id NUMBER, course_no VARCHAR2(6),
3
4
5 max_enrollees VARCHAR2(1));

Creating an Attribute Set (cont.)

Next create an object type for your attribute set:

SQL> CREATE OR REPLACE TYPE reg_priorities AS OBJECT (
2 student _i1d NUMBER,

3 class _year VARCHAR2(10),

4 preregs_needed VARCHAR2(1),
5
6
7
8

estimated graduation_date DATE,
enroll _date DATE,
section_i1d NUMBER,
course_no VARCHAR2(6),
9 required_prereq VARCHAR2(6),
10 max_enrollees VARCHAR2(1));

Then create an attribute set, of the same name, using the DBMS_EXPFIL
package:

SQL> BEGIN
2 DBMS EXPFIL.CREATE ATTRIBUTE_SET(attr_set => "reg priorities”,
3 from_type =>"yes");
3 END;
4 /

The Expression Repository

You can either create a table for your expressions or add a text column
(to contain expressions) to one of your existing tables.

SQL> CREATE TABLE reg_interests (
2 1Interest i1d NUMBER,
3 Interest VARCHAR2(200));

In this example, "interest" is the column that will store expressions.
Therefore, it must be linked to an attribute set.

SQL> BEGIN
DBMS_EXPFIL.ASSIGN_ATTRIBUTE_SET(
attr_set => "reg priorities”,
expr_tab => "reg_interests”,
expr_col => "interest");
END;
/

EXFSY S Validation Trigger

Assigning an attribute set to the column you'll use to store expressions creates a trigger in the EXFSYS
schema on the REG_INTERESTS table. This trigger ensures that any values inserted into the "interest'
column are valid expressions involving the attributes in the REG_PRIORITIES attribute set.

TRI GCER EXF$VALI DATE_1
BEFORE | NSERT OR UPDATE OF "I NTEREST" ON "SCOTT"."REG | NTERESTS"
FOR EACH ROW
decl are
cal l er VARCHAR2(32);
Isvalid NUMBER : = 1;
code VARCHAR2(1) := 'C;
begi n
sel ect user into caller from dual;
if (caller !'="SCOIT) then
if (UPDATING then code:="U; end if;
If (code = "'"U or :new "INTEREST" is not null) then
exf sys. exf $check_privil ege(code,' SCOIT' ,' REG | NTERESTS' ,' | NTEREST' , cal | er) ;
end if;
end if;
I f (:new "INTEREST" is not null) then
isvalid := exfsys. exf$expisvalid (54, SCOTT' ,' REG PRIORI TIES' , ' SELECT
/ *+ EXPR_CORR CHECK USE WEAK NAME RESL */ 1 FROM
TABLE(CAST(nul I AS EXF$NTT_53085)) exf$_eqgast
VWHERE ' || :new. "I NTEREST");
end if;
excepti on when others then rai se;
end;

Creating an Expression Set

Once you've inserted a few WHERE clauses (without the keyword WHERE) consisting of
predicates linked together with AND, OR and NOT into the column linked to an attribute set,
this set of values, taken together, becomes the expression set.

SQ.> |INSERT INTO reg_interests VALUES (
2 1, 'class_year = '""SENIOR ' AND prereqs_needed = ""'Y'""'");

SQ.> |INSERT INTO reg_interests VALUES (
2 2, 'class_year = ""SENITOR ' AND estimated graduati on_date < SYSDATE +

180') ;

SQ.> INSERT INTO reg_interests VALUES (
2 3, 'required prereq |I'S NOT NULL');

SQL.> I NSERT INTO reg_interests VALUES (
2 4, "enroll _date < SYSDATE + 180 AND esti mated_graduati on_date < SYSDATE

+ 180');

SQ.> |INSERT INTO reg_interests VALUES (
2 5, 'class year <> ''"SENIOR ' AND estinmated graduati on_date < SYSDATE +

180") ;
SQ.> |INSERT INTO reg_interests VALUES (6, 'nax_enrollees = "'"Y' "");

SQ.> |INSERT INTO reg_interests VALUES (
2 7, '(enroll _date < SYSDATE + 180 AND prereqs_needed = ""Y'') OR
(estimated graduati on_date < SYSDATE + 180 AND prereqs_needed = ""Y' ')");

10

Expression Evaluation

SQ.> SELECT a.student _id, a.nane, e.interest _id
FROM student a, enrollnent b, section c, course d,
reg interests e
VWHERE a. student id = b.student id
AND b. section id = c.section_id '
AND c.course no = d.course_no Set of attribute
AND EVALUATE(. values
. Expression
e.interest,
reg priorities(a.student id, a.class year,
10 a. preregs_needed, a.estimted graduati on_dat e,
11 b.enroll|l date, b.section_id, c.course_no,
12 d.required _prereq, b.max _enrollees).getVarchar ()
13) =1
14 ORDER BY a.student id, e.interest _id;

The SQL EVALUATE operator takes two arguments:

* An expression
* A set of attribute values

Table Aliases

When using table joins and the SQL EVALUATE operator, you may
want to consider using the EXFSTABLE_ALIAS type in your attribute
sets.

BEG N
DBMS EXPFI L. ADD ELEMENTARY _ATTRI BUTE(‘reg priorities’, ‘enroll nent’
EXF$STABLE ALIAS (‘scott.enrollnent’));
END;
/

This allows you to store expressions of the form
ENRCLLMENT. ENROLL _DATE > SYSDATE - 5

How Doesthe SQL EVALUATE
Operator Work?

EVALUATE(expression, attribute set) = 1,

EVALUATE(
e.interest,
reg priorities(a.student_id, a.class_yeatr,
a.prereqs_needed, a.estimated_graduation_date,
b.enroll_date, b.section_id, c.course_no,

d.required_prereq, b.max_enrollees).getVarchar()
)=1

» The first argument is merely the text column containing the expression(s).
» To generate the second argument, you can use the constructor function, reg_priorities,
to create an instance of an object type corresponding to the reg priorities attribute set.
» To return a formatted string of attribute name-value pairs, invoke the getVarchar method.
» EVALUATE returns a 1 when a given set of attribute values results in an expression being

true. Otherwise, EVALUATE returns zero (0).

What Takes Place When Expressions
Are Evaluated?

» The EVALUATE function issues a recursive SELECT against DUAL (to determine
whether an expression is true for each set of attribute values.)
» This SELECT is issued each time EVALUATE is called:

(Number of Expressions x Number of Results)

(7 ¥ 9), in our example, = 63 recursive SELECT statements

SELECT /*+ USE_WEAK NAME_RESL */ 1 FROM
(SELECT 1 STUDENT_ID, :2 CLASS YEAR, :3 PREREQS NEEDED,
-4 ESTIMATED_GRADUATION_DATE, :5 ENROLL_DATE,
:6 SECTION_ID, :7 COURSE_NO, :8 REQUIRED_ PREREQ,
-9 MAX_ENROLLEES from dual) exf$dumalias
WHERE class _year = "SENIOR®
AND estimated graduation _date < SYSDATE + 180

SELECT /*+ USE_WEAK NAME_RESL */ 1 FROM
(SELECT 1 STUDENT_ID, :2 CLASS_YEAR, :3 PREREQS_NEEDED,
4 ESTIMATED_GRADUATION_DATE, :5 ENROLL_DATE, :6 SECTION_ID,
:7 COURSE_NO, :8 REQUIRED PREREQ, :9 MAX_ENROLLEES
from dual) exf$dumalias
WHERE class _year = "SENIOR®" AND prereqs needed = "Y*

| ndexing Expressions

If you have more than a small number of
expressions In a set, you should index them,
using an expression set index.

In so doing, you greatly reduce your database’s
need to use recursive SQL when evaluating your
expressions.

The nice thing about expression indexes (among
other things) Is that, starting from an attribute
value set, the goal Is to optimize the path to find
expressions that are true for that set.

This Is better than starting from an expression,
then searching for data that makes that expression
true.

Expression Filter Worksits Way
from the Data to the Expression Set

Expression Set

class_year = 'SENIOR'
class_year = 'SENIOR'

o . _]
estimated_graduation_date = '15-MAR-06 AND prereqs_needed = 'Y

T~ (L5

Expression Look for Possible Matches

Filter S~

class_year = 'SENIOR'
~——— | AND estimated_graduation_date
< SYSDATE + 180 |

Incoming Data Items

Creating Expression I ndexes

In its simplest form, the statement to create
an index Is as follows:

CREATE | NDEX Reglnterestldx ON Reg Interests(lnterest)
| NDEXTYPE | S EXFSYS. EXPFI LTER;

Creating Expression | ndexes from Statistics

If you already have a representative set of expressions (which we do), you can automate the
tuning process by collecting statistics on the expression set first, then creating the index
from the statistics.

BEGQ N
DBMS EXPFI L. GET _EXPRSET _STATS(expr _tab => 'Reg Interests',
expr_col => 'Interest');
=\D
/

CREATE | NDEX Reglnterestldx ON Reg Interests(lnterest)
| NDEXTYPE | S EXFSYS. EXPFI LTER
PARAVETERS (' STOREATTRS TOP 4 | NDEXATTRS TOP 2');

What Does That Parameters Clause Do?

For the answer to that, we'll need to back up a bit

» EXxpressionsin an expression set tend toward particular commonalitiesin their
predicates.

» Expression Filter indexeswork to group predicates, based on these commonalities, to
reduce processing costs.

» For Example:
"SENI OR' and
*JUNI OR

cl ass_year
cl ass_year

Both share a common left-hand side operand.

» Thetruth or falseness of one predicate can be determined based on the outcome of the
other.

Which Predicates ar e | ndexable?

= Any predicate with a
constant or literal on the
right hand side that uses
one of the following
predicate operators:

BETWEEN

1S NULL

1S NOT NULL
LIKE

NVL

And Which Are Not?

m These predicates are
stored In their original
form and are not
Indexed. They are
evaluated last during
expression evaluation:

Predicates using a variable in the
right-hand side operand (as
opposed to using constants and
literals.)

IN Lists

Predicates using the LIKE operator
with a leading wild-card character.

Duplicate predicates in an
expression with the same left-hand
operand.

Predicates using combinations of
NOT and BETWEEN.

So Back to That Parameters Clause

This statement:

PARAVETERS (' STOREATTRS TOP 4 | NDEXATTRS TOP 2');

Simply Instructs the index creation statement to
store the four most selective predicates and,
of those four, index the top two.

What Happens When You Create
an Expression Filter I ndex?

Several objects are created In the schema
of the owner of the table housing the
Expression column.

A predicate table: EXF$PTAB n

One or more indexes on this predicate table:
EXFSPTAB n IDX m

A package known as the Access Function
package: EXFSAFUN n

The EXP$PTAB n Table

SQL> desc exf $ptab_53206

EXF$EXPROW D

EXF$SPARSEPRED
EXF$PTATTR 1_OP
EXF$PTATTR 1 _CT
EXF$PTATTR 2_COP
EXF$PTATTR 2_CT
EXF$PTATTR 3_OP
EXF$PTATTR 3_CT
EXF$PTATTR 4_OP
EXF$PTATTR 4_CT

VARCHAR2(4000)
NUVBER
VARCHAR2(10)
NUVBER
VARCHAR2(1)
NUMVBER
VARCHAR2(1)
NUVBER
VARCHAR?(6)

What Arelts Contents Based on Our Index?

SQL> select exf$ptattr 1 op, exf$ptattr 1 ct, exfPptattr_ 2 op,
2 exf$ptattr 2 ct
3 from exf $pt ab_53206;

EXFSPTATTR 1_OP EXF$PTATTR EXF$PTATTR 2 OP E

1 SEN OR

1 SEN OR

n_—_n

» The numbers in the OP columns correspond to the operator (in our case, the "=" operator),
and 1ts frequency within each data item corresponding to a particular expression.

» The numbers in the CT columns cotrespond to the right-hand side operand value assigned to

the predicate being indexed.
» To find out which left-hand side operands were indexed, you can read the soutrce code for the

FILTER_PROC procedure in the EXF§AFUN_53206 (EXF$AFUN_7) package,

OR:>

25

USER EXPFIL EXPRSET STATS

You could also i1ssue the following query.

SQL> SELECT attribute exp, pct _occurrence
2 FROM user_expfil_exprset _stats

3 WHERE expr_table = "REG_INTERESTS®
4 AND expr_column = "INTEREST"
5

ORDER BY pct_occurrence, attribute_exp DESC
ATTRIBUTE_EXP PCT_OCCURRENCE

STUDENT _ID
SECTION_ID

ESTIMATED GRADUATION_DATE
ENROLL_DATE

COURSE_NO

REQUIRED_PREREQ
MAX_ENROLLEES
PREREQS_NEEDED

CLASS_YEAR

o101 01010 O OOO

Expression Validation Utility

Used to verify an expression set.

|dentifies expressions that have become
Invalid since insertion.

Collects references to the invalid
expressions In an expression table.

However, an exception table must be
provided. Otherwise, the utility fails upon
first encounter with an invalid expression.

BUILD EXCEPTIONS Table

You can ensure that the Validation Utility
does not fail to collect references to invalid
expressions with the following bit of code:

BEGQ N
DBMS EXPFI L. BUI LD EXCEPTI ONS_TABLE
(exception_tab => ' Regl nterest Excepti ons');

DBVS EXPFI L. VALI DATE EXPRESSI ONS
(expr _tab => 'Reglnterests',
expr _col => '|nterest',
exception_tab => ' Regl nterest Excepti ons');
=\D
/

Bulk Loading Expressions

m For SQL*Loader operations, expressions are treated as strings loaded into a
VARCHAR?2 column of a database table.

LOAD DATA

| NFI LE *

| NTO TABLE reg_interests

FI ELDS TERM NATED BY ',' OPTI ONALLY ENCLOSED BY ' "'
(Interest ID, Interest)

BEG NDATA

1, "class _year = 'SENIOR AND prereqs_needed Y "

2, "class year = 'SENIOR AND estimated graduation date <
SYSDATE + 180"

3, "required prereq |I'S NOI' NULL"

L ooking to Perform a Direct L oad?

© DROP | NDEX Regl nt er est | dx;

® BEG N
DBMS _EXPFI L. UNASSI GN_ATTRI BUTE_SET
(expr _tab => 'Reglnterests',
expr _col => "Interest');
=ND

© Then you can perform the bulk load operation and direct
load Is possible.

O Reassign the attribute set to the expression column using
a value of "TRUE" for the "FORCE" parameter of the
ASSIGN_ATTRIBUTE_SET procedure.

© Validate the newly-added expressions with the
VALIDATE_EXPRESSIONS procedure.

® Recreate the indexes on the expression columns.

Expression Filter Uses and Benefits

= Performance = The optimizer can
use Oracle
Expression Filter's
bitmap indexes and
expression set index
tables to optimize
evaluation.

m Code reusability
and flexibility

m Code accuracy

Expression Filter Uses and Benefits

m Performance O EXpreSSiOnS In text
columns are much
easler to change than
trigger-based logic or
code embedded
within storec
procedures. Users
can even write their
OWN expressions.

m Code reusability
and flexibility

m Code accuracy

Expression Filter Uses and Benefits

s Performance m Since the expressions
= Code reusability are already in the

and ﬂ@lelIlty database engine, they
have been parsed and
(hopefully) tested.
Oracle Expression
Filter can leverage
that capability.

m Code accuracy

Expression Filter Goodies and Gotchas

Goodie: Greatly reduces the need for storing such items of data in
intermediate, associative tables.

Goodie: Enables batch processing of incoming data.
Gotcha: Expressions cannot contain subgueries.

Gotcha: If the expressions refer to user-defined functions, these functions
must be explicitly added to an attribute set. (Such functions cannot be
derived from object types.)

Goodie: Expression Indexing greatly reduces redundant, recursive SQL
processing.

Gotcha: Expression Indexing is only available within the Enterprise Edition
of Oracle.

Gotcha: See the laundry list on Slide #21 for operators that Expression
Indexing is not yet equipped to handle.

Goodie: NULL values are acceptable when passing values for all attributes
to the SOL EVALUATE operator.

Gotcha: A join condition column cannot be NULL, otherwise you receive
incorrect Expression results.

Goodie: Expression Filter creates objects to enhance and improve its
usability.
Gotcha: Some of these objects get stored in the EXFSYS schema. And

some get stored in the schema that owns the table containing Expression(s).
Make sure you know which items get created in which location.

Thank You Very Much!

FURELEN FiN

MELANIE CAFFREY * DOUGLAS SCHI RER s) €0-ROM contains 315 hours of Quick Time widea imstrustian ﬁr»;
. # PLUS the Orock: DBA Interoctive Workbook ¢-Book! e
Hands-0n Learning Sysiem That's Fast, Easy & Web-Charged! | FH;—I (B Jr._.-
J_ L e’
+ [P v) el e
L L] -~ P | = s ——
Web Application OI aCle BT
: AN B rr'|ir 1 'ATITOT
Programming for LA AR RS T GIUARDRN

THE COMPLETE VIDEO COURSE

* Maiter the baskis of Oracke ditabirie Sdminetrator-agid

* Maraging the database and its physical layout, ensuring security
and data integrity, prowiding for backups, PLUS the Hidory of
Oracks Networking

¥ Indudes 3v2 hours of expert QusckTime video instrucion by
Columbia University nstructors Melanie Caffeey & Doughys Scherer

PL/SQL Developers

b Start building Oracle 51 PL/SOL Web applications—hasds ea!
b Cawers the eatire devlopment Blecycle, from design ta deployment

B Provides instruction for PL/SOL Server Papes, the PL/SOL Web
Teolkit, mad the Oracie 9i Application Sorver

B Introduces Web basica=HTML, LivaScript”, baslc UNIX and FTP,
and image handling

P Includes practical tips and troubleshooting belp

n = .
r-:. il ..:I

[P Access to Interactive Oracle DBA Training Web Site

P Experience Oracle database administration—now!
¥ No Oracle DBA experience necessary

¥ Introduces core Oracle DBA topics

P Real-life labs and “Test Your Thinking” Q&As

Foreword by Dol Sofwwer, Fourwdor sod DI Cove Parscloees, [T

BY DA. ARTHUR M. LANGER

DOUGLAS SCHERER

THE PRENTICE HALL PTR ORACLE SERIES
THE INDEPENDENT VOICE ON ORACLE

THE PRENTICE HALL PTR ORACLE SERIES
THE INDEPENDENT VOICE ON ORACLE

Melanie Caffrey

Harris Corporation
mcaffrey@harris.com
mic51@columbia.edu

