
You wrote WHAT?

An examination of
common coding

mistakes made by
PL/SQL developers
(like yours truly!)
and how you can

avoid them yourself.Steven Feuerstein
steven.feuerstein@quest.com

You Can Expect More.

Love those cursor FOR loops!

• The cursor FOR loop is a very handy construct.
– Need to iterate through all the rows identified by a cursor?
– The cursor FOR loop takes care of that for you, with an

absolute minimum of effort on your part.

With an implicit cursor.... With an explicit cursor....
BEGIN

FOR rec IN (SELECT * FROM employee)
LOOP

process_employee (rec);
END LOOP;

END;

DECLARE
CURSOR emps_cur IS

SELECT * FROM employee;
BEGIN

FOR rec IN emps_cur
LOOP

process_employee (rec);
END LOOP;

END;

You Can Expect More.

Hey, I can even fetch one row with CFL!

• I could also use the cursor FOR loop to fetch just a
single row.
– Then I do not have to write the INTO clause, worrying about

NO_DATA_FOUND, etc.

BEGIN
FOR rec IN (SELECT * FROM employee

WHERE employee_id = employee_id_in)
LOOP

IF rec.salary > 10000 THEN ...
ELSE ...
END IF;

END LOOP;
END;

You Can Expect More.

But, really, why would you do that?

• Cursor FOR loops are very nice constructs, but they
have two problems:
– The row by row processing inherent in a cursor FOR loop

is a relatively slow way to retrieve data.
– The very fact that it does so much for us appeals to our

lazy side.
• May I suggest that you....

– Never use a cursor FOR loop to retrieve a single row.
– Generally consider the cursor FOR loop to be an "old-

fashioned" way of doing things, something to be generally
avoided.

You Can Expect More.

Never use a CFL for a single row fetch.

• If we know we are fetching a single row of data, we
should not use a cursor FOR loop.
– The code works, but it is very misleading. There really isn't

any loop processing going on. Let's face it - we're just being
lazy!

BEGIN
SELECT * INTO l_employee

FROM employee
WHERE employee_id = employee_id_in;

IF l_employee.salary > 10000 THEN ...
ELSE ...
END IF;

EXCEPTION
WHEN NO_DATA_FOUND ...

END;

If you are only grabbing a
single row, then make

sure your code says that.

Otherwise, you are
complicating the life of

anyone assigned to
maintain your code.

You Can Expect More.

Go Modern...Go with BULK COLLECT!

• Generally, if you are running Oracle8i and above,
you should strongly consider replacing any and all
cursor FOR loops with the BULK COLLECT query.
– It will be significantly faster.

• And if you are executing any DML inside your loop,
you will replace those statements with their FORALL
equivalent, also providing a big boost in
performance.

• Let's take a look at how you go from the old-
fashioned CFL code to bulk processing.

You Can Expect More.

What is a collection?

abc def sf q rrr swq...
1 2 3 4 22 23

• A collection is an "ordered group of elements,
all of the same type."
– That's a very general definition; lists, sets, arrays and

similar data structures are all types of collections.
– Each element of a collection may be addressed by a

unique subscript, usually an integer but in some cases
also a string.

– Collections are single-dimensional, but you can create
collections of collections to emulate multi-dimensional
structures.

You Can Expect More.

Three Types of Collections

• Associative arrays (aka index-by tables)
– Similar to hash tables in other languages, allows you

to access elements via arbitrary subscript values.
• Nested tables

– Can be defined in PL/SQL and SQL. Use to store
large amounts of persistent data in the column of a
table.

– Required for some features, such as table functions
• Varrays (aka variable size arrays)

– Can be defined in PL/SQL and SQL; useful for
defining small lists in columns of relational tables.

You Can Expect More.

Old-fashioned CFL code...

CREATE OR REPLACE PROCEDURE upd_for_dept (
dept_in IN employee.department_id%TYPE

,newsal IN employee.salary%TYPE)
IS

CURSOR emp_cur IS
SELECT employee_id, salary, hire_date

FROM employee
WHERE department_id = dept_in;

BEGIN
FOR rec IN emp_cur
LOOP

INSERT INTO employee_history
(employee_id, salary, hire_date
)

VALUES (rec.employee_id, rec.salary, rec.hiredate
);

UPDATE employee
SET salary = newsal

WHERE employee_id = rec.employee_id;
END LOOP;

END upd_for_dept;

You Can Expect More.

Step 1. Declare a bunch of collections.

A single associative array TYPE and variable for each column selected.

CREATE OR REPLACE PROCEDURE upd_for_dept (
dept_in IN employee.department_id%TYPE,
newsal IN employee.salary%TYPE

)
IS

TYPE employee_tt IS TABLE OF employee.employee_id%TYPE
INDEX BY BINARY_INTEGER;

employees employee_tt;

TYPE salary_tt IS TABLE OF employee.salary%TYPE
INDEX BY BINARY_INTEGER;

salaries salary_tt;

TYPE hire_date_tt IS TABLE OF employee.hire_date%TYPE
INDEX BY BINARY_INTEGER;

hire_dates hire_date_tt;

You Can Expect More.

Step 2. Replace CFL with BULK COLLECT.

BULK COLLECT the rows for this department into the
individual collections

BEGIN
SELECT employee_id

, salary
, hire_date

BULK COLLECT INTO employees
, salaries
, hire_dates

FROM employee
WHERE department_id = dept_in FOR UPDATE;

You Can Expect More.

Step 3. Write one FORALL for each DML.

BEGIN
SELECT ... (see previous page) ;

FORALL indx IN employees.FIRST .. employees.LAST
INSERT INTO employee_history

(employee_id, salary, hire_date
)

VALUES (employees (indx)
, salaries (indx)
, hire_dates (indx)
);

FORALL indx IN employees.FIRST .. employees.LAST
UPDATE employee

SET salary = newsal,
hire_date = hire_dates (indx)

WHERE employee_id = employees (indx);
END upd_for_dept;

Use FORALL for each, distinct DML statement to
process rows quickly.

You Can Expect More.

SQL is generally the key to optimized code.

• I have demonstrated one particular transformation of
"old-fashioned" code built around a cursor FOR loop
to BULK COLLECT and FORALL.

• Oracle has recently enhanced its SQL language in
many ways to improve performance and
maintainability.
– They are outside of the scope of this presentation (and my

expertise) and can be overwhelming to keep up with.
• Toad's automated tuning and analysis functionality

can help you get up to speed and leverage these
new capabilities.

You Can Expect More.

A string is a string is a string? Not quite....

• Actually there are variable length and fixed length,
single-byte and multi-byte strings, but let's not
quibble.
– I will assume that you are at least avoiding the use of the

CHAR datatype.
• That's good, but perhaps you write code that looks

like this: DECLARE
l_last_name VARCHAR2 (100);
l_full_name VARCHAR2 (500);
l_big_string VARCHAR2 (32767);

BEGIN
SELECT last_name, last_name || ', ' || first_name

into l_last_name, l_full_name
FROM employee

WHERE employee_id = 1500;
...

You Can Expect More.

Don't hard-code VARCHAR2 declarations. EVER

• Establish "source definitions" for all your
VARCHAR2 declarations and then reference those
when declaring your local variables.

• What that code could look like:
DECLARE

l_last_name employee.last_name%TYPE;
l_full_name employee_rp.fullname_t;
l_big_string plsql_limits.maxvarchar2_t;

BEGIN
SELECT last_name

, employee_rp.fullname (first_name, last_name)
into l_last_name, l_full_name
FROM employee
WHERE employee_id = 1500;
...

You Can Expect More.

Supporting code for datatype sources

• Package for employee rules, formulae, related types:

• Separate package of PL/SQL limits:

CREATE OR REPLACE PACKAGE employee_rp
AS

SUBTYPE fullname_t IS VARCHAR2 (200);

FUNCTION fullname (
employee_id_in IN

employee.employee_id%TYPE
)
RETURN fullname_t;

END;

CREATE OR REPLACE PACKAGE plsql_limits
IS

-- Maximum size for VARCHAR2 in PL/SQL
SUBTYPE maxvarchar2_t IS VARCHAR2 (32767);
...

END plsql_limits;

Objective:

Never declare
with hard-coded
VARCHAR2(N)

type...
unless it is the

"original."

You Can Expect More.

You're too explicit for my gentle soul.

• For many years, Oracle "gurus" urged everyone to
use explicit cursors all the time, and never, ever use
implicits.

DECLARE
CURSOR onerow_cur
IS

SELECT * FROM EMPLOYEE
WHERE EMPLOYEE_ID = employee_id_in;

l_employee EMPLOYEE%ROWTYPE;
BEGIN

OPEN onerow_cur;
FETCH onerow_cur INTO l_employee;

IF onerow_cur%FOUND THEN ...
ELSE ...
END IF;

CLOSE onerow_cur;
END or_EMPLOYEE;

Faster?

Wrong!

You Can Expect More.

Implicit one row queries are usually faster. NOWFOR

CREATE OR REPLACE FUNCTION or_employee (
employee_id_in IN

employee.employee_id%TYPE
)

RETURN employee%ROWTYPE
IS

retval employee%ROWTYPE;
BEGIN

SELECT *
INTO retval
FROM employee

WHERE employee_id = employee_id_in;

RETURN retval;
EXCEPTION

WHEN NO_DATA_FOUND
THEN

RETURN retval;
END or_employee;

• Don't take "our" word
for it. Test claims
yourself.

• Assume things will be
changing. Don't
expose your queries.
Hide them behind
functions.

10g_optimize_cfl.sql emplu.pkg

You Can Expect More.

I take exception to (some of) your exceptions.

Exception handling is flexible, powerful -- and vulnerable to abuse.

CREATE OR REPLACE FUNCTION matching_row (
list_in IN strings_nt, value_in IN VARCHAR2

)
RETURN PLS_INTEGER

IS
exit_function EXCEPTION;

BEGIN
FOR j IN list_in.FIRST .. list_in.LAST
LOOP

IF list_in (indx) = value_in
THEN

RETURN indx;
END IF;

END LOOP;

RAISE exit_function;
EXCEPTION

WHEN exit_function THEN RETURN NULL;
END;

• Here's a good
rule: write well-
structured code.

• The exception:
aw, what the
heck - who's
going to notice?

isvalinlis.sql

You Can Expect More.

Raise exceptions, never actions!

• Examine the names of user-defined exceptions.
• If they sound like actions ("return value" "calculate

total", etc.) then the programmer is very likely
abusing the exception handling mechanism of
PL/SQL.

• So remember....

No
exceptions
like GOTOs

No GOTOs

You Can Expect More.

Don't assume you haven't made assumptions

• I am using
collections -
how exciting!

• I need to do a
"full collection
scan".

• No problem -
here comes the
FOR loop.

CREATE OR REPLACE FUNCTION display_contents (
collection_in IN my_pkg.collection_type

)
IS

indx PLS_INTEGER;
BEGIN

FOR indx IN
collection_in.FIRST ..
collection_in.LAST

LOOP
-- Display contents of a row.
DBMS_OUTPUT.PUT_LINE (

collection_in (indx).name));
...

END LOOP;
END display_contents;

What assumptions am I making in this program?

You Can Expect More.

Things to keep in mind with collections...

• Touch a row that doesn't exist and Oracle raises the
NO_DATA_FOUND exception.

• Associative arrays may be sparse (gaps between
defined rows).

• FOR loops aren't smart about collections.
• And some non-collection issues...

– If low or high range values are NULL, then Oracle raises
VALUE_ERROR exception.

– Don't declare a local variable for the FOR loop index. It's
done for you. This extra code can allow errors to creep into
code later.

You Can Expect More.

Assumption-less code (more or less)

• Now it is harder for
the next coder to
accidentally
introduce bugs into
the application.

CREATE OR REPLACE FUNCTION display_contents (
collection_in IN my_pkg.collection_type

)
IS

l_row PLS_INTEGER;
BEGIN

l_row := collection_in.FIRST;

WHILE (l_row IS NOT NULL)
LOOP

-- Display contents of a row.
DBMS_OUTPUT.PUT_LINE (

collection_in (l_row).name));
...

l_row := collection_in.NEXT (l_row);
END LOOP;

END display_contents;

Replace FOR loop with
WHILE loop. Only

touch defined rows.

You Can Expect More.

Cut-and-paste - down the slippery slope.

• Cut-and-paste sure is a handy feature of a Windows
and other GUIs.
– But C-A-P can also lead to truly awful code.
– Like cursor FOR loops, just because it is easy and saves

some key strokes, does not make it better.

PROCEDURE show_percentages (sales_in IN sales$%ROWTYPE, total_in IN NUMBER)
IS
BEGIN

food_sales_stg :=
TO_CHAR ((sales_in.food_sales / total_in) * 100, '$999,999');

service_sales_stg :=
TO_CHAR ((sales_in.service_sales / total_in) * 100, '$999,999');

toy_sales_stg :=
TO_CHAR ((sales_in.toy_sales / total_in) * 100, '$999,999');

END show_percentages;

You Can Expect More.

Take the time to modularize.

• Set a very simple rule for yourself: No executable
section will have more than 50 lines of code.
– Use local modules and packaged code to keep program

units small, testable and easy to maintain.

PROCEDURE show_percentages (sales_in IN sales$%ROWTYPE, total_in IN NUMBER)
IS

FUNCTION formatted_pct (val_in IN NUMBER)
RETURN VARCHAR2

IS
BEGIN

RETURN TO_CHAR ((val_in / total_in) * 100, '$999,999');
END;

BEGIN
food_sales_stg := formatted_pct (sales_in.food_sales);
service_sales_stg := formatted_pct (sales_in.service_sales);
toy_sales_stg := formatted_pct (sales_in.toy_sales);

END show_percentages;

You Can Expect More.

Making mistakes is a part of the game.

• As long as there are programmers and programs, we
will make mistakes and have to fix bugs.
– All we can do is keep them to a minimum.

• So keep the following in mind....
– Don't repeat things.
– Your code is your legacy, and your offspring may have to

maintain your code.
– Concentrate on readability, not cleverness.

• Visit www.oracleplsqlprogramming.com to download
any and all of my training materials and
accompanying scripts.

AND TEST
OUR CODE.

Check out utplsql
via

www.ounit.com.

And sign up for
OPP/News.

You Can Expect More.

Oracle PL/SQL Programming conference!

• A two-day conference
packed with intensive
trainings on the PL/SQL
language.

• A celebration of the 10th

anniversary of the
publication of Oracle
PL/SQL Programming:

Sponsored by Quest Software.
More information available at:

www.oracleplsqlprogramming.com

	You wrote WHAT?
	Love those cursor FOR loops!
	Hey, I can even fetch one row with CFL!
	But, really, why would you do that?
	Never use a CFL for a single row fetch.
	Go Modern...Go with BULK COLLECT!
	What is a collection?
	Three Types of Collections
	Old-fashioned CFL code...
	Step 1. Declare a bunch of collections.
	Step 2. Replace CFL with BULK COLLECT.
	Step 3. Write one FORALL for each DML.
	SQL is generally the key to optimized code.
	A string is a string is a string? Not quite....
	Don't hard-code VARCHAR2 declarations.
	Supporting code for datatype sources
	You're too explicit for my gentle soul.
	Implicit one row queries are usually faster.
	I take exception to (some of) your exceptions.
	Raise exceptions, never actions!
	Don't assume you haven't made assumptions
	Things to keep in mind with collections...
	Assumption-less code (more or less)
	Cut-and-paste - down the slippery slope.
	Take the time to modularize.
	Making mistakes is a part of the game.
	Oracle PL/SQL Programming conference!

